[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cancer cachexia: multilevel metabolic dysfunction

Abstract

Cancer cachexia is a complex metabolic disorder marked by unintentional body weight loss or ‘wasting’ of body mass, driven by multiple aetiological factors operating at various levels. It is associated with many malignancies and significantly contributes to cancer-related morbidity and mortality. With emerging recognition of cancer as a systemic disease, there is increasing awareness that understanding and treatment of cancer cachexia may represent a crucial cornerstone for improved management of cancer. Here, we describe the metabolic changes contributing to body wasting in cachexia and explain how the entangled action of both tumour-derived and host-amplified processes induces these metabolic changes. We discuss energy homeostasis and possible ways that the presence of a tumour interferes with or hijacks physiological energy conservation pathways. In that context, we highlight the role played by metabolic cross-talk mechanisms in cachexia pathogenesis. Lastly, we elaborate on the challenges and opportunities in the treatment of this devastating paraneoplastic phenomenon that arise from the complex and multifaceted metabolic cross-talk mechanisms and provide a status on current and emerging therapeutic approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Three mechanistic levels of cancer cachexia pathogenesis.
Fig. 2: Intracellular processes contributing to muscle wasting in cancer cachexia.
Fig. 3: Intracellular processes contributing to adipose tissue wasting in cancer cachexia.
Fig. 4: Tumour-derived and host-derived cachexia mediators induce wasting-related processes in various organs.
Fig. 5: Metabolite and energy substrate exchange in cancer cachexia tissue cross-talk networks.
Fig. 6: Circular plot summarizing tissue cross-talk connections in cancer cachexia.

Similar content being viewed by others

References

  1. Evans, W. J. et al. Cachexia: a new definition. Clin. Nutr. 27, 793–799 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Utech, A. E., Tadros, E. M., Hayes, T. G. & Garcia, J. M. Predicting survival in cancer patients: the role of cachexia and hormonal, nutritional and inflammatory markers. J. Cachexia Sarcopenia Muscle 3, 245–251 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fearon, K. C., Glass, D. J. & Guttridge, D. C. Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metab. 16, 153–166 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Han, J. et al. Imaging modalities for diagnosis and monitoring of cancer cachexia. EJNMMI Res. 11, 94 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Babic, A. et al. Adipose tissue and skeletal muscle wasting precede clinical diagnosis of pancreatic cancer. Nat. Commun. 14, 4317 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Muscaritoli, M. et al. The impact of NUTRItional status at first medical oncology visit on clinical outcomes: The NUTRIONCO Study. Cancers https://doi.org/10.3390/cancers15123206 (2023).

  7. Fearon, K. et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 12, 489–495 (2011). This study details the currently most widely accepted consensus definition of cancer cachexia.

    Article  PubMed  Google Scholar 

  8. Martin, L. et al. Diagnostic criteria for the classification of cancer-associated weight loss. J. Clin. Oncol. 33, 90–99 (2015).

    Article  PubMed  Google Scholar 

  9. Geppert, J. et al. Aging aggravates cachexia in tumor-bearing mice. Cancers https://doi.org/10.3390/cancers14010090 (2021).

  10. Chovsepian, A. et al. Diabetes increases mortality in patients with pancreatic and colorectal cancer by promoting cachexia and its associated inflammatory status. Mol. Metab. 73, 101729 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Geppert, J. & Rohm, M. Cancer cachexia: biomarkers and the influence of age. Mol. Oncol. https://doi.org/10.1002/1878-0261.13590 (2024).

  12. Talbert, E. E. et al. Modeling human cancer-induced cachexia. Cell Rep. 28, 1612–1622 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Argiles, J. M. et al. The cachexia score (CASCO): a new tool for staging cachectic cancer patients. J. Cachexia Sarcopenia Muscle 2, 87–93 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Morena da Silva, F. et al. The time-course of cancer cachexia onset reveals biphasic transcriptional disruptions in female skeletal muscle distinct from males. BMC Genomics 24, 374 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Olaechea, S. et al. Race, ethnicity, and socioeconomic factors as determinants of cachexia incidence and outcomes in a retrospective cohort of patients with gastrointestinal tract cancer. JCO Oncol. Pract. 19, 493–500 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Martin, L. et al. Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J. Clin. Oncol. 31, 1539–1547 (2013).

    Article  PubMed  Google Scholar 

  17. Sandri, M. Protein breakdown in cancer cachexia. Semin. Cell Dev. Biol. 54, 11–19 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Lecker, S. H. et al. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J. 18, 39–51 (2004). This study defines muscle atrophy-related gene expression signatures, often referred to as atrogenes, which are common to various causes of muscle wasting and include genes related to components of the UPS.

    Article  CAS  PubMed  Google Scholar 

  19. Egerman, M. A. & Glass, D. J. Signaling pathways controlling skeletal muscle mass. Crit. Rev. Biochem. Mol. Biol. 49, 59–68 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Neyroud, D. et al. Blocking muscle wasting via deletion of the muscle-specific E3 ligase MuRF1 impedes pancreatic tumor growth. Commun. Biol. 6, 519 (2023). This study highlights the mutual relationship between muscle wasting and tumour growth in cancer cachexia, demonstrating that counteracting muscle atrophy in cachectic mice can reduce tumour growth.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cai, D. et al. IKKβ/NF-κB activation causes severe muscle wasting in mice. Cell 119, 285–298 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Sandri, M. et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117, 399–412 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhao, J. et al. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab. 6, 472–483 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Mammucari, C. et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab. 6, 458–471 (2007). This study highlights essential mechanistic details contributing to muscle wasting in cancer cachexia, addressing both ubiquitin–proteasomal and autophagic–lysosomal pathways.

    Article  CAS  PubMed  Google Scholar 

  25. Wohlgemuth, S. E., Seo, A. Y., Marzetti, E., Lees, H. A. & Leeuwenburgh, C. Skeletal muscle autophagy and apoptosis during aging: effects of calorie restriction and life-long exercise. Exp. Gerontol. 45, 138–148 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Penna, F. et al. Autophagic degradation contributes to muscle wasting in cancer cachexia. Am. J. Pathol. 182, 1367–1378 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Aversa, Z. et al. Autophagy is induced in the skeletal muscle of cachectic cancer patients. Sci Rep. 6, 30340 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Martin, A., Gallot, Y. S. & Freyssenet, D. Molecular mechanisms of cancer cachexia-related loss of skeletal muscle mass: data analysis from preclinical and clinical studies. J. Cachexia Sarcopenia Muscle 14, 1150–1167 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gallagher, I. J. et al. Suppression of skeletal muscle turnover in cancer cachexia: evidence from the transcriptome in sequential human muscle biopsies. Clin. Cancer Res. 18, 2817–2827 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Beltra, M., Pin, F., Ballaro, R., Costelli, P. & Penna, F. Mitochondrial dysfunction in cancer cachexia: impact on muscle health and regeneration. Cells https://doi.org/10.3390/cells10113150 (2021).

  31. van der Ende, M. et al. Mitochondrial dynamics in cancer-induced cachexia. Biochim. Biophys. Acta Rev. Cancer 1870, 137–150 (2018).

    Article  PubMed  Google Scholar 

  32. Ballaro, R. et al. Moderate exercise in mice improves cancer plus chemotherapy-induced muscle wasting and mitochondrial alterations. FASEB J. 33, 5482–5494 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. White, J. P. et al. Muscle oxidative capacity during IL-6-dependent cancer cachexia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 300, R201–R211 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Brown, J. L. et al. Mitochondrial degeneration precedes the development of muscle atrophy in progression of cancer cachexia in tumour-bearing mice. J. Cachexia Sarcopenia Muscle 8, 926–938 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Penna, F. et al. Autophagy exacerbates muscle wasting in cancer cachexia and impairs mitochondrial function. J. Mol. Biol. 431, 2674–2686 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Barreto, R. et al. Cancer and chemotherapy contribute to muscle loss by activating common signaling pathways. Front. Physiol. 7, 472 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Beltra, M. et al. NAD+ repletion with niacin counteracts cancer cachexia. Nat. Commun. 14, 1849 (2023). This study demonstrates that vitamin B3 (niacin) treatment replenishes NAD+ levels and improves mitochondrial metabolism in muscle, thereby alleviating cancer-indiced and chemotherapy-induced cachexia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Talbert, E. E. & Guttridge, D. C. Impaired regeneration: a role for the muscle microenvironment in cancer cachexia. Semin. Cell Dev. Biol. 54, 82–91 (2016).

