[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Denis Gordeev


2021

pdf bib
LIORI at the FinCausal 2021 Shared task: Transformer ensembles are not enough to win
Adis Davletov | Sergey Pletenev | Denis Gordeev
Proceedings of the 3rd Financial Narrative Processing Workshop

pdf bib
LIORI at SemEval-2021 Task 2: Span Prediction and Binary Classification approaches to Word-in-Context Disambiguation
Adis Davletov | Nikolay Arefyev | Denis Gordeev | Alexey Rey
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

This paper presents our approaches to SemEval-2021 Task 2: Multilingual and Cross-lingual Word-in-Context Disambiguation task. The first approach attempted to reformulate the task as a question answering problem, while the second one framed it as a binary classification problem. Our best system, which is an ensemble of XLM-R based binary classifiers trained with data augmentation, is among the 3 best-performing systems for Russian, French and Arabic in the multilingual subtask. In the post-evaluation period, we experimented with batch normalization, subword pooling and target word occurrence aggregation methods, resulting in further performance improvements.

pdf bib
LIORI at SemEval-2021 Task 8: Ask Transformer for measurements
Adis Davletov | Denis Gordeev | Nikolay Arefyev | Emil Davletov
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

This work describes our approach for subtasks of SemEval-2021 Task 8: MeasEval: Counts and Measurements which took the official first place in the competition. To solve all subtasks we use multi-task learning in a question-answering-like manner. We also use learnable scalar weights to weight subtasks’ contribution to the final loss in multi-task training. We fine-tune LUKE to extract quantity spans and we fine-tune RoBERTa to extract everything related to found quantities, including quantities themselves.

2020

pdf bib
LIORI at the FinCausal 2020 Shared task
Denis Gordeev | Adis Davletov | Alexey Rey | Nikolay Arefiev
Proceedings of the 1st Joint Workshop on Financial Narrative Processing and MultiLing Financial Summarisation

In this paper, we describe the results of team LIORI at the FinCausal 2020 Shared task held as a part of the 1st Joint Workshop on Financial Narrative Processing and MultiLingual Financial Summarisation. The shared task consisted of two subtasks: classifying whether a sentence contains any causality and labelling phrases that indicate causes and consequences. Our team ranked 1st in the first subtask and 4th in the second one. We used Transformer-based models with joint-task learning and their ensembles.

pdf bib
Gorynych Transformer at SemEval-2020 Task 6: Multi-task Learning for Definition Extraction
Adis Davletov | Nikolay Arefyev | Alexander Shatilov | Denis Gordeev | Alexey Rey
Proceedings of the Fourteenth Workshop on Semantic Evaluation

This paper describes our approach to “DeftEval: Extracting Definitions from Free Text in Textbooks” competition held as a part of Semeval 2020. The task was devoted to finding and labeling definitions in texts. DeftEval was split into three subtasks: sentence classification, sequence labeling and relation classification. Our solution ranked 5th in the first subtask and 23rd and 21st in the second and the third subtasks respectively. We applied simultaneous multi-task learning with Transformer-based models for subtasks 1 and 3 and a single BERT-based model for named entity recognition.

pdf bib
Randomseed19 at SemEval-2020 Task 10: Emphasis Selection for Written Text in Visual Media
Aleksandr Shatilov | Denis Gordeev | Alexey Rey
Proceedings of the Fourteenth Workshop on Semantic Evaluation

This paper describes our approach to emphasis selection for written text in visual media as a solution for SemEval 2020 Task 10. We used an ensemble of several different Transformer-based models and cast the task as a sequence labeling problem with two tags: ‘I’ as ‘emphasized’ and ‘O’ as ‘non-emphasized’ for each token in the text.

pdf bib
BERT of all trades, master of some
Denis Gordeev | Olga Lykova
Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying

This paper describes our results for TRAC 2020 competition held together with the conference LREC 2020. Our team name was Ms8qQxMbnjJMgYcw. The competition consisted of 2 subtasks in 3 languages (Bengali, English and Hindi) where the participants’ task was to classify aggression in short texts from social media and decide whether it is gendered or not. We used a single BERT-based system with two outputs for all tasks simultaneously. Our model placed first in English and second in Bengali gendered text classification competition tasks with 0.87 and 0.93 in F1-score respectively.