[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Optical Properties of Nanostructured Zinc Oxides Deposited on Silicon Substrates

Article Preview

Abstract:

Nanostructured zinc oxide (ZnO) thin films were prepared through sol-gel method and spin-coating technique. ZnO thin films then were annealed at temperature of 350°C, 400°C, 450°C and 500°C. The thin films were characterized using field emission scanning electron microscope (FESEM), UV-VIS-NIR spectrophotometer and photoluminescence (PL) spectrofluorometer for morphology and optical properties study. The morphology study indicates that the particle size of ZnO increased with annealing temperatures. All thin films are optically transparent (~ 80 % in transmittance) in the visible light-NIR region. PL spectra reveal improved UV emission with annealing temperatures up to 500°C.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 312-315)

Pages:

1132-1136

Citation:

Online since:

April 2011

Export:

Price:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Srinivasan, N. Gopalakrishnan, Y.S. Yu, R. Kesavamoorthy and J. Kumar: Superlattices and Microstructures Vol. 43 (2008), p.113.

Google Scholar

[2] C. Klingshirn, R. Hauschild, H. Priller, M. Decker, J. Zeller and H. Kalt: Superlattices and Microstructures Vol. 38 (2005), p.209.

DOI: 10.1016/j.spmi.2005.07.003

Google Scholar

[3] R. Bel Hadj Tahar: Journal of the European Ceramic Society Vol. 25 (2005), p.3304.

Google Scholar

[4] S. -Y. Kuoa, W. -C. Chena and C. -P. Cheng: Superlattices and Microstructures Vol. 39 (2006), p.163.

Google Scholar

[5] J.B. Baxter and E.S. Aydil: Solar Energy Materials & Solar Cells Vol. 90 (2006), p.607.

Google Scholar

[6] J.B.K. Law and J.T.L. Thong: Nanotechnology Vol. 19 (2008), p.205502.

Google Scholar

[7] D.C. Kim, W.S. Han, B.H. Kong, H.K. n Cho and C.H. Hong: Physica B Vol. 401–402 (2007), p.386.

Google Scholar

[8] H. Deng, J.J. Russell, R.N. Lamb, B. Jiang, Y. Li and X.Y. Zhou: Thin Solid Films Vol. 458 (2004), p.43.

Google Scholar

[9] K. Ogata, K. Sakurai, Sz. Fujita, Sg. Fujita and K. Matsushige: Journal of Crystal Growth Vol. 214/215 (2000), p.313.

Google Scholar

[10] E.S. Jung, J.Y. Lee and H.S. Kim: Journal of the Korean Physical Society Vol. 47 (2005), pp. S480.

Google Scholar

[11] S. Lee, S. Jeong, D. Kim, B.K. Park and J. Moon: Superlattices and Microstructures Vol. 42 (2007), p.361.

Google Scholar

[12] H. Li, J. Wang, H. Liu, H. Zhang and X. Li: Journal of Crystal Growth Vol. 275 (2005), p. e945.

Google Scholar

[13] P. Jiang, J. -J. Zhou, H. -F. Fang, C. -Y. Wang, Z.L. Wang and S. -S. Xie: Adv. Funct. Mater. Vol. 17 (2007), p.1309.

Google Scholar

[14] Y. -S. Kim, W. -P. Tai and S. -J. Shu: Thin Solid Films Vol. 491 (2005), p.155.

Google Scholar

[15] H.S. Kang, G.H. Kim, S.H. Lim, H.W. Chang, J.H. Kim and S.Y. Lee: Thin Solid Films Vol. 516 (2008), p.3149.

Google Scholar

[16] J.F. Cordaro, Y. Shim and J.E. May: Journal of Applied Physics Vol. 60 (1986), p.4816.

Google Scholar

[17] S.C. Navale, S.W. Gosavi and I.S. Mulla: Talanta Vol. 75 (2008), p.1319.

Google Scholar

[18] K. Vanheusden, W.L. Warren, C.H. Seager, D.K. Tallant, J.A. Voigt and B.E. Gnade: J. Appl. Phys. Vol. 79 (1996), p.7983.

Google Scholar