    Article  PubMed  Google Scholar 

  39. Deng, M. et al. Inflammation-associated intramyocellular lipid alterations in human pancreatic cancer cachexia. J. Cachexia Sarcopenia Muscle https://doi.org/10.1002/jcsm.13474 (2024).

  40. Patzelt, L. et al. MRI-determined psoas muscle fat infiltration correlates with severity of weight loss during cancer cachexia. Cancers https://doi.org/10.3390/cancers13174433 (2021).

  41. Murphy, K. T. The pathogenesis and treatment of cardiac atrophy in cancer cachexia. Am. J. Physiol. Heart Circ. Physiol. 310, H466–H477 (2016).

    Article  PubMed  Google Scholar 

  42. Saha, S., Singh, P. K., Roy, P. & Kakar, S. S. Cardiac cachexia: unaddressed aspect in cancer patients. Cells https://doi.org/10.3390/cells11060990 (2022).

  43. Agustsson, T. et al. Mechanism of increased lipolysis in cancer cachexia. Cancer Res. 67, 5531–5537 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Das, S. K. et al. Adipose triglyceride lipase contributes to cancer-associated cachexia. Science 333, 233–238 (2011). This study identifies adipose tissue lipolysis as critical contributor to cachexia and demonstrates that reversal of increased lipolysis by genetic manipulation counteracts wasting in mice.

    Article  CAS  PubMed  Google Scholar 

  45. Tambaro, F. et al. Assessment of lipolysis biomarkers in adipose tissue of patients with gastrointestinal cancer. Cancer Metab. 12, 1 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mulligan, H. D., Beck, S. A. & Tisdale, M. J. Lipid metabolism in cancer cachexia. Br. J. Cancer 66, 57–61 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Arora, G. K. et al. Cachexia-associated adipose loss induced by tumor-secreted leukemia inhibitory factor is counterbalanced by decreased leptin. JCI Insight https://doi.org/10.1172/jci.insight.121221 (2018).

  48. Pototschnig, I. et al. Interleukin-6 initiates muscle- and adipose tissue wasting in a novel C57BL/6 model of cancer-associated cachexia. J. Cachexia Sarcopenia Muscle 14, 93–107 (2023).

    Article  PubMed  Google Scholar 

  49. van Hall, G. et al. Interleukin-6 stimulates lipolysis and fat oxidation in humans. J. Clin. Endocrinol. Metab. 88, 3005–3010 (2003).

    Article  PubMed  Google Scholar 

  50. Frayn, K., Bernard, S., Spalding, K. & Arner, P. Adipocyte triglyceride turnover is independently associated with atherogenic dyslipidemia. J. Am. Heart Assoc. 1, e003467 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zhang, W. et al. Adipocyte lipolysis-stimulated interleukin-6 production requires sphingosine kinase 1 activity. J. Biol. Chem. 289, 32178–32185 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mracek, T. et al. Enhanced ZAG production by subcutaneous adipose tissue is linked to weight loss in gastrointestinal cancer patients. Br. J. Cancer 104, 441–447 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Laurens, C. et al. Growth and differentiation factor 15 is secreted by skeletal muscle during exercise and promotes lipolysis in humans. JCI Insight https://doi.org/10.1172/jci.insight.131870 (2020).

  54. Rohm, M. et al. An AMP-activated protein kinase-stabilizing peptide ameliorates adipose tissue wasting in cancer cachexia in mice. Nat. Med. 22, 1120–1130 (2016). This study highlights important wasting mechanisms of cachectic adipose tissue, demonstrating that protecting mice from adipose tissue wasting improves cachexia and survival.

    Article  CAS  PubMed  Google Scholar 

  55. Wunderling, K., Zurkovic, J., Zink, F., Kuerschner, L. & Thiele, C. Triglyceride cycling enables modification of stored fatty acids. Nat. Metab. 5, 699–709 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sharma, A. K. & Wolfrum, C. Lipid cycling isn’t all futile. Nat. Metab. 5, 540–541 (2023).

    Article  CAS  PubMed  Google Scholar 

  57. Ji, H. et al. Development of a peptide drug restoring AMPK and adipose tissue functionality in cancer cachexia. Mol. Ther. https://doi.org/10.1016/j.ymthe.2023.06.020 (2023).

  58. Janovska, P. et al. Dysregulation of epicardial adipose tissue in cachexia due to heart failure: the role of natriuretic peptides and cardiolipin. J. Cachexia Sarcopenia Muscle 11, 1614–1627 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bing, C. et al. Adipose atrophy in cancer cachexia: morphologic and molecular analysis of adipose tissue in tumour-bearing mice. Br. J. Cancer 95, 1028–1037 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Halle, J. L. et al. Tissue-specific dysregulation of mitochondrial respiratory capacity and coupling control in colon-26 tumor-induced cachexia. Am J. Physiol. Regul. Integr. Comp. Physiol. 317, R68–R82 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Kir, S. et al. Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature 513, 100–104 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Becker, A. S. et al. Brown fat does not cause cachexia in cancer patients: a large retrospective longitudinal FDG-PET/CT cohort study. PLoS ONE 15, e0239990 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Petruzzelli, M. et al. A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab. 20, 433–447 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Xie, H. et al. An immune-sympathetic neuron communication axis guides adipose tissue browning in cancer-associated cachexia. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2112840119 (2022).

  65. Eljalby, M. et al. Brown adipose tissue is not associated with cachexia or increased mortality in a retrospective study of patients with cancer. Am. J. Physiol. Endocrinol. Metab. 324, E144–E153 (2023).

    Article  CAS  PubMed  Google Scholar 

  66. Alves, M. J. et al. Adipose tissue fibrosis in human cancer cachexia: the role of TGFβ pathway. BMC Cancer 17, 190 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Bing, C. et al. Zinc-alpha2-glycoprotein, a lipid mobilizing factor, is expressed in adipocytes and is up-regulated in mice with cancer cachexia. Proc. Natl Acad. Sci. USA 101, 2500–2505 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Diakowska, D., Markocka-Maczka, K., Szelachowski, P. & Grabowski, K. Serum levels of resistin, adiponectin, and apelin in gastroesophageal cancer patients. Dis. Markers 2014, 619649 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Mannelli, M., Gamberi, T., Magherini, F. & Fiaschi, T. The adipokines in cancer cachexia. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21144860 (2020).

  70. Roeland, E. J. et al. Management of cancer cachexia: ASCO Guideline. J. Clin. Oncol. 38, 2438–2453 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Lopez-Soriano, J., Argiles, J. M. & Lopez-Soriano, F. J. Lipid metabolism in rats bearing the Yoshida AH-130 ascites hepatoma. Mol. Cell. Biochem. 165, 17–23 (1996).

    Article  CAS  PubMed  Google Scholar 

  72. Park, M. R. et al. Cytarabine induces cachexia with lipid malabsorption via zippering the junctions of lacteal in murine small intestine. J. Lipid Res. 64, 100387 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tisdale, M. J. Biology of cachexia. J. Natl Cancer Inst. 89, 1763–1773 (1997).

    Article  CAS  PubMed  Google Scholar 

  74. Lindmark, L. et al. Resting energy expenditure in malnourished patients with and without cancer. Gastroenterology 87, 402–408 (1984).

    Article  CAS  PubMed  Google Scholar 

  75. Lacourt, T. E., Vichaya, E. G., Chiu, G. S., Dantzer, R. & Heijnen, C. J. The high costs of low-grade inflammation: persistent fatigue as a consequence of reduced cellular-energy availability and non-adaptive energy expenditure. Front. Behav. Neurosci. 12, 78 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Eden, E., Edstrom, S., Bennegard, K., Schersten, T. & Lundholm, K. Glucose flux in relation to energy expenditure in malnourished patients with and without cancer during periods of fasting and feeding. Cancer Res. 44, 1718–1724 (1984).

