@inproceedings{shvartzshanider-etal-2018-recipe,
title = "{RECIPE}: Applying Open Domain Question Answering to Privacy Policies",
author = "Shvartzshanider, Yan and
Balashankar, Ananth and
Wies, Thomas and
Subramanian, Lakshminarayanan",
editor = "Choi, Eunsol and
Seo, Minjoon and
Chen, Danqi and
Jia, Robin and
Berant, Jonathan",
booktitle = "Proceedings of the Workshop on Machine Reading for Question Answering",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-2608/",
doi = "10.18653/v1/W18-2608",
pages = "71--77",
abstract = "We describe our experiences in using an open domain question answering model (Chen et al., 2017) to evaluate an out-of-domain QA task of assisting in analyzing privacy policies of companies. Specifically, Relevant CI Parameters Extractor (RECIPE) seeks to answer questions posed by the theory of contextual integrity (CI) regarding the information flows described in the privacy statements. These questions have a simple syntactic structure and the answers are factoids or descriptive in nature. The model achieved an F1 score of 72.33, but we noticed that combining the results of this model with a neural dependency parser based approach yields a significantly higher F1 score of 92.35 compared to manual annotations. This indicates that future work which in-corporates signals from parsing like NLP tasks more explicitly can generalize better on out-of-domain tasks."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shvartzshanider-etal-2018-recipe">
<titleInfo>
<title>RECIPE: Applying Open Domain Question Answering to Privacy Policies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yan</namePart>
<namePart type="family">Shvartzshanider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ananth</namePart>
<namePart type="family">Balashankar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thomas</namePart>
<namePart type="family">Wies</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lakshminarayanan</namePart>
<namePart type="family">Subramanian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on Machine Reading for Question Answering</title>
</titleInfo>
<name type="personal">
<namePart type="given">Eunsol</namePart>
<namePart type="family">Choi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Minjoon</namePart>
<namePart type="family">Seo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Danqi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Robin</namePart>
<namePart type="family">Jia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">Berant</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We describe our experiences in using an open domain question answering model (Chen et al., 2017) to evaluate an out-of-domain QA task of assisting in analyzing privacy policies of companies. Specifically, Relevant CI Parameters Extractor (RECIPE) seeks to answer questions posed by the theory of contextual integrity (CI) regarding the information flows described in the privacy statements. These questions have a simple syntactic structure and the answers are factoids or descriptive in nature. The model achieved an F1 score of 72.33, but we noticed that combining the results of this model with a neural dependency parser based approach yields a significantly higher F1 score of 92.35 compared to manual annotations. This indicates that future work which in-corporates signals from parsing like NLP tasks more explicitly can generalize better on out-of-domain tasks.</abstract>
<identifier type="citekey">shvartzshanider-etal-2018-recipe</identifier>
<identifier type="doi">10.18653/v1/W18-2608</identifier>
<location>
<url>https://aclanthology.org/W18-2608/</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>71</start>
<end>77</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T RECIPE: Applying Open Domain Question Answering to Privacy Policies
%A Shvartzshanider, Yan
%A Balashankar, Ananth
%A Wies, Thomas
%A Subramanian, Lakshminarayanan
%Y Choi, Eunsol
%Y Seo, Minjoon
%Y Chen, Danqi
%Y Jia, Robin
%Y Berant, Jonathan
%S Proceedings of the Workshop on Machine Reading for Question Answering
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F shvartzshanider-etal-2018-recipe
%X We describe our experiences in using an open domain question answering model (Chen et al., 2017) to evaluate an out-of-domain QA task of assisting in analyzing privacy policies of companies. Specifically, Relevant CI Parameters Extractor (RECIPE) seeks to answer questions posed by the theory of contextual integrity (CI) regarding the information flows described in the privacy statements. These questions have a simple syntactic structure and the answers are factoids or descriptive in nature. The model achieved an F1 score of 72.33, but we noticed that combining the results of this model with a neural dependency parser based approach yields a significantly higher F1 score of 92.35 compared to manual annotations. This indicates that future work which in-corporates signals from parsing like NLP tasks more explicitly can generalize better on out-of-domain tasks.
%R 10.18653/v1/W18-2608
%U https://aclanthology.org/W18-2608/
%U https://doi.org/10.18653/v1/W18-2608
%P 71-77
Markdown (Informal)
[RECIPE: Applying Open Domain Question Answering to Privacy Policies](https://aclanthology.org/W18-2608/) (Shvartzshanider et al., ACL 2018)
ACL