[1]
T Siegenthaler. Correlation immunity of nonlinear combining function for cryptographic applications[J]. IEEE Trans on IT, 1984, IT-30(5): 776-780.
DOI: 10.1109/tit.1984.1056949
Google Scholar
[2]
P Camion, C Carlet, P Charpin, N Sendrier. On correlation immune functions[A]. Advances in Cryptology-Crypto. 91[C]. Berlin:Springer-Verleg, 1992. 86-100.
DOI: 10.1007/3-540-46766-1_6
Google Scholar
[3]
F Dengguo, X Guozhen. Nonlinearity and Propagation Property of a Family of correlation-immune functions [J](In Chinese). Journal of China Institute of Communications, 1996, 17(2):70-74.
Google Scholar
[4]
W Qiaoyan, N Xinxin, Y Yixian. Boolean Functions in Modern Cryptography [M](In Chinese). Beijing: Science Press, (2000).
Google Scholar
[5]
W Chuankun, Dawson E. Correlation immunity and resiliency of symmetric Boolean functions [J](In Chinese). Theoretical Compute Science, 2004(312): 321-335.
DOI: 10.1016/j.tcs.2003.09.009
Google Scholar
[6]
M Jiao, W Qiaoyan. The Construction and Enumeration of Symmetric Correlation Immune Functions [J](In Chinese). Journal of Beijing University of Posts and Telecommunications, 2007, 30(1): 49-52.
Google Scholar
[7]
M Jiao, W Qiaoyan. Constructions of Symmetric Correlation Immune Functions[J](In Chinese). Journal of Beijing University of Posts and Telecommunications, 2008, 31(3): 58-62.
Google Scholar
[8]
S Chunjing, Z Yuli, X Yajun. Research on the Correlation-immune Properties of Boolean Functions[J](In Chinese). Journal of Tarim University, 2010(01): 42-44.
Google Scholar
[9]
L Weiwei. Study of Relationships between Correlation-immunity and Balanceness Based on Boolean Functions[J](In Chinese). Journal of China Institute of Communications, 2010, 31(5): 93-97.
Google Scholar
[10]
Z Tu, D Yingpu. A Class of 1-Resilient Function with High Nonlinearity and Algebraic Immunity. http: /eprint. iacr. org/2010/243. pdf.
Google Scholar