    CAS  PubMed  Google Scholar 

  77. Lundholm, K., Edstrom, S., Karlberg, I., Ekman, L. & Schersten, T. Glucose turnover, gluconeogenesis from glycerol, and estimation of net glucose cycling in cancer patients. Cancer 50, 1142–1150 (1982).

    Article  CAS  PubMed  Google Scholar 

  78. Rohm, M., Zeigerer, A., Machado, J. & Herzig, S. Energy metabolism in cachexia. EMBO Rep. https://doi.org/10.15252/embr.201847258 (2019).

  79. Friesen, D. E., Baracos, V. E. & Tuszynski, J. A. Modeling the energetic cost of cancer as a result of altered energy metabolism: implications for cachexia. Theor. Biol. Med. Model. 12, 17 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Zentella, A., Manogue, K. & Cerami, A. Cachectin/TNF-mediated lactate production in cultured myocytes is linked to activation of a futile substrate cycle. Cytokine 5, 436–447 (1993).

    Article  CAS  PubMed  Google Scholar 

  81. Rahbani, J. F. et al. Creatine kinase B controls futile creatine cycling in thermogenic fat. Nature 590, 480–485 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sharma, A. K., Khandelwal, R. & Wolfrum, C. Futile lipid cycling: from biochemistry to physiology. Nat. Metab. https://doi.org/10.1038/s42255-024-01003-0 (2024).

  83. Strassmann, G., Fong, M., Kenney, J. S. & Jacob, C. O. Evidence for the involvement of interleukin 6 in experimental cancer cachexia. J. Clin. Invest. 89, 1681–1684 (1992). This study is among the first to establish a central role for IL-6 in cancer cachexia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Martignoni, M. E. et al. Role of mononuclear cells and inflammatory cytokines in pancreatic cancer-related cachexia. Clin. Cancer Res. 11, 5802–5808 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Baltgalvis, K. A. et al. Interleukin-6 and cachexia in ApcMin/+ mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R393–R401 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Bonetto, A. et al. JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL-6 and in experimental cancer cachexia. Am. J. Physiol. Endocrinol. Metab. 303, E410–E421 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fujimoto-Ouchi, K., Tamura, S., Mori, K., Tanaka, Y. & Ishitsuka, H. Establishment and characterization of cachexia-inducing and -non-inducing clones of murine colon 26 carcinoma. Int. J. Cancer 61, 522–528 (1995).

    Article  CAS  PubMed  Google Scholar 

  88. Rupert, J. E. et al. Tumor-derived IL-6 and trans-signaling among tumor, fat, and muscle mediate pancreatic cancer cachexia. J. Exp. Med. 218, e20190450 (2021). This study characterizes a tissue cross-talk mechanism in which adipose tissue lipolysis and myosteatosis exacerbate systemic wasting in response to tumor-derived IL-6.

  89. Ebrahimi, B., Tucker, S. L., Li, D., Abbruzzese, J. L. & Kurzrock, R. Cytokines in pancreatic carcinoma: correlation with phenotypic characteristics and prognosis. Cancer 101, 2727–2736 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Scott, H. R., McMillan, D. C., Crilly, A., McArdle, C. S. & Milroy, R. The relationship between weight loss and interleukin 6 in non-small-cell lung cancer. Br. J. Cancer 73, 1560–1562 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ramsey, M. L. et al. Circulating interleukin-6 is associated with disease progression, but not cachexia in pancreatic cancer. Pancreatology 19, 80–87 (2019).

    Article  CAS  PubMed  Google Scholar 

  92. Talbert, E. E. et al. Circulating monocyte chemoattractant protein-1 (MCP-1) is associated with cachexia in treatment-naive pancreatic cancer patients. J. Cachexia Sarcopenia Muscle 9, 358–368 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Iseki, H. et al. Cytokine production in five tumor cell lines with activity to induce cancer cachexia syndrome in nude mice. Jpn. J. Cancer Res. 86, 562–567 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mori, M., Yamaguchi, K. & Abe, K. Purification of a lipoprotein lipase-inhibiting protein produced by a melanoma cell line associated with cancer cachexia. Biochem. Biophys. Res. Commun. 160, 1085–1092 (1989).

    Article  CAS  PubMed  Google Scholar 

  95. Onishi, K. & Zandstra, P. W. LIF signaling in stem cells and development. Development 142, 2230–2236 (2015).

    Article  CAS  PubMed  Google Scholar 

  96. Seto, D. N., Kandarian, S. C. & Jackman, R. W. A key role for leukemia inhibitory factor in C26 cancer cachexia. J. Biol. Chem. 290, 19976–19986 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Song, H. & Lim, H. Evidence for heterodimeric association of leukemia inhibitory factor (LIF) receptor and gp130 in the mouse uterus for LIF signaling during blastocyst implantation. Reproduction 131, 341–349 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Kandarian, S. C. et al. Tumour-derived leukaemia inhibitory factor is a major driver of cancer cachexia and morbidity in C26 tumour-bearing mice. J. Cachexia Sarcopenia Muscle 9, 1109–1120 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Yang, X. et al. Leukemia inhibitory factor suppresses hepatic de novo lipogenesis and induces cachexia in mice. Nat. Commun. 15, 627 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Jorgensen, M. M. & de la Puente, P. Leukemia inhibitory factor: an important cytokine in pathologies and cancer. Biomolecules https://doi.org/10.3390/biom12020217 (2022).

  101. Loriot, Y. et al. Plasma proteomics identifies leukemia inhibitory factor (LIF) as a novel predictive biomarker of immune-checkpoint blockade resistance. Ann. Oncol. 32, 1381–1390 (2021).

    Article  CAS  PubMed  Google Scholar 

  102. Flint, T. R. et al. Tumor-induced IL-6 reprograms host metabolism to suppress anti-tumor immunity. Cell Metab. 24, 672–684 (2016). This study reveals a mechanism by which the reduced ketogenic response in cachectic mice impairs the efficacy of immune therapy by inducing elevated glucocorticoid levels.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Turner, D. C. et al. Pembrolizumab exposure-response assessments challenged by association of cancer cachexia and catabolic clearance. Clin. Cancer Res. 24, 5841–5849 (2018).

    Article  CAS  PubMed  Google Scholar 

  104. Laird, B. J. et al. The emerging role of interleukin 1β (IL-1β) in cancer cachexia. Inflammation 44, 1223–1228 (2021).

    Article  CAS  PubMed  Google Scholar 

  105. Voronov, E. & Apte, R. N. Targeting the tumor microenvironment by intervention in interleukin-1 biology. Curr. Pharm. Des. 23, 4893–4905 (2017).

    Article  CAS  PubMed  Google Scholar 

  106. Hou, Y. C. et al. Elevated serum interleukin-8 level correlates with cancer-related cachexia and sarcopenia: an indicator for pancreatic cancer outcomes. J. Clin. Med. https://doi.org/10.3390/jcm7120502 (2018).

  107. Callaway, C. S. et al. IL-8 Released from human pancreatic cancer and tumor-associated stromal cells signals through a CXCR2-ERK1/2 axis to induce muscle atrophy. Cancers https://doi.org/10.3390/cancers11121863 (2019).

  108. Beutler, B. & Cerami, A. Cachectin and tumour necrosis factor as two sides of the same biological coin. Nature 320, 584–588 (1986).

    Article  CAS  PubMed  Google Scholar 

  109. Spiegelman, B. M. & Hotamisligil, G. S. Through thick and thin: wasting, obesity, and TNF alpha. Cell 73, 625–627 (1993).

