[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Youbo Lei


2024

pdf bib
MCAD: Multi-teacher Cross-modal Alignment Distillation for efficient image-text retrieval
Youbo Lei | Feifei He | Chen Chen | Yingbin Mo | Sijia Li | Defeng Xie | Haonan Lu
Findings of the Association for Computational Linguistics: NAACL 2024

Due to the success of large-scale visual-language pretraining (VLP) models and the widespread use of image-text retrieval in industry areas, it is now critically necessary to reduce the model size and streamline their mobile-device deployment. Single- and dual-stream model structures are commonly used in image-text retrieval with the goal of closing the semantic gap between textual and visual modalities. While single-stream models use deep feature fusion to achieve more accurate cross-model alignment, dual-stream models are better at offline indexing and fast inference. We propose a Multi-teacher Cross-modality Alignment Distillation (MCAD) technique to integrate the advantages of single- and dual-stream models. By incorporating the fused single-stream features into the image and text features of the dual-stream model, we formulate new modified teacher similarity distributions and features. Then, we conduct both distribution and feature distillation to boost the capability of the student dual-stream model, achieving high retrieval performance without increasing inference complexity. Extensive experiments demonstrate the remarkable performance and high efficiency of MCAD on image-text retrieval tasks. Furthermore, we implement a lightweight CLIP model on Snapdragon/Dimensity chips with only ~100M running memory and ~8.0ms search latency, achieving the mobile-device application of VLP models.

pdf bib
Prompt Space Optimizing Few-shot Reasoning Success with Large Language Models
Fobo Shi | Peijun Qing | Dong Yang | Nan Wang | Youbo Lei | Haonan Lu | Xiaodong Lin | Duantengchuan Li
Findings of the Association for Computational Linguistics: NAACL 2024

Prompt engineering is an essential technique for enhancing the abilities of large language models (LLMs) by providing explicit and specific instructions. It enables LLMs to excel in various tasks, such as arithmetic reasoning, question answering, summarization, relation extraction, machine translation, and sentiment analysis. Researchers have been actively exploring different prompt engineering strategies, such as Chain of Thought (CoT), Zero-CoT, and In-context learning. However, an unresolved problem arises from the fact that current approaches lack a solid mathematical solution for determining optimal prompts. To address this issue in prompt engineering, we propose a new and effective approach called Prompt Space. Our methodology utilizes text embeddings to obtain basis vectors by matrix decomposition, and then constructs a space for representing all prompts. Prompt Space significantly outperforms state-of-the-art prompt paradigms on ten public reasoning benchmarks. Notably, without the help of the CoT method and the prompt “Let’s think step by step”, Prompt Space shows superior performance over the few-shot method. Overall, our approach provides a robust and effective mathematical framework for selecting simple and effective prompts. This advancement marks a significant step towards improving prompt engineering for a wide variety of applications in LLMs. Our code is publicly available at https://github.com/YouBLEI/Prompt-Space