そく‐ど【測度】
測度論
出典は列挙するだけでなく、脚注などを用いてどの記述の情報源であるかを明記してください。 |
測度論(そくどろん、英: measure theory)は、数学の実解析における一分野で、測度とそれに関連する概念(完全加法族、可測関数、積分等)を研究する。ここで測度(そくど、英: measure)とは面積、体積、個数といった「大きさ」に関する概念を精緻化・一般化したものである。よく知られているように積分は面積と関係があるので、積分(厳密にはルベーグ積分)も測度論を基盤にして定式化・研究できる[1]。
また、測度の概念は確率を数学的に定式化する際にも用いられるため(コルモゴロフの公理)、確率論や統計学においても測度論は重要である。たとえば「サイコロの目が偶数になる確率」は目が 1, ..., 6 になるという 6 つの事象の集合の中で、2, 4, 6 という 3 つ分の「大きさ」を持っているため、測度の概念で記述できる。
概説
与えられた集合上の測度は 2 段階のステップで定義される。まずその集合の部分集合で測度が定義可能なもの(可測集合という)はどれであるかを決め、次にそれらの部分集合に対し具体的に測度を定義する。測度の定義は形式的に与えられ、その要件は、空集合の測度が 0 であることと、n 個の互いに素な集合の測度の和がそれらの集合の和集合の測度と一致することだけである。前述した面積、体積、個数はいずれも測度であることが容易に確かめられる。
重要なことは上の定義で n が可算個であってもよいということである。このことが測度論をベースにした積分の定義(ルベーグ積分)を従来の定義(リーマン積分)よりも使い易くしており、前者では適切な条件のもと積分と可算和の順番を交換できることを保証できる(有界収束定理)が、後者の場合は同じ条件下であってもこの種の交換は有限和のときにしか保証されない。
測度
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/11/18 16:04 UTC 版)
以下、X は局所コンパクトな位相空間を表すものとする。X 上のコンパクト台付き実数値連続関数の全体はベクトル空間 K(X) を成し、これに自然な局所凸位相を入れることができる。実際、K(X) は台がコンパクト集合 K に含まれる連続関数の成す部分空間 K(X, K) の合併であって、各空間 K(X, K) は一様収束の位相が入ってバナッハ空間になるが、位相空間の合併というのは位相空間の帰納極限の特別な場合であって、然るに空間 K(X) は空間族 K(X, K) から誘導される帰納極限位相が入るのである。 測度 m が X 上のラドン測度ならば、写像 I : f ↦ ∫ f d m {\displaystyle I\colon f\mapsto \int f\,dm} は K(X) から R への連続な正値線型写像になる。ここで、正値性というのは f が非負値関数である限りにおいて I(f) ≥ 0 となることを意味し、また連続性は上記の帰納極限位相に関して言うが、次の条件 X の任意のコンパクト部分集合 K に対し、定数 MK が存在して、X 上の実数値連続関数 f でその台が K に含まれるようなもの全てに対して | I ( f ) | ≤ M K sup x ∈ X | f ( x ) | {\displaystyle |I(f)|\leq M_{K}\sup _{x\in X}|f(x)|} とすることができる。 とも同値である。逆に、リースの表現定理によって、K(X) 上の各正値線型形式からラドン測度に関する積分が生じるから、従ってそれは K(X) 上の連続正値線型形式である。 実数値ラドン測度は K(X) 上の(正値とは限らない)「任意の」連続線型形式として定義される(これはちょうど二つのラドン測度の差になっている)。これは実数値ラドン測度の全体と局所凸空間 K(X) の双対空間との同一視を与える。例えば、sin(x)dx は実数値ラドン測度になるが、少なくとも一方が有限な二つの測度の差として書くことはできないから、符号付測度に拡張することさえできない。 いくつかの文献では(正値)ラドン測度を K(X) 上の正値線型形式として定義する古いやり方が用いられる(Bourbaki (2004), Hewitt & Stromberg (1965),Dieudonné (1970) 等を参照)。この設定では、上で述べた意味でのラドン測度を「正値測度」と呼び、上記の意味での実数値ラドン測度を「(実)測度」と呼ぶ用語法を用いるが普通である。
※この「測度」の解説は、「ラドン測度」の解説の一部です。
「測度」を含む「ラドン測度」の記事については、「ラドン測度」の概要を参照ください。
「測度」の例文・使い方・用例・文例
測度と同じ種類の言葉
品詞の分類
- >> 「測度」を含む用語の索引
- 測度のページへのリンク