    Article  CAS  PubMed  Google Scholar 

  110. Balkwill, F. Tumour necrosis factor and cancer. Nat. Rev. Cancer 9, 361–371 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Li, Y. P. et al. TNF-alpha acts via p38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle. FASEB J. 19, 362–370 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Sishi, B. J. & Engelbrecht, A. M. Tumor necrosis factor alpha (TNF-alpha) inactivates the PI3-kinase/PKB pathway and induces atrophy and apoptosis in L6 myotubes. Cytokine 54, 173–184 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Plaisance, I., Morandi, C., Murigande, C. & Brink, M. TNF-alpha increases protein content in C2C12 and primary myotubes by enhancing protein translation via the TNF-R1, PI3K, and MEK. Am. J. Physiol. Endocrinol. Metab. 294, E241–E250 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Pfitzenmaier, J. et al. Elevation of cytokine levels in cachectic patients with prostate carcinoma. Cancer 97, 1211–1216 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Maltoni, M. et al. Serum levels of tumour necrosis factor alpha and other cytokines do not correlate with weight loss and anorexia in cancer patients. Support. Care Cancer 5, 130–135 (1997).

    Article  CAS  PubMed  Google Scholar 

  116. Ryden, M. et al. Lipolysis–not inflammation, cell death, or lipogenesis–is involved in adipose tissue loss in cancer cachexia. Cancer 113, 1695–1704 (2008).

    Article  PubMed  Google Scholar 

  117. Socher, S. H., Martinez, D., Craig, J. B., Kuhn, J. G. & Oliff, A. Tumor necrosis factor not detectable in patients with clinical cancer cachexia. J. Natl Cancer Inst. 80, 595–598 (1988).

    Article  CAS  PubMed  Google Scholar 

  118. Gordon, J. N. et al. Thalidomide in the treatment of cancer cachexia: a randomised placebo controlled trial. Gut 54, 540–545 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Jatoi, A. et al. A placebo-controlled double blind trial of etanercept for the cancer anorexia/weight loss syndrome: results from N00C1 from the North Central Cancer Treatment Group. Cancer 110, 1396–1403 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Mehrzad, V., Afshar, R. & Akbari, M. Pentoxifylline treatment in patients with cancer cachexia: a double-blind, randomized, placebo-controlled clinical trial. Adv. Biomed. Res. 5, 60 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Iguchi, H., Onuma, E., Sato, K., Sato, K. & Ogata, E. Involvement of parathyroid hormone-related protein in experimental cachexia induced by a human lung cancer-derived cell line established from a bone metastasis specimen. Int. J. Cancer 94, 24–27 (2001).

    Article  CAS  PubMed  Google Scholar 

  122. Tsai, V. W. W., Husaini, Y., Sainsbury, A., Brown, D. A. & Breit, S. N. The MIC-1/GDF15-GFRAL pathway in energy homeostasis: implications for obesity, cachexia, and other associated diseases. Cell Metab. 28, 353–368 (2018).

    Article  CAS  PubMed  Google Scholar 

  123. Patel, S. et al. GDF15 provides an endocrine signal of nutritional stress in mice and humans. Cell Metab. 29, 707–718 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Brown, D. A. et al. MIC-1 serum level and genotype: associations with progress and prognosis of colorectal carcinoma. Clin. Cancer Res. 9, 2642–2650 (2003).

    CAS  PubMed  Google Scholar 

  125. Lerner, L. et al. MAP3K11/GDF15 axis is a critical driver of cancer cachexia. J. Cachexia Sarcopenia Muscle 7, 467–482 (2016).

    Article  PubMed  Google Scholar 

  126. Johnen, H. et al. Tumor-induced anorexia and weight loss are mediated by the TGF-beta superfamily cytokine MIC-1. Nat. Med. 13, 1333–1340 (2007). This study initially identified GDF15 as a potent regulator of cachexia, laying the foundation for the development of current approaches targeting this pathway to counteract wasting.

    Article  CAS  PubMed  Google Scholar 

  127. Hsu, J. Y. et al. Non-homeostatic body weight regulation through a brainstem-restricted receptor for GDF15. Nature 550, 255–259 (2017). This study, along with Mullican et al.129, identifies GFRAL as the receptor for GDF15, expressed by neurons in the area postrema and the nucleus tractus solitarius of the mouse brainstem, which mediates GDF15-dependent feeding responses to stress and disease conditions.

  128. Mullican, S. E. et al. GFRAL is the receptor for GDF15 and the ligand promotes weight loss in mice and nonhuman primates. Nat. Med. 23, 1150–1157 (2017).

    Article  CAS  PubMed  Google Scholar 

  129. Cimino, I. et al. Activation of the hypothalamic–pituitary–adrenal axis by exogenous and endogenous GDF15. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2106868118 (2021).

  130. Suriben, R. et al. Antibody-mediated inhibition of GDF15-GFRAL activity reverses cancer cachexia in mice. Nat. Med. 26, 1264–1270 (2020).

    Article  PubMed  Google Scholar 

  131. Breen, D. M. et al. GDF-15 neutralization alleviates platinum-based chemotherapy-induced emesis, anorexia, and weight loss in mice and nonhuman primates. Cell Metab. 32, 938–950 (2020).

    Article  CAS  PubMed  Google Scholar 

  132. Wang, D. et al. GDF15 promotes weight loss by enhancing energy expenditure in muscle. Nature 619, 143–150 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Taylor, D. D., Gercel-Taylor, C., Jenis, L. G. & Devereux, D. F. Identification of a human tumor-derived lipolysis-promoting factor. Cancer Res. 52, 829–834 (1992).

    CAS  PubMed  Google Scholar 

  134. Bing, C. & Trayhurn, P. New insights into adipose tissue atrophy in cancer cachexia. Proc. Nutr. Soc. 68, 385–392 (2009).

    Article  CAS  PubMed  Google Scholar 

  135. Zhong, X. et al. The systemic activin response to pancreatic cancer: implications for effective cancer cachexia therapy. J. Cachexia Sarcopenia Muscle 10, 1083–1101 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Zhou, X. et al. Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell 142, 531–543 (2010). This study demonstrates that blocking ActRIIB-dependent signaling with an ActRIIB decoy receptor reverses skeletal muscle loss in cachectic mice and extends survival without impacting tumor growth, underscoring the therapeutic potential of targeting this pathway.

    Article  CAS  PubMed  Google Scholar 

  137. Pin, F. et al. Extracellular vesicles derived from tumour cells as a trigger of energy crisis in the skeletal muscle. J. Cachexia Sarcopenia Muscle 13, 481–494 (2022).

    Article  PubMed  Google Scholar 

  138. Pitzer, C. R., Paez, H. G. & Alway, S. E. The contribution of tumor derived exosomes to cancer cachexia. Cells https://doi.org/10.3390/cells12020292 (2023).

  139. Zhang, G. et al. Tumor induces muscle wasting in mice through releasing extracellular Hsp70 and Hsp90. Nat. Commun. 8, 589 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Ostrowski, K., Rohde, T., Zacho, M., Asp, S. & Pedersen, B. K. Evidence that interleukin-6 is produced in human skeletal muscle during prolonged running. J. Physiol. 508, 949–953 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Mohamed-Ali, V. et al. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J. Clin. Endocrinol. Metab. 82, 4196–4200 (1997).

    CAS  PubMed  Google Scholar 

  142. Henningsen, J., Rigbolt, K. T., Blagoev, B., Pedersen, B. K. & Kratchmarova, I. Dynamics of the skeletal muscle secretome during myoblast differentiation. Mol. Cell Proteomics 9, 2482–2496 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Han, M. S. et al. Regulation of adipose tissue inflammation by interleukin 6. Proc. Natl Acad. Sci. USA 117, 2751–2760 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Martignoni, M. E. et al. Liver macrophages contribute to pancreatic cancer-related cachexia. Oncol. Rep. 21, 363–369 (2009).

    PubMed  Google Scholar 

  145. Molfino, A. et al. Histomorphological and inflammatory changes of white adipose tissue in gastrointestinal cancer patients with and without cachexia. J. Cachexia Sarcopenia Muscle 13, 333–342 (2022).

