弧長
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/01/29 19:23 UTC 版)
出典は列挙するだけでなく、脚注などを用いてどの記述の情報源であるかを明記してください。 |
数学において、複雑な形状の曲線(弧状線分)の弧長(こちょう、英: arc length)を決定する問題は、曲線の求長 (rectification) とも呼ばれ、特定の曲線に対する求長法は歴史的に様々なものが考えられてきたが、無限小解析の到来とともに曲線に依らない一般論が導かれ、いくつかの場合にはそこから閉じた形の式が得られる。
平面内の曲線は、曲線上の有限個の点を線分で結んで得られる折線で近似することができる。各線分の長さは、ユークリッド空間におけるピタゴラスの定理などから直接に求まるので、近似折線の総延長はそれらの線分の長さの総和として決定することができる。
考えている曲線がはじめから折線なのでなければ、用いる線分の長さを短くして数を増やすことによって、よりその曲線に近い形の折線近似が得られる。そうやってよりよい近似折線を次々につくっていくと、その長さは減ることはなく、場合によっては無制限に増加し続ける可能性もある。しかし、殊滑らかな曲線に限っては、それは線分の長さを無限に小さくする極限で必ず一定の極限値へ収斂する。このように、ある種の曲線に対しては、任意の近似折線の長さの上界に最小値 L が存在する。そのとき、その曲線は有限長であるといい、値 L をその曲線の弧長と呼ぶのである。
定義
X はユークリッド空間 Rn や、より一般の距離空間であるとし、C を空間 X 内の曲線とする。すなわち、C は実数直線内の閉区間 [a, b] から X への連続写像 f : [a, b] → X の像である。
区間 [a, b] に対して 区間の分割
曲線の弧長を近似するために曲線をたくさんの線分に分解するが、弧長の長さを近似値でなく真の値として得るには無限に多くの線分が必要になる。これはつまり、各線分を無限に小さくすることを意味しているが、このことは後に積分を用いる際に効いてくる。
線分の代表元を見れば、その長さ(線素)が微分 ds であることが確認できる。この変位の水平成分を dx、垂直成分を dy で表すと、ピタゴラスの定理から
例として、曲線が