[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Wenqian Zhang


2023

pdf bib
KALM: Knowledge-Aware Integration of Local, Document, and Global Contexts for Long Document Understanding
Shangbin Feng | Zhaoxuan Tan | Wenqian Zhang | Zhenyu Lei | Yulia Tsvetkov
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

With the advent of pre-trained language models (LMs), increasing research efforts have been focusing on infusing commonsense and domain-specific knowledge to prepare LMs for downstream tasks. These works attempt to leverage knowledge graphs, the de facto standard of symbolic knowledge representation, along with pre-trained LMs. While existing approaches leverage external knowledge, it remains an open question how to jointly incorporate knowledge graphs represented in varying contexts — from local (e.g., sentence), document-level, to global knowledge, to enable knowledge-rich and interpretable exchange across contexts. In addition, incorporating varying contexts can especially benefit long document understanding tasks that leverage pre-trained LMs, typically bounded by the input sequence length. In light of these challenges, we propose KALM, a language model that jointly leverages knowledge in local, document-level, and global contexts for long document understanding. KALM firstly encodes long documents and knowledge graphs into the three knowledge-aware context representations. KALM then processes each context with context-specific layers. These context-specific layers are followed by a ContextFusion layer that facilitates knowledge exchange to derive an overarching document representation. Extensive experiments demonstrate that KALM achieves state-of-the-art performance on three long document understanding tasks across 6 datasets/settings. Further analyses reveal that the three knowledge-aware contexts are complementary and they all contribute to model performance, while the importance and information exchange patterns of different contexts vary on different tasks and datasets.

pdf bib
BIC: Twitter Bot Detection with Text-Graph Interaction and Semantic Consistency
Zhenyu Lei | Herun Wan | Wenqian Zhang | Shangbin Feng | Zilong Chen | Jundong Li | Qinghua Zheng | Minnan Luo
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Twitter bots are automatic programs operated by malicious actors to manipulate public opinion and spread misinformation. Research efforts have been made to automatically identify bots based on texts and networks on social media. Existing methods only leverage texts or networks alone, and while few works explored the shallow combination of the two modalities, we hypothesize that the interaction and information exchange between texts and graphs could be crucial for holistically evaluating bot activities on social media. In addition, according to a recent survey (Cresci, 2020), Twitter bots are constantly evolving while advanced bots steal genuine users’ tweets and dilute their malicious content to evade detection. This results in greater inconsistency across the timeline of novel Twitter bots, which warrants more attention. In light of these challenges, we propose BIC, a Twitter Bot detection framework with text-graph Interaction and semantic Consistency. Specifically, in addition to separately modeling the two modalities on social media, BIC employs a text-graph interaction module to enable information exchange across modalities in the learning process. In addition, given the stealing behavior of novel Twitter bots, BIC proposes to model semantic consistency in tweets based on attention weights while using it to augment the decision process. Extensive experiments demonstrate that BIC consistently outperforms state-of-the-art baselines on two widely adopted datasets. Further analyses reveal that text-graph interactions and modeling semantic consistency are essential improvements and help combat bot evolution.

pdf bib
Detecting Spoilers in Movie Reviews with External Movie Knowledge and User Networks
Heng Wang | Wenqian Zhang | Yuyang Bai | Zhaoxuan Tan | Shangbin Feng | Qinghua Zheng | Minnan Luo
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Online movie review platforms are providing crowdsourced feedback for the film industry and the general public, while spoiler reviews greatly compromise user experience. Although preliminary research efforts were made to automatically identify spoilers, they merely focus on the review content itself, while robust spoiler detection requires putting the review into the context of facts and knowledge regarding movies, user behavior on film review platforms, and more. In light of these challenges, we first curate a large-scale network-based spoiler detection dataset LCS and a comprehensive and up-to-date movie knowledge base UKM. We then propose MVSD, a novel spoiler detection model that takes into account the external knowledge about movies and user activities on movie review platforms. Specifically, MVSD constructs three interconnecting heterogeneous information networks to model diverse data sources and their multi-view attributes, while we design and employ a novel heterogeneous graph neural network architecture for spoiler detection as node-level classification. Extensive experiments demonstrate that MVSD advances the state-of-the-art on two spoiler detection datasets, while the introduction of external knowledge and user interactions help ground robust spoiler detection.

2022

pdf bib
KCD: Knowledge Walks and Textual Cues Enhanced Political Perspective Detection in News Media
Wenqian Zhang | Shangbin Feng | Zilong Chen | Zhenyu Lei | Jundong Li | Minnan Luo
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Political perspective detection has become an increasingly important task that can help combat echo chambers and political polarization. Previous approaches generally focus on leveraging textual content to identify stances, while they fail to reason with background knowledge or leverage the rich semantic and syntactic textual labels in news articles. In light of these limitations, we propose KCD, a political perspective detection approach to enable multi-hop knowledge reasoning and incorporate textual cues as paragraph-level labels. Specifically, we firstly generate random walks on external knowledge graphs and infuse them with news text representations. We then construct a heterogeneous information network to jointly model news content as well as semantic, syntactic and entity cues in news articles. Finally, we adopt relational graph neural networks for graph-level representation learning and conduct political perspective detection. Extensive experiments demonstrate that our approach outperforms state-of-the-art methods on two benchmark datasets. We further examine the effect of knowledge walks and textual cues and how they contribute to our approach’s data efficiency.