    Article  PubMed  Google Scholar 

  146. Shukla, S. K. et al. Macrophages potentiate STAT3 signaling in skeletal muscles and regulate pancreatic cancer cachexia. Cancer Lett. 484, 29–39 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Barker, T., Fulde, G., Moulton, B., Nadauld, L. D. & Rhodes, T. An elevated neutrophil-to-lymphocyte ratio associates with weight loss and cachexia in cancer. Sci. Rep. 10, 7535 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Petruzzelli, M. et al. Early neutrophilia marked by aerobic glycolysis sustains host metabolism and delays cancer cachexia. Cancers https://doi.org/10.3390/cancers14040963 (2022).

  149. Deng, M., Vaes, R. D. W., van Bijnen, A., Olde Damink, S. W. M. & Rensen, S. S. Activation of the complement system in patients with cancer cachexia. Cancers https://doi.org/10.3390/cancers13225767 (2021).

  150. Bonetto, A. et al. STAT3 activation in skeletal muscle links muscle wasting and the acute phase response in cancer cachexia. PLoS ONE 6, e22538 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Lim, S. et al. Comparative plasma proteomics in muscle atrophy during cancer-cachexia and disuse: the search for atrokines. Physiol. Rep. 8, e14608 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Lin, Y. et al. Hyperglycemia-induced production of acute phase reactants in adipose tissue. J. Biol. Chem. 276, 42077–42083 (2001).

    Article  CAS  PubMed  Google Scholar 

  153. Massart, I. S. et al. Marked increased production of acute phase reactants by skeletal muscle during cancer cachexia. Cancers https://doi.org/10.3390/cancers12113221 (2020).

  154. Faber, J. et al. Improved body weight and performance status and reduced serum PGE2 levels after nutritional intervention with a specific medical food in newly diagnosed patients with esophageal cancer or adenocarcinoma of the gastro-esophageal junction. J. Cachexia Sarcopenia Muscle 6, 32–44 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Vegiopoulos, A. et al. Cyclooxygenase-2 controls energy homeostasis in mice by de novo recruitment of brown adipocytes. Science 328, 1158–1161 (2010).

    Article  CAS  PubMed  Google Scholar 

  156. Li, X. et al. Lipopolysaccharide-induced hypothalamic inflammation in cancer cachexia-anorexia is amplified by tumour-derived prostaglandin E2. J. Cachexia Sarcopenia Muscle 13, 3014–3027 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Arruda, A. P. et al. Hypothalamic actions of tumor necrosis factor alpha provide the thermogenic core for the wastage syndrome in cachexia. Endocrinology 151, 683–694 (2010).

    Article  CAS  PubMed  Google Scholar 

  158. Huisman, C. et al. Critical changes in hypothalamic gene networks in response to pancreatic cancer as found by single-cell RNA sequencing. Mol. Metab. 58, 101441 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Olson, B. et al. Lipocalin 2 mediates appetite suppression during pancreatic cancer cachexia. Nat. Commun. 12, 2057 (2021). This study describes the contribution of elevated circulating LCN2 to cachexia–anorexia, potentially mediated through MC4R-expressing neurons in the hypothalamus, exemplifying a mechanism of bio-amplification.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Meguid, M. M. et al. Tumor anorexia: effects on neuropeptide Y and monoamines in paraventricular nucleus. Peptides 25, 261–266 (2004).

    Article  CAS  PubMed  Google Scholar 

  161. Makarenko, I. G., Meguid, M. M., Gatto, L., Chen, C. & Ugrumov, M. V. Decreased NPY innervation of the hypothalamic nuclei in rats with cancer anorexia. Brain Res. 961, 100–108 (2003).

    Article  CAS  PubMed  Google Scholar 

  162. Blaha, V. et al. Ventromedial nucleus of hypothalamus is related to the development of cancer-induced anorexia: in vivo microdialysis study. Acta Medica 41, 3–11 (1998).

    CAS  PubMed  Google Scholar 

  163. Cangiano, C. et al. Plasma and CSF tryptophan in cancer anorexia. J. Neural Transm. Gen. Sect. 81, 225–233 (1990).

    Article  CAS  PubMed  Google Scholar 

  164. Krasnow, S. M. & Marks, D. L. Neuropeptides in the pathophysiology and treatment of cachexia. Curr. Opin. Support Palliat. Care 4, 266–271 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Grossberg, A. J. et al. Arcuate nucleus proopiomelanocortin neurons mediate the acute anorectic actions of leukemia inhibitory factor via gp130. Endocrinology 151, 606–616 (2010).

    Article  CAS  PubMed  Google Scholar 

  166. Markison, S. et al. The regulation of feeding and metabolic rate and the prevention of murine cancer cachexia with a small-molecule melanocortin-4 receptor antagonist. Endocrinology 146, 2766–2773 (2005).

    Article  CAS  PubMed  Google Scholar 

  167. Wisse, B. E., Frayo, R. S., Schwartz, M. W. & Cummings, D. E. Reversal of cancer anorexia by blockade of central melanocortin receptors in rats. Endocrinology 142, 3292–3301 (2001).

    Article  CAS  PubMed  Google Scholar 

  168. Legakis, I., Stathopoulos, J., Matzouridis, T. & Stathopoulos, G. P. Decreased plasma ghrelin levels in patients with advanced cancer and weight loss in comparison to healthy individuals. Anticancer Res. 29, 3949–3952 (2009).

    PubMed  Google Scholar 

  169. Takahashi, M. et al. Ghrelin and leptin levels in cachectic patients with cancer of the digestive organs. Int. J. Clin. Oncol. 14, 315–320 (2009).

    Article  CAS  PubMed  Google Scholar 

  170. Gullett, N. P., Hebbar, G. & Ziegler, T. R. Update on clinical trials of growth factors and anabolic steroids in cachexia and wasting. Am. J. Clin. Nutr. 91, 1143S–1147S (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Garcia, J. M. & Polvino, W. J. Pharmacodynamic hormonal effects of anamorelin, a novel oral ghrelin mimetic and growth hormone secretagogue in healthy volunteers. Growth Horm IGF Res. 19, 267–273 (2009).

    Article  CAS  PubMed  Google Scholar 

  172. Argiles, J. M., Lopez-Soriano, F. J., Stemmler, B. & Busquets, S. Cancer-associated cachexia - understanding the tumour macroenvironment and microenvironment to improve management. Nat. Rev. Clin. Oncol. 20, 250–264 (2023).

    Article  PubMed  Google Scholar 

  173. Xiong, Y. et al. Long-acting MIC-1/GDF15 molecules to treat obesity: evidence from mice to monkeys. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aan8732 (2017).

  174. Martin, A. et al. Hypothalamic–pituitary–adrenal axis activation and glucocorticoid-responsive gene expression in skeletal muscle and liver of Apc mice. J. Cachexia Sarcopenia Muscle 13, 1686–1703 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Lin, K. T. & Wang, L. H. New dimension of glucocorticoids in cancer treatment. Steroids 111, 84–88 (2016).

    Article  CAS  PubMed  Google Scholar 

  176. Goldberg, A. L. Protein turnover in skeletal muscle. II. Effects of denervation and cortisone on protein catabolism in skeletal muscle. J. Biol. Chem. 244, 3223–3229 (1969).

    Article  CAS  PubMed  Google Scholar 

  177. Holroyde, C. P., Skutches, C. L., Boden, G. & Reichard, G. A. Glucose metabolism in cachectic patients with colorectal cancer. Cancer Res. 44, 5910–5913 (1984).

    CAS  PubMed  Google Scholar 

  178. Xu, C. et al. Direct effect of glucocorticoids on lipolysis in adipocytes. Mol. Endocrinol. 23, 1161–1170 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Braun, T. P. et al. Cancer- and endotoxin-induced cachexia require intact glucocorticoid signaling in skeletal muscle. FASEB J. 27, 3572–3582 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Hardy, R. S. et al. 11β-Hydroxysteroid dehydrogenase type 1 within muscle protects against the adverse effects of local inflammation. J. Pathol. 240, 472–483 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Kelloff, G. J. et al. Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin. Cancer Res. 11, 2785–2808 (2005).

    Article  CAS  PubMed  Google Scholar 

  182. Liu, X. et al. Activation of GPR81 by lactate drives tumour-induced cachexia. Nat. Metab. 6, 708–723 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Holroyde, C. P., Gabuzda, T. G., Putnam, R. C., Paul, P. & Reichard, G. A. Altered glucose metabolism in metastatic carcinoma. Cancer Res. 35, 3710–3714 (1975).

