1
|
Lewczuk P, Kamrowski-Kruck H, Peters O, et
al: Soluble amyloid precursor proteins in the cerebrospinal fluid
as novel potential biomarkers of Alzheimer’s disease: a multicenter
study. Mol Psychiatry. 15:138–145. 2010.
|
2
|
Weiner MW: Dementia in 2012: Further
insights into Alzheimer disease pathogenesis. Nat Rev Neurol.
2:65–66. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Singer O, Marr RA, Rockenstein E, et al:
Targeting BACE1 with siRNAs ameliorates Alzheimer disease
neuropathology in a transgenic model. Nat Neurosci. 8:1343–1349.
2005. View
Article : Google Scholar : PubMed/NCBI
|
4
|
Tan L, Yu JT, Hu N and Tan L: Non-coding
RNAs in Alzheimer’s disease. Mol Neurobiol. 47:382–393. 2013.
|
5
|
Junn E and Mouradian MM: MicroRNAs in
neurodegenerative diseases and their therapeutic potential.
Pharmacol Ther. 133:142–150. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Delay C, Mandemakers W and Hébert SS:
MicroRNAs in Alzheimer’s disease. Neurobiol Dis. 46:285–290.
2012.
|
7
|
Hébert SS and De Strooper B: Alterations
of the microRNA network cause neurodegenerative disease. Trends
Neurosci. 32:199–206. 2009.PubMed/NCBI
|
8
|
Long JM and Lahiri DK: MicroRNA-101
downregulates Alzheimer’s amyloid-β precursor protein levels in
human cell cultures and is differentially expressed. Biochem
Biophys Res Commun. 404:889–895. 2011.PubMed/NCBI
|
9
|
Delay C, Calon F, Mathews P and Hébert SS:
Alzheimer-specific variants in the 3′UTR of Amyloid precursor
protein affect microRNA function. Mol Neurodegener.
6:702011.PubMed/NCBI
|
10
|
Hébert SS, Papadopoulou AS, Smith P, et
al: Genetic ablation of Dicer in adult forebrain neurons results in
abnormal tau hyperphosphorylation and neurodegeneration. Hum Mol
Genet. 19:3959–3969. 2010.PubMed/NCBI
|
11
|
Blennow K, Hampel H, Weiner M and
Zetterberg H: Cerebrospinal fluid and plasma biomarkers in
Alzheimer disease. Nat Rev Neurol. 6:131–144. 2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Rembach A, Faux NG, Watt AD, et al: AIBL
research group, Changes in plasma amyloid beta in a longitudinal
study of aging and Alzheimer’s disease. Alzheimers Dement.
10:53–61. 2014.PubMed/NCBI
|
13
|
Lewczuk P, Kamrowski-Kruck H, Peters O, et
al: Soluble amyloid precursor proteins in the cerebrospinal fluid
as novel potential biomarkers of Alzheimer’s disease: a multicenter
study. Mol Psychiatry. 15:138–145. 2010.
|
14
|
Zetterberg H, Andreasson U, Hansson O, et
al: Elevated cerebrospinal fluid BACE1 activity in incipient
Alzheimer disease. Arch Neurol. 65:1102–1107. 2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wang WX, Huang Q, Hu Y, Stromberg AJ and
Nelson PT: Patterns of microRNA expression in normal and early
Alzheimer’s disease human temporal cortex: white matter versus gray
matter. Acta Neuropathol. 2:193–205. 2011.PubMed/NCBI
|
16
|
Schonrock N, Ke YD, Humphreys D, et al:
Neuronal microRNA deregulation in response to Alzheimer’s disease
amyloid-beta. PLoS One. 5:e110702010.PubMed/NCBI
|
17
|
Hosseini HM, Fooladi AA, Nourani MR and
Ghanezadeh F: The role of exosomes in infectious diseases. Inflamm
Allergy Drug Targets. 1:29–37. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Pant S, Hilton H and Burczynski ME: The
multifaceted exosome: biogenesis, role in normal and aberrant
cellular function, and frontiers for pharmacological and biomarker
opportunities. Biochem Pharmacol. 11:1484–1494. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Boon RA and Vickers KC: Intercellular
transport of microRNAs. Arterioscler Thromb Vasc Biol. 33:186–192.
2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Wei PC, Tsai CH, Chiu PS and Lai SC:
Matrix metalloproteinase-12 leads to elastin degradation in BALB/c
mice with eosinophilic meningitis caused by Angiostrongylus
cantonensis. Int J Parasitol. 41:1175–1183. 2011. View Article : Google Scholar
|
21
|
Wang WX, Rajeev BW and Stromberg AJ: The
expression of microRNA miR-107 decreases early in Alzheimer’s
disease and may accelerate disease progression through regulation
of beta-site amyloid precursor protein-cleaving enzyme 1. J
Neurosci. 5:1213–1223. 2008.PubMed/NCBI
|
22
|
Liu CG, Xu KQ, Xu X, et al:
17Beta-oestradiol regulates the expression of
Na+/K+-ATPase beta1-subunit, sarcoplasmic
reticulum Ca2+-ATPase and carbonic anhydrase iv in H9C2
cells. Clin Exp Pharmacol Physiol. 34:998–1004. 2007.PubMed/NCBI
|
23
|
Dassow H and Aigner A: MicroRNAs (miRNAs)
in colorectal cancer: from aberrant expression towards therapy.
Curr Pharm Des. 19:1242–1252. 2013.PubMed/NCBI
|
24
|
Eulalio A, Schulte L and Vogel J: The
mammalian microRNA response to bacterial infections. RNA Biol.
9:742–750. 2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Mitchell PS, Parkin RK, Kroh EM, Fritz BR
and Wyman SK: Circulating microRNAs as stable blood-based markers
for cancer detection. Proc Natl Acad Sci USA. 105:10513–10518.
2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Giedraitis V, Sundelöf J, Irizarry MC, et
al: The normal equilibrium between CSF and plasma amyloid beta
levels is disrupted in Alzheimer’s disease. Neurosci Lett.
427:127–131. 2007.PubMed/NCBI
|
27
|
Vickers KC, Palmisano BT, Shoucri BM,
Shamburek RD and Remaley AT: MicroRNAs are transported in plasma
and delivered to recipient cells by high-density lipoproteins. Nat
Cell Biol. 4:423–433. 2011. View
Article : Google Scholar : PubMed/NCBI
|
28
|
van Leuven F: Single and multiple
transgenic mice as models for Alzheimer’s disease, Prog. Neurobiol.
61:305–312. 2000.
|
29
|
Ceruti S, Colombo L, Magni G, et al:
Oxygen-glucose deprivation increases the enzymatic activity and the
microvesicle-mediated release of ectonucleotidases in the cells
composing the blood-brain barrier. Neurochem Int. 59:259–271. 2011.
View Article : Google Scholar
|
30
|
Ma R, Jiang T and Kang X: Circulating
microRNAs in cancer: origin, function and application. J Exp Clin
Cancer Res. 31:382012. View Article : Google Scholar : PubMed/NCBI
|