@inproceedings{zhang-etal-2020-document,
title = "Document-level Relation Extraction with Dual-tier Heterogeneous Graph",
author = "Zhang, Zhenyu and
Yu, Bowen and
Shu, Xiaobo and
Liu, Tingwen and
Tang, Hengzhu and
Yubin, Wang and
Guo, Li",
editor = "Scott, Donia and
Bel, Nuria and
Zong, Chengqing",
booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
month = dec,
year = "2020",
address = "Barcelona, Spain (Online)",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2020.coling-main.143/",
doi = "10.18653/v1/2020.coling-main.143",
pages = "1630--1641",
abstract = "Document-level relation extraction (RE) poses new challenges over its sentence-level counterpart since it requires an adequate comprehension of the whole document and the multi-hop reasoning ability across multiple sentences to reach the final result. In this paper, we propose a novel graph-based model with Dual-tier Heterogeneous Graph (DHG) for document-level RE. In particular, DHG is composed of a structure modeling layer followed by a relation reasoning layer. The major advantage is that it is capable of not only capturing both the sequential and structural information of documents but also mixing them together to benefit for multi-hop reasoning and final decision-making. Furthermore, we employ Graph Neural Networks (GNNs) based message propagation strategy to accumulate information on DHG. Experimental results demonstrate that the proposed method achieves state-of-the-art performance on two widely used datasets, and further analyses suggest that all the modules in our model are indispensable for document-level RE."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2020-document">
<titleInfo>
<title>Document-level Relation Extraction with Dual-tier Heterogeneous Graph</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhenyu</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bowen</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaobo</namePart>
<namePart type="family">Shu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tingwen</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hengzhu</namePart>
<namePart type="family">Tang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wang</namePart>
<namePart type="family">Yubin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Li</namePart>
<namePart type="family">Guo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 28th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Donia</namePart>
<namePart type="family">Scott</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nuria</namePart>
<namePart type="family">Bel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona, Spain (Online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Document-level relation extraction (RE) poses new challenges over its sentence-level counterpart since it requires an adequate comprehension of the whole document and the multi-hop reasoning ability across multiple sentences to reach the final result. In this paper, we propose a novel graph-based model with Dual-tier Heterogeneous Graph (DHG) for document-level RE. In particular, DHG is composed of a structure modeling layer followed by a relation reasoning layer. The major advantage is that it is capable of not only capturing both the sequential and structural information of documents but also mixing them together to benefit for multi-hop reasoning and final decision-making. Furthermore, we employ Graph Neural Networks (GNNs) based message propagation strategy to accumulate information on DHG. Experimental results demonstrate that the proposed method achieves state-of-the-art performance on two widely used datasets, and further analyses suggest that all the modules in our model are indispensable for document-level RE.</abstract>
<identifier type="citekey">zhang-etal-2020-document</identifier>
<identifier type="doi">10.18653/v1/2020.coling-main.143</identifier>
<location>
<url>https://aclanthology.org/2020.coling-main.143/</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>1630</start>
<end>1641</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Document-level Relation Extraction with Dual-tier Heterogeneous Graph
%A Zhang, Zhenyu
%A Yu, Bowen
%A Shu, Xiaobo
%A Liu, Tingwen
%A Tang, Hengzhu
%A Yubin, Wang
%A Guo, Li
%Y Scott, Donia
%Y Bel, Nuria
%Y Zong, Chengqing
%S Proceedings of the 28th International Conference on Computational Linguistics
%D 2020
%8 December
%I International Committee on Computational Linguistics
%C Barcelona, Spain (Online)
%F zhang-etal-2020-document
%X Document-level relation extraction (RE) poses new challenges over its sentence-level counterpart since it requires an adequate comprehension of the whole document and the multi-hop reasoning ability across multiple sentences to reach the final result. In this paper, we propose a novel graph-based model with Dual-tier Heterogeneous Graph (DHG) for document-level RE. In particular, DHG is composed of a structure modeling layer followed by a relation reasoning layer. The major advantage is that it is capable of not only capturing both the sequential and structural information of documents but also mixing them together to benefit for multi-hop reasoning and final decision-making. Furthermore, we employ Graph Neural Networks (GNNs) based message propagation strategy to accumulate information on DHG. Experimental results demonstrate that the proposed method achieves state-of-the-art performance on two widely used datasets, and further analyses suggest that all the modules in our model are indispensable for document-level RE.
%R 10.18653/v1/2020.coling-main.143
%U https://aclanthology.org/2020.coling-main.143/
%U https://doi.org/10.18653/v1/2020.coling-main.143
%P 1630-1641
Markdown (Informal)
[Document-level Relation Extraction with Dual-tier Heterogeneous Graph](https://aclanthology.org/2020.coling-main.143/) (Zhang et al., COLING 2020)
ACL