    CAS  PubMed  Google Scholar 

  184. Liu, Y. et al. Tumor cytokine-induced hepatic gluconeogenesis contributes to cancer cachexia: insights from full body single nuclei sequencing. Preprint at bioRxiv https://doi.org/10.1101/2023.05.15.540823 (2023).

  185. Verlande, A. et al. Glucagon regulates the stability of REV-ERBα to modulate hepatic glucose production in a model of lung cancer-associated cachexia. Sci. Adv. https://doi.org/10.1126/sciadv.abf3885 (2021).

  186. Potgens, S. A. et al. Multi-compartment metabolomics and metagenomics reveal major hepatic and intestinal disturbances in cancer cachectic mice. J. Cachexia Sarcopenia Muscle 12, 456–475 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Petersen, K. F., Dufour, S., Cline, G. W. & Shulman, G. I. Regulation of hepatic mitochondrial oxidation by glucose-alanine cycling during starvation in humans. J. Clin. Invest. 129, 4671–4675 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Zhang, S. et al. Acute activation of adipocyte lipolysis reveals dynamic lipid remodeling of the hepatic lipidome. J. Lipid Res. https://doi.org/10.1016/j.jlr.2023.100434 (2023).

  189. Fujiwara, N. et al. Sarcopenia, intramuscular fat deposition, and visceral adiposity independently predict the outcomes of hepatocellular carcinoma. J. Hepatol. 63, 131–140 (2015).

    Article  CAS  PubMed  Google Scholar 

  190. Lee, C. M. & Kang, J. Prognostic impact of myosteatosis in patients with colorectal cancer: a systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle 11, 1270–1282 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  191. van Dijk, D. P. J. et al. Ectopic fat in liver and skeletal muscle is associated with shorter overall survival in patients with colorectal liver metastases. J. Cachexia Sarcopenia Muscle 12, 983–992 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Morigny, P. et al. High levels of modified ceramides are a defining feature of murine and human cancer cachexia. J. Cachexia Sarcopenia Muscle 11, 1459–1475 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Summers, S. A., Chaurasia, B. & Holland, W. L. Metabolic messengers: ceramides. Nat. Metab. 1, 1051–1058 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Thibaut, M. M. et al. Inflammation-induced cholestasis in cancer cachexia. J. Cachexia Sarcopenia Muscle 12, 70–90 (2021).

    Article  PubMed  Google Scholar 

  195. Watanabe, M. et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439, 484–489 (2006).

    Article  CAS  PubMed  Google Scholar 

  196. Cala, M. P. et al. Multiplatform plasma fingerprinting in cancer cachexia: a pilot observational and translational study. J. Cachexia Sarcopenia Muscle 9, 348–357 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  197. O’Connell, T. M. et al. Metabolic biomarkers for the early detection of cancer cachexia. Front. Cell Dev. Biol. 9, 720096 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Babic, A. et al. Postdiagnosis loss of skeletal muscle, but not adipose tissue, is associated with shorter survival of patients with advanced pancreatic cancer. Cancer Epidemiol. Biomarkers Prev. 28, 2062–2069 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Green, C. R. et al. Branched-chain amino acid catabolism fuels adipocyte differentiation and lipogenesis. Nat. Chem. Biol. 12, 15–21 (2016).

    Article  CAS  PubMed  Google Scholar 

  200. Herman, M. A., She, P., Peroni, O. D., Lynch, C. J. & Kahn, B. B. Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels. J. Biol. Chem. 285, 11348–11356 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Bindels, L. B. et al. Increased gut permeability in cancer cachexia: mechanisms and clinical relevance. Oncotarget 9, 18224–18238 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Zhang, L., Liu, C., Jiang, Q. & Yin, Y. Butyrate in energy metabolism: there is still more to learn. Trends Endocrinol. Metab. 32, 159–169 (2021).

    Article  CAS  PubMed  Google Scholar 

  203. Kojima, Y. et al. Decreased liver B vitamin-related enzymes as a metabolic hallmark of cancer cachexia. Nat. Commun. 14, 6246 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Taylor, J. et al. Endothelial Notch1 signaling in white adipose tissue promotes cancer cachexia. Nat. Cancer 4, 1544–1560 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Huang, X. Y. et al. Pancreatic cancer cell-derived IGFBP-3 contributes to muscle wasting. J. Exp. Clin. Cancer Res. 35, 46 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Figueroa-Clarevega, A. & Bilder, D. Malignant Drosophila tumors interrupt insulin signaling to induce cachexia-like wasting. Dev. Cell 33, 47–55 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Kwon, Y. et al. Systemic organ wasting induced by localized expression of the secreted insulin/IGF antagonist ImpL2. Dev. Cell 33, 36–46 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Batista, M. L. Jr. et al. Adipose tissue-derived factors as potential biomarkers in cachectic cancer patients. Cytokine 61, 532–539 (2013).

    Article  CAS  PubMed  Google Scholar 

  209. Langer, H. T. et al. Restoring adiponectin via rosiglitazone ameliorates tissue wasting in mice with lung cancer. Acta Physiol. https://doi.org/10.1111/apha.14167 (2024).

  210. Sartori, R. et al. BMP signaling controls muscle mass. Nat. Genet. 45, 1309–1318 (2013).

    Article  CAS  PubMed  Google Scholar 

  211. Winbanks, C. E. et al. The bone morphogenetic protein axis is a positive regulator of skeletal muscle mass. J. Cell Biol. 203, 345–357 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Sartori, R. et al. Perturbed BMP signaling and denervation promote muscle wasting in cancer cachexia. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aay9592 (2021).

  213. Bonetto, A. et al. Differential bone loss in mouse models of colon cancer cachexia. Front. Physiol. 7, 679 (2016).

    PubMed  Google Scholar 

  214. Choi, E. et al. Concurrent muscle and bone deterioration in a murine model of cancer cachexia. Physiol. Rep. 1, e00144 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Waning, D. L. et al. Excess TGF-beta mediates muscle weakness associated with bone metastases in mice. Nat. Med. 21, 1262–1271 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Schmidt, S. F., Rohm, M., Herzig, S. & Berriel Diaz, M. Cancer cachexia: more than skeletal muscle wasting. Trends Cancer 4, 849–860 (2018).

    Article  CAS  PubMed  Google Scholar 

  217. Ando, K. et al. Tocilizumab, a proposed therapy for the cachexia of Interleukin6-expressing lung cancer. PLoS ONE 9, e102436 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Ando, K. et al. Possible role for tocilizumab, an anti-interleukin-6 receptor antibody, in treating cancer cachexia. J. Clin. Oncol. 31, e69–e72 (2013).

    Article  PubMed  Google Scholar 

  219. Hirata, H. et al. Favorable responses to tocilizumab in two patients with cancer-related cachexia. J. Pain Symptom Manage. 46, e9–e13 (2013).

    Article  PubMed  Google Scholar 

  220. Advani, S. M., Advani, P. G., VonVille, H. M. & Jafri, S. H. Pharmacological management of cachexia in adult cancer patients: a systematic review of clinical trials. BMC Cancer 18, 1174 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Jin, X., Xu, X. T., Tian, M. X. & Dai, Z. Omega-3 polyunsaterated fatty acids improve quality of life and survival, but not body weight in cancer cachexia: a systematic review and meta-analysis of controlled trials. Nutr. Res. 107, 165–178 (2022).

    Article  CAS  PubMed  Google Scholar 

  222. Cannabis In Cachexia Study, G. et al. Comparison of orally administered cannabis extract and delta-9-tetrahydrocannabinol in treating patients with cancer-related anorexia-cachexia syndrome: a multicenter, phase III, randomized, double-blind, placebo-controlled clinical trial from the Cannabis-In-Cachexia-Study-Group. J. Clin. Oncol. 24, 3394–3400 (2006).

