@inproceedings{pramanick-mitra-2018-unsupervised,
title = "Unsupervised Detection of Metaphorical Adjective-Noun Pairs",
author = "Pramanick, Malay and
Mitra, Pabitra",
editor = "Beigman Klebanov, Beata and
Shutova, Ekaterina and
Lichtenstein, Patricia and
Muresan, Smaranda and
Wee, Chee",
booktitle = "Proceedings of the Workshop on Figurative Language Processing",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-0909/",
doi = "10.18653/v1/W18-0909",
pages = "76--80",
abstract = "Metaphor is a popular figure of speech. Popularity of metaphors calls for their automatic identification and interpretation. Most of the unsupervised methods directed at detection of metaphors use some hand-coded knowledge. We propose an unsupervised framework for metaphor detection that does not require any hand-coded knowledge. We applied clustering on features derived from Adjective-Noun pairs for classifying them into two disjoint classes. We experimented with adjective-noun pairs of a popular dataset annotated for metaphors and obtained an accuracy of 72.87{\%} with k-means clustering algorithm."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pramanick-mitra-2018-unsupervised">
<titleInfo>
<title>Unsupervised Detection of Metaphorical Adjective-Noun Pairs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Malay</namePart>
<namePart type="family">Pramanick</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pabitra</namePart>
<namePart type="family">Mitra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on Figurative Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Beata</namePart>
<namePart type="family">Beigman Klebanov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patricia</namePart>
<namePart type="family">Lichtenstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chee</namePart>
<namePart type="family">Wee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Metaphor is a popular figure of speech. Popularity of metaphors calls for their automatic identification and interpretation. Most of the unsupervised methods directed at detection of metaphors use some hand-coded knowledge. We propose an unsupervised framework for metaphor detection that does not require any hand-coded knowledge. We applied clustering on features derived from Adjective-Noun pairs for classifying them into two disjoint classes. We experimented with adjective-noun pairs of a popular dataset annotated for metaphors and obtained an accuracy of 72.87% with k-means clustering algorithm.</abstract>
<identifier type="citekey">pramanick-mitra-2018-unsupervised</identifier>
<identifier type="doi">10.18653/v1/W18-0909</identifier>
<location>
<url>https://aclanthology.org/W18-0909/</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>76</start>
<end>80</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Unsupervised Detection of Metaphorical Adjective-Noun Pairs
%A Pramanick, Malay
%A Mitra, Pabitra
%Y Beigman Klebanov, Beata
%Y Shutova, Ekaterina
%Y Lichtenstein, Patricia
%Y Muresan, Smaranda
%Y Wee, Chee
%S Proceedings of the Workshop on Figurative Language Processing
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F pramanick-mitra-2018-unsupervised
%X Metaphor is a popular figure of speech. Popularity of metaphors calls for their automatic identification and interpretation. Most of the unsupervised methods directed at detection of metaphors use some hand-coded knowledge. We propose an unsupervised framework for metaphor detection that does not require any hand-coded knowledge. We applied clustering on features derived from Adjective-Noun pairs for classifying them into two disjoint classes. We experimented with adjective-noun pairs of a popular dataset annotated for metaphors and obtained an accuracy of 72.87% with k-means clustering algorithm.
%R 10.18653/v1/W18-0909
%U https://aclanthology.org/W18-0909/
%U https://doi.org/10.18653/v1/W18-0909
%P 76-80
Markdown (Informal)
[Unsupervised Detection of Metaphorical Adjective-Noun Pairs](https://aclanthology.org/W18-0909/) (Pramanick & Mitra, Fig-Lang 2018)
ACL