    Article  Google Scholar 

  223. Del Fabbro, E., Dev, R., Hui, D., Palmer, L. & Bruera, E. Effects of melatonin on appetite and other symptoms in patients with advanced cancer and cachexia: a double-blind placebo-controlled trial. J. Clin. Oncol. 31, 1271–1276 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Garcia, J. M. et al. Anamorelin for patients with cancer cachexia: an integrated analysis of two phase 2, randomised, placebo-controlled, double-blind trials. Lancet Oncol. 16, 108–116 (2015).

    Article  CAS  PubMed  Google Scholar 

  225. Takayama, K. et al. Anamorelin (ONO-7643) in Japanese patients with non-small cell lung cancer and cachexia: results of a randomized phase 2 trial. Support. Care Cancer 24, 3495–3505 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Temel, J. S. et al. Anamorelin in patients with non-small-cell lung cancer and cachexia (ROMANA 1 and ROMANA 2): results from two randomised, double-blind, phase 3 trials. Lancet Oncol. 17, 519–531 (2016). This study demonstrates the efficiency of anamorelin in counteracting specific parameters of cancer cachexia in patients, leading to the approval of anamorelin as the first pharmacological intervention in cachexia in Japan.

    Article  CAS  PubMed  Google Scholar 

  227. Nishie, K., Yamamoto, S., Nagata, C., Koizumi, T. & Hanaoka, M. Anamorelin for advanced non-small-cell lung cancer with cachexia: systematic review and meta-analysis. Lung Cancer 112, 25–34 (2017).

    Article  PubMed  Google Scholar 

  228. Hamauchi, S. et al. A multicenter, open-label, single-arm study of anamorelin (ONO-7643) in advanced gastrointestinal cancer patients with cancer cachexia. Cancer 125, 4294–4302 (2019).

    Article  CAS  PubMed  Google Scholar 

  229. Katakami, N. et al. Anamorelin (ONO-7643) for the treatment of patients with non-small cell lung cancer and cachexia: Results from a randomized, double-blind, placebo-controlled, multicenter study of Japanese patients (ONO-7643-04). Cancer 124, 606–616 (2018).

    Article  CAS  PubMed  Google Scholar 

  230. Wakabayashi, H., Arai, H. & Inui, A. The regulatory approval of anamorelin for treatment of cachexia in patients with non-small cell lung cancer, gastric cancer, pancreatic cancer, and colorectal cancer in Japan: facts and numbers. J. Cachexia Sarcopenia Muscle 12, 14–16 (2021).

    Article  PubMed  Google Scholar 

  231. Lundholm, K. et al. Insulin treatment in cancer cachexia: effects on survival, metabolism, and physical functioning. Clin. Cancer Res. 13, 2699–2706 (2007).

    Article  CAS  PubMed  Google Scholar 

  232. Dalton, J. T. et al. The selective androgen receptor modulator GTx-024 (enobosarm) improves lean body mass and physical function in healthy elderly men and postmenopausal women: results of a double-blind, placebo-controlled phase II trial. J. Cachexia Sarcopenia Muscle 2, 153–161 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Dobs, A. S. et al. Effects of enobosarm on muscle wasting and physical function in patients with cancer: a double-blind, randomised controlled phase 2 trial. Lancet Oncol. 14, 335–345 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Bogdanovich, S. et al. Functional improvement of dystrophic muscle by myostatin blockade. Nature 420, 418–421 (2002).

    Article  CAS  PubMed  Google Scholar 

  235. Golan, T. et al. LY2495655, an antimyostatin antibody, in pancreatic cancer: a randomized, phase 2 trial. J. Cachexia Sarcopenia Muscle 9, 871–879 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Hunter, C. N. et al. Mirtazapine in cancer-associated anorexia and cachexia: a double-blind placebo-controlled randomized trial. J. Pain Symptom Manage. 62, 1207–1215 (2021).

    Article  PubMed  Google Scholar 

  237. Naing, A. et al. Olanzapine for cachexia in patients with advanced cancer: an exploratory study of effects on weight and metabolic cytokines. Support. Care Cancer 23, 2649–2654 (2015).

    Article  PubMed  Google Scholar 

  238. Chi, K. H., Chiou, T. J., Li, C. P., Chen, S. Y. & Chao, Y. MS-20, a chemotherapeutical adjuvant, reduces chemo-associated fatigue and appetite loss in cancer patients. Nutr. Cancer 66, 1211–1219 (2014).

    Article  CAS  PubMed  Google Scholar 

  239. Groarke, J. D. et al. Ponsegromab for the treatment of cancer cachexia. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2409515 (2024).

  240. Dolly, A., Dumas, J. F. & Servais, S. Cancer cachexia and skeletal muscle atrophy in clinical studies: what do we really know? J. Cachexia Sarcopenia Muscle 11, 1413–1428 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Wang, Y. F., An, Z. Y., Lin, D. H. & Jin, W. L. Targeting cancer cachexia: molecular mechanisms and clinical study. MedComm 3, e164 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Potsch, M. S. et al. The anabolic catabolic transforming agent (ACTA) espindolol increases muscle mass and decreases fat mass in old rats. J. Cachexia Sarcopenia Muscle 5, 149–158 (2014).

    Article  PubMed  Google Scholar 

  243. Stewart Coats, A. J. et al. Espindolol for the treatment and prevention of cachexia in patients with stage III/IV non-small cell lung cancer or colorectal cancer: a randomized, double-blind, placebo-controlled, international multicentre phase II study (the ACT-ONE trial). J. Cachexia Sarcopenia Muscle 7, 355–365 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  244. McDonald, J. et al. Physical function endpoints in cancer cachexia clinical trials: Systematic Review 1 of the cachexia endpoints series. J. Cachexia Sarcopenia Muscle 14, 1932–1948 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  245. Yule, M. S. et al. Biomarker endpoints in cancer cachexia clinical trials: Systematic Review 5 of the cachexia endpoint series. J. Cachexia Sarcopenia Muscle 15, 853–867 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Ballaro, R., Costelli, P. & Penna, F. Animal models for cancer cachexia. Curr. Opin. Support Palliat. Care 10, 281–287 (2016).

    Article  PubMed  Google Scholar 

  247. Penna, F., Busquets, S. & Argiles, J. M. Experimental cancer cachexia: evolving strategies for getting closer to the human scenario. Semin. Cell Dev. Biol. 54, 20–27 (2016).

    Article  PubMed  Google Scholar 

  248. Tanaka, Y. et al. Experimental cancer cachexia induced by transplantable colon 26 adenocarcinoma in mice. Cancer Res. 50, 2290–2295 (1990). This study described the use of the C26 mouse model as prototypic cancer cachexia mouse model for the first time. The C26 mouse model is still the most commonly used cancer cachexia mouse model.

    CAS  PubMed  Google Scholar 

  249. Aulino, P. et al. Molecular, cellular and physiological characterization of the cancer cachexia-inducing C26 colon carcinoma in mouse. BMC Cancer 10, 363 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Talbert, E. E., Metzger, G. A., He, W. A. & Guttridge, D. C. Modeling human cancer cachexia in colon 26 tumor-bearing adult mice. J. Cachexia Sarcopenia Muscle 5, 321–328 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Springer, J. et al. Effects of S-pindolol in mouse pancreatic and lung cancer cachexia models. J. Cachexia Sarcopenia Muscle 14, 1244–1248 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Busquets, S. et al. Anticachectic effects of formoterol: a drug for potential treatment of muscle wasting. Cancer Res. 64, 6725–6731 (2004).

    Article  CAS  PubMed  Google Scholar 

  253. Voltarelli, F. A. et al. Syngeneic B16F10 melanoma causes cachexia and impaired skeletal muscle strength and locomotor activity in mice. Front. Physiol. 8, 715 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  254. Bibby, M. C. et al. Characterization of a transplantable adenocarcinoma of the mouse colon producing cachexia in recipient animals. J. Natl Cancer Inst. 78, 539–546 (1987).

    CAS  PubMed  Google Scholar 

  255. Cahlin, C. et al. Experimental cancer cachexia: the role of host-derived cytokines interleukin (IL)-6, IL-12, interferon-gamma, and tumor necrosis factor alpha evaluated in gene knockout, tumor-bearing mice on C57 Bl background and eicosanoid-dependent cachexia. Cancer Res. 60, 5488–5493 (2000).

    CAS  PubMed  Google Scholar 

  256. Bennani-Baiti, N. & Walsh, D. Animal models of the cancer anorexia-cachexia syndrome. Support. Care Cancer 19, 1451–1463 (2011).

    Article  PubMed  Google Scholar 

  257. Huot, J. R., Novinger, L. J., Pin, F. & Bonetto, A. HCT116 colorectal liver metastases exacerbate muscle wasting in a mouse model for the study of colorectal cancer cachexia. Dis. Model Mech. https://doi.org/10.1242/dmm.043166 (2020).

  258. Yanagihara, K. et al. Inhibitory effects of isoflavones on tumor growth and cachexia in newly established cachectic mouse models carrying human stomach cancers. Nutr. Cancer 65, 578–589 (2013).

    Article  CAS  PubMed  Google Scholar 

  259. Iyengar, P. et al. Tumor loss-of-function mutations in STK11/LKB1 induce cachexia. JCI Insight https://doi.org/10.1172/jci.insight.165419 (2023).

  260. Michaelis, K. A. et al. Establishment and characterization of a novel murine model of pancreatic cancer cachexia. J. Cachexia Sarcopenia Muscle 8, 824–838 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  261. van de Worp, W. et al. A novel orthotopic mouse model replicates human lung cancer cachexia. J. Cachexia Sarcopenia Muscle 14, 1410–1423 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  262. Morrison, S. D. Feeding response to change in absorbable food fraction during growth of Walker 256 carcinosarcoma. Cancer Res. 32, 968–972 (1972).

    CAS  PubMed  Google Scholar 

  263. de Souza, C. O. et al. Effects of celecoxib and ibuprofen on metabolic disorders induced by Walker-256 tumor in rats. Mol. Cell. Biochem. 399, 237–246 (2015).

    Article  PubMed  Google Scholar 

  264. Henriques, F. S. et al. Early suppression of adipocyte lipid turnover induces immunometabolic modulation in cancer cachexia syndrome. FASEB J. 31, 1976–1986 (2017).

    Article  CAS  PubMed  Google Scholar 

  265. Tessitore, L., Bonelli, G. & Baccino, F. M. Early development of protein metabolic perturbations in the liver and skeletal muscle of tumour-bearing rats. A model system for cancer cachexia. Biochem. J. 241, 153–159 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Yamada, Y. & Mori, H. Multistep carcinogenesis of the colon in ApcMin/+ mouse. Cancer Sci. 98, 6–10 (2007).

    Article  CAS  PubMed  Google Scholar 

  267. Hingorani, S. R. et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7, 469–483 (2005).

    Article  CAS  PubMed  Google Scholar 

  268. Parajuli, P. et al. Twist1 activation in muscle progenitor cells causes muscle loss akin to cancer cachexia. Dev. Cell 45, 712–725 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Roberts, E. W. et al. Depletion of stromal cells expressing fibroblast activation protein-alpha from skeletal muscle and bone marrow results in cachexia and anemia. J. Exp. Med. 210, 1137–1151 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Leduc-Gaudet, J. P. et al. MYTHO is a novel regulator of skeletal muscle autophagy and integrity. Nat. Commun. 14, 1199 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Writing Group, M. et al. Executive Summary: Heart Disease and Stroke Statistics–2016 update: a report from the American Heart Association. Circulation 133, 447–454 (2016).

    Article  Google Scholar 

  272. Christensen, H. M. et al. Prevalence of cachexia in chronic heart failure and characteristics of body composition and metabolic status. Endocrine 43, 626–634 (2013).

    Article  CAS  PubMed  Google Scholar 

  273. Yoshida, T. & Delafontaine, P. Mechanisms of cachexia in chronic disease states. Am. J. Med. Sci. 350, 250–256 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  274. Nagaya, N. et al. Effects of ghrelin administration on left ventricular function, exercise capacity, and muscle wasting in patients with chronic heart failure. Circulation 110, 3674–3679 (2004).

    Article  CAS  PubMed  Google Scholar 

  275. Alahmad, M. A. M. & Gibson, C. A. The impact of pulmonary cachexia on inpatient outcomes: a national study. Ann. Thorac. Med. 18, 156–161 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  276. Gosker, H. R. et al. Muscle fiber type IIX atrophy is involved in the loss of fat-free mass in chronic obstructive pulmonary disease. Am. J. Clin. Nutr. 76, 113–119 (2002).

    Article  CAS  PubMed  Google Scholar 

  277. Gosker, H. R., Zeegers, M. P., Wouters, E. F. & Schols, A. M. Muscle fibre type shifting in the vastus lateralis of patients with COPD is associated with disease severity: a systematic review and meta-analysis. Thorax 62, 944–949 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  278. Schols, A. Nutrition as a metabolic modulator in COPD. Chest 144, 1340–1345 (2013).

    Article  CAS  PubMed  Google Scholar 

  279. Singer, M. et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 315, 801–810 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Li, Y. et al. SPSB1-mediated inhibition of TGF-beta receptor-II impairs myogenesis in inflammation. J. Cachexia Sarcopenia Muscle 14, 1721–1736 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  281. Moreno-Ruperez, A. et al. Role of glucocorticoid signaling and HDAC4 activation in diaphragm and gastrocnemius proteolytic activity in septic rats. Int. J. Mol. Sci. https://doi.org/10.3390/ijms23073641 (2022).

  282. Negrin, L. L., Jahn, A. & van Griensven, M. Leptin protects against mortality and organ dysfunction in a two-hit trauma/sepsis model and is IL-6-dependent. Shock 48, 130–137 (2017).

    Article  CAS  PubMed  Google Scholar 

  283. Xiao, Y. et al. Vitamin K1 ameliorates lipopolysaccharide-triggered skeletal muscle damage revealed by faecal bacteria transplantation. J. Cachexia Sarcopenia Muscle 15, 81–97 (2024).

    Article  PubMed  Google Scholar 

  284. Song, J., Clark, A., Wade, C. E. & Wolf, S. E. Skeletal muscle wasting after a severe burn is a consequence of cachexia and sarcopenia. JPEN J. Parenter Enteral Nutr. 45, 1627–1633 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  285. Kashiwagi, S. et al. Prevention of burn-induced inflammatory responses and muscle wasting by GTS-21, a specific agonist for alpha7 nicotinic acetylcholine receptors. Shock 47, 61–69 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Porter, C. et al. The metabolic stress response to burn trauma: current understanding and therapies. Lancet 388, 1417–1426 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  287. Nunez, J. H. & Clark, A. T. Burn patient metabolism and nutrition. Phys. Med. Rehabil. Clin. N. Am. 34, 717–731 (2023).

    Article  PubMed  Google Scholar 

  288. SeyedAlinaghi, S. et al. A systematic review of sarcopenia prevalence and associated factors in people living with human immunodeficiency virus. J. Cachexia Sarcopenia Muscle 14, 1168–1182 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank L. Harrison for proofreading the manuscript and preparing the figures. This work was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (949017) to M.R. and a grant from the Else-Kröner-Fresenius-Stiftung (2020 EKSE.23), as well as the Edith-Haberland-Wagner Stiftung to S.H.

Author information

Authors and Affiliations

Authors

Contributions

M.B.D., M.R. and S.H. elaborated the concept and contributed equally to writing and revising the manuscript.

Corresponding authors

Correspondence to Mauricio Berriel Diaz, Maria Rohm or Stephan Herzig.

Ethics declarations

Competing interests

S.H. serves on the Scientific Advisory Board of Actimed Therapeutics (United Kingdom). The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Metabolism thanks Marco Sandri, Fabio Penna and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Revati Dewal, in collaboration with the Nature Metabolism team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berriel Diaz, M., Rohm, M. & Herzig, S. Cancer cachexia: multilevel metabolic dysfunction. Nat Metab 6, 2222–2245 (2024). https://doi.org/10.1038/s42255-024-01167-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-024-01167-9

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer