Abstract
Thirty years after it was first proposed, quantum teleportation remains one of the most important protocols in quantum information and quantum technologies, enabling the nonlocal transmission of an unknown quantum state. Quantum teleportation can be used to overcome the distance limitation in directly transferring quantum states in quantum communication and the difficulty in realizing long-range interactions among qubits in quantum computation. Since 2015, experimental quantum teleportation has moved from simple to complex quantum states (multiple degrees of freedom, high-dimensional quantum states) and from proof-of-principle demonstrations to real-world applications. We overview these advances, in particular, the understanding of the nonclassical nature of quantum teleportation, the teleportation of complex quantum states, progress in experiments with photons, atoms and solid-state systems and applications to quantum communication and computation, and discuss the challenges and opportunities for future developments.
Key points
-
Quantum teleportation is the transfer of an unknown quantum state over long distances. This process requires entanglement and therefore cannot be simulated with classical channels.
-
In practice, a single particle has many degrees of freedom, forming a complex quantum state. Quantum teleportation of such states requires more complex entanglement preparation and Bell-state measurements.
-
Quantum teleportation is key for quantum communication technology. Long-distance quantum teleportation has been realized over a 100-km optical fibre channel and a 1,400-km satellite-to-ground free space channel, respectively.
-
Quantum gate teleportation distributes local gate operations between spatially separated particles, so that it can be used to establish links among distributed quantum computing nodes in quantum networks.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
£14.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
£79.00 per year
only £6.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Horodecki, R., Horodecki, P., Horodecki, M. & Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009).
Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993).
Pirandola, S., Eisert, J., Weedbrook, C., Furusawa, A. & Braunstein, S. L. Advances in quantum teleportation. Nat. Photon. 9, 641–652 (2015).
Gisin, N. & Thew, R. Quantum communication. Nat. Photon. 1, 165–171 (2007).
Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998).
Zhang, W. et al. A device-independent quantum key distribution system for distant users. Nature 607, 687–691 (2022).
Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).
Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020).
Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).
Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).
Braunstein, S. L. & Kimble, H. J. Teleportation of continuous quantum variables. Phys. Rev. Lett. 80, 869 (1998).
Erhard, M., Krenn, M. & Zeilinger, A. Advances in high-dimensional quantum entanglement. Nat. Rev. Phys. 2, 365–381 (2020).
Hu, X.-M. et al. Experimental high-dimensional quantum teleportation. Phys. Rev. Lett. 125, 230501 (2020).
Luo, Y.-H. et al. Quantum teleportation in high dimensions. Phys. Rev. Lett. 123, 070505 (2019).
Wang, X.-L. et al. Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516–519 (2015).
Ren, J.-G. et al. Ground-to-satellite quantum teleportation. Nature 549, 70–73 (2017).
Sun, Q.-C. et al. Quantum teleportation with independent sources and prior entanglement distribution over a network. Nat. Photon. 10, 671–675 (2016).
Valivarthi, R. et al. Quantum teleportation across a metropolitan fibre network. Nat. Photon. 10, 676–680 (2016).
Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road ahead. Science 362, eaam9288 (2018).
Jiang, L., Taylor, J. M., Sørensen, A. S. & Lukin, M. D. Distributed quantum computation based on small quantum registers. Phys. Rev. A 76, 062323 (2007).
Monroe, C. et al. Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 022317 (2014).
Chou, K. S. et al. Deterministic teleportation of a quantum gate between two logical qubits. Nature 561, 368–373 (2018).
Wan, Y. et al. Quantum gate teleportation between separated qubits in a trapped-ion processor. Science 364, 875–878 (2019).
Daiss, S. et al. A quantum-logic gate between distant quantum-network modules. Science 371, 614–617 (2021).
Massar, S. & Popescu, S. Optimal extraction of information from finite quantum ensembles. Phys. Rev. Lett. 74, 1259 (1995).
Cavalcanti, D., Skrzypczyk, P. & Šupić, I. All entangled states can demonstrate nonclassical teleportation. Phys. Rev. Lett. 119, 110501 (2017).
Llewellyn, D. et al. Chip-to-chip quantum teleportation and multi-photon entanglement in silicon. Nat. Phys. 16, 148–153 (2020).
Hermans, S. et al. Qubit teleportation between non-neighbouring nodes in a quantum network. Nature 605, 663–668 (2022).
Calsamiglia, J. & Lütkenhaus, N. Maximum efficiency of a linear-optical Bell-state analyzer. Appl. Phys. B 72, 67–71 (2001).
Weinfurter, H. Experimental bell-state analysis. Europhys. Lett. 25, 559 (1994).
Braunstein, S. L. & Mann, A. Measurement of the Bell operator and quantum teleportation. Phys. Rev. A 51, R1727 (1995).
Gottesman, D. & Chuang, I. L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999).
Ishizaka, S. & Hiroshima, T. Asymptotic teleportation scheme as a universal programmable quantum processor. Phys. Rev. Lett. 101, 240501 (2008).
Karlsson, A. & Bourennane, M. Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394 (1998).
van Loock, P. & Braunstein, S. L. Multipartite entanglement for continuous variables: a quantum teleportation network. Phys. Rev. Lett. 84, 3482 (2000).
Scarani, V., Iblisdir, S., Gisin, N. & Acin, A. Quantum cloning. Rev. Mod. Phys. 77, 1225 (2005).
Hayashi, A., Hashimoto, T. & Horibe, M. Reexamination of optimal quantum state estimation of pure states. Phys. Rev. A 72, 032325 (2005).
Bruß, D. & Macchiavello, C. Optimal state estimation for d-dimensional quantum systems. Phys. Lett. A 253, 249–251 (1999).
Chen, C.-K., Chen, S.-H., Huang, N.-N. & Li, C.-M. Identifying genuine quantum teleportation. Phys. Rev. A 104, 052429 (2021).
Carvacho, G. et al. Experimental study of nonclassical teleportation beyond average fidelity. Phys. Rev. Lett. 121, 140501 (2018).
Hu, X.-M. et al. Experimental certification for nonclassical teleportation. Quantum Eng. 1, e13 (2019).
Lipka-Bartosik, P. & Skrzypczyk, P. Operational advantages provided by nonclassical teleportation. Phys. Rev. Res. 2, 023029 (2020).
Mozrzymas, M., Studziński, M. & Kopszak, P. Optimal multi-port-based teleportation schemes. Quantum 5, 477 (2021).
Studziński, M., Mozrzymas, M., Kopszak, P. & Horodecki, M. Efficient multi port-based teleportation schemes. IEEE Trans. Inf. Theory 68, 7892–7912 (2022).
Mozrzymas, M., Studziński, M., Strelchuk, S. & Horodecki, M. Optimal port-based teleportation. New J. Phys. 20, 053006 (2018).
Studziński, M., Strelchuk, S., Mozrzymas, M. & Horodecki, M. Port-based teleportation in arbitrary dimension. Sci. Rep. 7, 10871 (2017).
Pereira, J. L., Banchi, L. & Pirandola, S. Continuous variable port-based teleportation. Preprint at https://arxiv.org/abs/2302.08522 (2023).
Achatz, L. et al. Simultaneous transmission of hyper-entanglement in 3 degrees of freedom through a multicore fiber. Preprint at https://arxiv.org/abs/2208.10777 (2022).
Thomas, P., Ruscio, L., Morin, O. & Rempe, G. Efficient generation of entangled multi-photon graph states from a single atom. Nature 608, 677–681 (2022).
Conlon, L. O. et al. Approaching optimal entangling collective measurements on quantum computing platforms. Nat. Phys. 19, 351–357 (2023).
Hou, Z. et al. Deterministic realization of collective measurements via photonic quantum walks. Nat. Commun. 9, 1414 (2018).
Laurenza, R., Lupo, C., Spedalieri, G., Braunstein, S. L. & Pirandola, S. Channel simulation in quantum metrology. Quantum Meas. Quantum Metrol. 5, 1–12 (2018).
Pirandola, S., Laurenza, R., Ottaviani, C. & Banchi, L. Fundamental limits of repeaterless quantum communications. Nat. Commun. 8, 15043 (2017).
Bennett, C. H., DiVincenzo, D. P. & Smolin, J. A. Capacities of quantum erasure channels. Phys. Rev. Lett. 78, 3217 (1997).
Weedbrook, C. et al. Gaussian quantum information. Rev. Mod. Phys. 84, 621 (2012).
Laurenza, R. et al. Tight bounds for private communication over bosonic Gaussian channels based on teleportation simulation with optimal finite resources. Phys. Rev. A 100, 042301 (2019).
Laurenza, R. & Pirandola, S. General bounds for sender–receiver capacities in multipoint quantum communications. Phys. Rev. A 96, 032318 (2017).
Pirandola, S. Capacities of repeater-assisted quantum communications. Preprint at https://arxiv.org/abs/1601.00966 (2016).
Laurenza, R., Walk, N., Eisert, J. & Pirandola, S. Rate limits in quantum networks with lossy repeaters. Phys. Rev. Res. 4, 023158 (2022).
Pirandola, S. End-to-end capacities of a quantum communication network. Commun. Phys. 2, 51 (2019).
Pirandola, S., Bardhan, B. R., Gehring, T., Weedbrook, C. & Lloyd, S. Advances in photonic quantum sensing. Nat. Photon. 12, 724–733 (2018).
Pirandola, S. & Lupo, C. Ultimate precision of adaptive noise estimation. Phys. Rev. Lett. 118, 100502 (2017).
Zhou, S. & Jiang, L. Asymptotic theory of quantum channel estimation. PRX Quantum 2, 010343 (2021).
Zhuang, Q. & Pirandola, S. Ultimate limits for multiple quantum channel discrimination. Phys. Rev. Lett. 125, 080505 (2020).
Pirandola, S., Laurenza, R., Lupo, C. & Pereira, J. L. Fundamental limits to quantum channel discrimination. npj Quantum Inf. 5, 50 (2019).
Sedlák, M., Bisio, A. & Ziman, M. Optimal probabilistic storage and retrieval of unitary channels. Phys. Rev. Lett. 122, 170502 (2019).
Banchi, L., Pereira, J., Lloyd, S. & Pirandola, S. Convex optimization of programmable quantum computers. npj Quantum Inf. 6, 42 (2020).
Kubicki, A. M., Palazuelos, C. & Perez-Garcia, D. Resource quantification for the no-programing theorem. Phys. Rev. Lett. 122, 080505 (2019).
Pereira, J., Banchi, L. & Pirandola, S. Characterising port-based teleportation as universal simulator of qubit channels. J. Phys. A Math. Theor. 54, 205301 (2021).
Lipka-Bartosik, P. & Skrzypczyk, P. Catalytic quantum teleportation. Phys. Rev. Lett. 127, 080502 (2021).
Yoshida, B. & Yao, N. Y. Disentangling scrambling and decoherence via quantum teleportation. Phys. Rev. X 9, 011006 (2019).
Schuster, T. et al. Many-body quantum teleportation via operator spreading in the traversable wormhole protocol. Phys. Rev. X 12, 031013 (2022).
Chen, M.-C. et al. Directly measuring a multiparticle quantum wave function via quantum teleportation. Phys. Rev. Lett. 127, 030402 (2021).
Hou, P.-Y. et al. Quantum teleportation from light beams to vibrational states of a macroscopic diamond. Nat. Commun. 7, 11736 (2016).
Sun, K. et al. Experimental quantum entanglement and teleportation by tuning remote spatial indistinguishability of independent photons. Opt. Lett. 45, 6410–6413 (2020).
Li, J.-Y. et al. Activating hidden teleportation power: theory and experiment. Phys. Rev. Res. 3, 023045 (2021).
Kwiat, P. G. et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337 (1995).
Wang, F. et al. Generation of the complete four-dimensional Bell basis. Optica 4, 1462–1467 (2017).
Martin, A. et al. Quantifying photonic high-dimensional entanglement. Phys. Rev. Lett. 118, 110501 (2017).
Wang, J. et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285–291 (2018).
Kues, M. et al. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature 546, 622–626 (2017).
Lütkenhaus, N., Calsamiglia, J. & Suominen, K.-A. Bell measurements for teleportation. Phys. Rev. A 59, 3295 (1999).
Vaidman, L. & Yoran, N. Methods for reliable teleportation. Phys. Rev. A 59, 116 (1999).
Schuck, C., Huber, G., Kurtsiefer, C. & Weinfurter, H. Complete deterministic linear optics Bell state analysis. Phys. Rev. Lett. 96, 190501 (2006).
Sheng, Y.-B., Deng, F.-G. & Long, G. L. Complete hyperentangled-Bell-state analysis for quantum communication. Phys. Rev. A 82, 032318 (2010).
Williams, B. P., Sadlier, R. J. & Humble, T. S. Superdense coding over optical fiber links with complete Bell-state measurements. Phys. Rev. Lett. 118, 050501 (2017).
Kim, Y.-H., Kulik, S. P. & Shih, Y. Quantum teleportation of a polarization state with a complete bell state measurement. Phys. Rev. Lett. 86, 1370 (2001).
Grice, W. P. Arbitrarily complete Bell-state measurement using only linear optical elements. Phys. Rev. A 84, 042331 (2011).
Ewert, F. & van Loock, P. 3/4-Efficient bell measurement with passive linear optics and unentangled ancillae. Phys. Rev. Lett. 113, 140403 (2014).
Ewert, F., Bergmann, M. & van Loock, P. Ultrafast long-distance quantum communication with static linear optics. Phys. Rev. Lett. 117, 210501 (2016).
Schmidt, F. & van Loock, P. Efficiencies of logical Bell measurements on Calderbank–Shor–Steane codes with static linear optics. Phys. Rev. A 99, 062308 (2019).
Bayerbach, M. J., D’Aurelio, S. E., van Loock, P. & Barz, S. Bell-state measurement exceeding 50% success probability with linear optics. Preprint at https://arxiv.org/abs/2208.02271 (2022).
Graham, T. M., Bernstein, H. J., Wei, T.-C., Junge, M. & Kwiat, P. G. Superdense teleportation using hyperentangled photons. Nat. Commun. 6, 7185 (2015).
Chapman, J. C., Graham, T. M., Zeitler, C. K., Bernstein, H. J. & Kwiat, P. G. Time-bin and polarization superdense teleportation for space applications. Phys. Rev. Appl. 14, 014044 (2020).
Ru, S. et al. Quantum state transfer between two photons with polarization and orbital angular momentum via quantum teleportation technology. Phys. Rev. A 103, 052404 (2021).
Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).
Wei, T.-C., Barreiro, J. T. & Kwiat, P. G. Hyperentangled Bell-state analysis. Phys. Rev. A 75, 060305 (2007).
Luo, M.-X., Li, H.-R., Lai, H. & Wang, X. Teleportation of a ququart system using hyperentangled photons assisted by atomic-ensemble memories. Phys. Rev. A 93, 012332 (2016).
Choi, S., Lee, S.-H. & Jeong, H. Teleportation of a multiphoton qubit using hybrid entanglement with a loss-tolerant carrier qubit. Phys. Rev. A 102, 012424 (2020).
Friis, N., Vitagliano, G., Malik, M. & Huber, M. Entanglement certification from theory to experiment. Nat. Rev. Phys. 1, 72–87 (2019).
Barreiro, J. T., Langford, N. K., Peters, N. A. & Kwiat, P. G. Generation of hyperentangled photon pairs. Phys. Rev. Lett. 95, 260501 (2005).
Ecker, S. et al. Experimental single-copy entanglement distillation. Phys. Rev. Lett. 127, 040506 (2021).
Xie, Z. et al. Harnessing high-dimensional hyperentanglement through a biphoton frequency comb. Nat. Photon. 9, 536–542 (2015).
Kim, J.-H. et al. Noise-resistant quantum communications using hyperentanglement. Optica 8, 1524–1531 (2021).
Hu, X.-M. et al. Long-distance entanglement purification for quantum communication. Phys. Rev. Lett. 126, 010503 (2021).
Steinlechner, F. et al. Distribution of high-dimensional entanglement via an intra-city free-space link. Nat. Commun. 8, 15971 (2017).
Cervera-Lierta, A., Krenn, M., Aspuru-Guzik, A. & Galda, A. Experimental high-dimensional Greenberger–Horne–Zeilinger entanglement with superconducting transmon qutrits. Phys. Rev. Appl. 17, 024062 (2022).
Ringbauer, M. et al. A universal qudit quantum processor with trapped ions. Nat. Phys. 18, 1053–1057 (2022).
Fu, Y. et al. Experimental investigation of quantum correlations in a two-qutrit spin system. Phys. Rev. Lett. 129, 100501 (2022).
Ding, Y. et al. High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits. npj Quantum Inf. 3, 25 (2017).
Hu, X.-M. et al. Beating the channel capacity limit for superdense coding with entangled ququarts. Sci. Adv. 4, eaat9304 (2018).
Wang, T.-J, Yang, G.-Q & Wang, C. Control power of high-dimensional controlled teleportation. Phys. Rev. A 101, 012323 (2020).
Cerf, N. J., Bourennane, M., Karlsson, A. & Gisin, N. Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88, 127902 (2002).
Ecker, S. et al. Overcoming noise in entanglement distribution. Phys. Rev. X 9, 041042 (2019).
Hu, X.-M. et al. Pathways for entanglement-based quantum communication in the face of high noise. Phys. Rev. Lett. 127, 110505 (2021).
Neeley, M. et al. Emulation of a quantum spin with a superconducting phase qudit. Science 325, 722–725 (2009).
Lanyon, B. P. et al. Simplifying quantum logic using higher-dimensional Hilbert spaces. Nat. Phys. 5, 134–140 (2009).
Collins, D., Gisin, N., Linden, N., Massar, S. & Popescu, S. Bell inequalities for arbitrarily high-dimensional systems. Phys. Rev. Lett. 88, 040404 (2002).
Hu, X.-M. et al. Efficient distribution of high-dimensional entanglement through 11 km fiber. Optica 7, 738–743 (2020).
Calsamiglia, J. Generalized measurements by linear elements. Phys. Rev. A 65, 030301 (2002).
Zhang, Y. et al. Simultaneous entanglement swapping of multiple orbital angular momentum states of light. Nat. Commun. 8, 632 (2017).
Ivonovic, I. Geometrical description of quantal state determination. J. Phys. A Math. Gen. 14, 3241 (1981).
Walborn, S. P., Monken, C., Pádua, S. & Ribeiro, P. S. Spatial correlations in parametric down-conversion. Phys. Rep. 495, 87–139 (2010).
Qiu, X., Guo, H. & Chen, L. Quantum teleportation of high-dimensional spatial modes: towards an image teleporter. Preprint at https://arxiv.org/abs/2112.03764 (2021).
Sephton, B. et al. High-dimensional spatial teleportation enabled by nonlinear optics. Preprint at https://arxiv.org/abs/2111.13624v1 (2021).
Chen, L. Quantum discord of thermal two-photon orbital angular momentum state: mimicking teleportation to transmit an image. Light Sci. Appl. 10, 148 (2021).
Lundeen, J. S., Sutherland, B., Patel, A., Stewart, C. & Bamber, C. Direct measurement of the quantum wavefunction. Nature 474, 188–191 (2011).
Cao, H. et al. Distribution of high-dimensional orbital angular momentum entanglement over a 1 km few-mode fiber. Optica 7, 232–237 (2020).
Ikuta, T. & Takesue, H. Four-dimensional entanglement distribution over 100 km. Sci. Rep. 8, 817 (2018).
Erhard, M., Fickler, R., Krenn, M. & Zeilinger, A. Twisted photons: new quantum perspectives in high dimensions. Light Sci. Appl. 7, 17146 (2018).
Pu, Y. et al. Experimental realization of a multiplexed quantum memory with 225 individually accessible memory cells. Nat. Commun. 8, 15359 (2017).
Dąbrowski, M. et al. Certification of high-dimensional entanglement and Einstein–Podolsky–Rosen steering with cold atomic quantum memory. Phys. Rev. A 98, 042126 (2018).
Tiranov, A. et al. Quantification of multidimensional entanglement stored in a crystal. Phys. Rev. A 96, 040303 (2017).
Zhou, Z.-Q. et al. Quantum storage of three-dimensional orbital-angular-momentum entanglement in a crystal. Phys. Rev. Lett. 115, 070502 (2015).
Li, C. et al. Quantum communication between multiplexed atomic quantum memories. Phys. Rev. Lett. 124, 240504 (2020).
Bacco, D., Bulmer, J. F., Erhard, M., Huber, M. & Paesani, S. Proposal for practical multidimensional quantum networks. Phys. Rev. A 104, 052618 (2021).
Braunstein, S. L. & Van Loock, P. Quantum information with continuous variables. Rev. Mod. Phys. 77, 513 (2005).
Furusawa, A. et al. Unconditional quantum teleportation. Science 282, 706–709 (1998).
Sherson, J. F. et al. Quantum teleportation between light and matter. Nature 443, 557–560 (2006).
Krauter, H. et al. Deterministic quantum teleportation between distant atomic objects. Nat. Phys. 9, 400–404 (2013).
Liuzzo-Scorpo, P., Mari, A., Giovannetti, V. & Adesso, G. Optimal continuous variable quantum teleportation with limited resources. Phys. Rev. Lett. 119, 120503 (2017).
He, Q., Rosales-Zárate, L., Adesso, G. & Reid, M. D. Secure continuous variable teleportation and Einstein–Podolsky–Rosen steering. Phys. Rev. Lett. 115, 180502 (2015).
Lie, S. H. & Jeong, H. Limitations of teleporting a qubit via a two-mode squeezed state. Photonics Res. 7, A7–A13 (2019).
Tserkis, S., Dias, J. & Ralph, T. C. Simulation of Gaussian channels via teleportation and error correction of Gaussian states. Phys. Rev. A 98, 052335 (2018).
Dias, J. & Ralph, T. C. Quantum repeaters using continuous-variable teleportation. Phys. Rev. A 95, 022312 (2017).
Borregaard, J., Gehring, T., Neergaard-Nielsen, J. S. & Andersen, U. L. Super sensitivity and super resolution with quantum teleportation. npj Quantum Inf. 5, 16 (2019).
Liu, S., Lou, Y. & Jing, J. Orbital angular momentum multiplexed deterministic all-optical quantum teleportation. Nat. Commun. 11, 3875 (2020).
Liu, S., Lou, Y., Chen, Y. & Jing, J. All-optical entanglement swapping. Phys. Rev. Lett. 128, 060503 (2022).
Wu, Y. et al. Multi-channel multiplexing quantum teleportation based on the entangled sideband modes. Photonics Res. 10, 1909–1914 (2022).
Andersen, U. L., Neergaard-Nielsen, J. S., Van Loock, P. & Furusawa, A. Hybrid discrete-and continuous-variable quantum information. Nat. Phys. 11, 713–719 (2015).
Brask, J. B., Rigas, I., Polzik, E. S., Andersen, U. L. & Sørensen, A. S. Hybrid long-distance entanglement distribution protocol. Phys. Rev. Lett. 105, 160501 (2010).
Takeda, S., Fuwa, M., van Loock, P. & Furusawa, A. Entanglement swapping between discrete and continuous variables. Phys. Rev. Lett. 114, 100501 (2015).
Ulanov, A. E., Sychev, D., Pushkina, A. A., Fedorov, I. A. & Lvovsky, A. Quantum teleportation between discrete and continuous encodings of an optical qubit. Phys. Rev. Lett. 118, 160501 (2017).
Guccione, G. et al. Connecting heterogeneous quantum networks by hybrid entanglement swapping. Sci. Adv. 6, eaba4508 (2020).
Sychev, D. V. et al. Entanglement and teleportation between polarization and wave-like encodings of an optical qubit. Nat. Commun. 9, 3672 (2018).
Lvovsky, A. I., Sanders, B. C. & Tittel, W. Optical quantum memory. Nat. Photon. 3, 706–714 (2009).
Yu, Y. et al. Entanglement of two quantum memories via fibres over dozens of kilometres. Nature 578, 240–245 (2020).
van Leent, T. et al. Entangling single atoms over 33 km telecom fibre. Nature 607, 69–73 (2022).
Nadlinger, D. et al. Experimental quantum key distribution certified by Bell’s theorem. Nature 607, 682–686 (2022).
Liu, X. et al. Heralded entanglement distribution between two absorptive quantum memories. Nature 594, 41–45 (2021).
Lago-Rivera, D., Grandi, S., Rakonjac, J. V., Seri, A. & de Riedmatten, H. Telecom-heralded entanglement between multimode solid-state quantum memories. Nature 594, 37–40 (2021).
Humphreys, P. C. et al. Deterministic delivery of remote entanglement on a quantum network. Nature 558, 268–273 (2018).
Azuma, K. et al. Quantum repeaters: from quantum networks to the quantum internet. Preprint at https://arxiv.org/abs/2212.10820 (2022).
Sangouard, N., Simon, C., De Riedmatten, H. & Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33 (2011).
Munro, W. J., Azuma, K., Tamaki, K. & Nemoto, K. Inside quantum repeaters. IEEE J. Sel. Top. Quantum Electron. 21, 78–90 (2015).
Wei, S.-H. et al. Towards real-world quantum networks: a review. Laser Photonics Rev. 16, 2100219 (2022).
Barasiński, A., Černoch, A. & Lemr, K. Demonstration of controlled quantum teleportation for discrete variables on linear optical devices. Phys. Rev. Lett. 122, 170501 (2019).
Lee, S. M., Lee, S.-W., Jeong, H. & Park, H. S. Quantum teleportation of shared quantum secret. Phys. Rev. Lett. 124, 060501 (2020).
Awschalom, D. et al. Development of quantum interconnects (quics) for next-generation information technologies. PRX Quant. 2, 017002 (2021).
Pan, J.-W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777 (2012).
Yang, T. et al. Experimental synchronization of independent entangled photon sources. Phys. Rev. Lett. 96, 110501 (2006).
Kaltenbaek, R., Blauensteiner, B., Żukowski, M., Aspelmeyer, M. & Zeilinger, A. Experimental interference of independent photons. Phys. Rev. Lett. 96, 240502 (2006).
Lo, H.-K., Ma, X. & Chen, K. Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005).
Reindl, M. et al. All-photonic quantum teleportation using on-demand solid-state quantum emitters. Sci. Adv. 4, eaau1255 (2018).
Basso Basset, F. et al. Quantum teleportation with imperfect quantum dots. npj Quantum Inf. 7, 7 (2021).
Anderson, M. et al. Quantum teleportation using highly coherent emission from telecom c-band quantum dots. npj Quantum Inf. 6, 14 (2020).
Anderson, M. et al. Gigahertz-clocked teleportation of time-bin qubits with a quantum dot in the telecommunication c band. Phys. Rev. Appl. 13, 054052 (2020).
Sun, Q.-C. et al. Entanglement swapping over 100 km optical fiber with independent entangled photon-pair sources. Optica 4, 1214–1218 (2017).
Takesue, H. et al. Quantum teleportation over 100 km of fiber using highly efficient superconducting nanowire single-photon detectors. Optica 2, 832–835 (2015).
Valivarthi, R. et al. Teleportation systems toward a quantum internet. PRX Quantum 1, 020317 (2020).
Shen, S. et al. Hertz-rate metropolitan quantum teleportation. Preprint at https://arxiv.org/abs/2303.13866 (2022).
Huo, M. et al. Deterministic quantum teleportation through fiber channels. Sci. Adv. 4, eaas9401 (2018).
Liu, Z.-D. et al. Efficient quantum teleportation under noise with hybrid entanglement and reverse decoherence. Preprint at https://arxiv.org/abs/2210.14935 (2022).
Fortes, R. & Rigolin, G. Fighting noise with noise in realistic quantum teleportation. Phys. Rev. A 92, 012338 (2015).
Yin, J. et al. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature 488, 185–188 (2012).
Ma, X.-S. et al. Quantum teleportation over 143 kilometres using active feed-forward. Nature 489, 269–273 (2012).
Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).
Hammerer, K., Sørensen, A. S. & Polzik, E. S. Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82, 1041 (2010).
Lu, C.-Y., Cao, Y., Peng, C.-Z. & Pan, J.-W. Micius quantum experiments in space. Rev. Mod. Phys. 94, 035001 (2022).
Jennewein, T. et al. Qeyssat: a mission proposal for a quantum receiver in space. In Advances in Photonics of Quantum Computing, Memory, and Communication VII, Vol. 8997, 21–27 (SPIE, 2014).
Oi, D. K. et al. Cubesat quantum communications mission. EPJ Quantum Technol. 4, 6 (2017).
Chen, L.-K. et al. Observation of ten-photon entanglement using thin BiB3O6 crystals. Optica 4, 77–83 (2017).
Zuo, Z., Wang, Y., Liao, Q. & Guo, Y. Overcoming the uplink limit of satellite-based quantum communication with deterministic quantum teleportation. Phys. Rev. A 104, 022615 (2021).
Chen, Y.-A. et al. An integrated space-to-ground quantum communication network over 4600 kilometres. Nature 589, 214–219 (2021).
O’Brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nat. Photon. 3, 687–695 (2009).
Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photon. 14, 273–284 (2020).
Pelucchi, E. et al. The potential and global outlook of integrated photonics for quantum technologies. Nat. Rev. Phys. 4, 194–208 (2022).
Vigliar, C. et al. Error-protected qubits in a silicon photonic chip. Nat. Phys. 17, 1137–1143 (2021).
Zhang, M. et al. Generation of multiphoton quantum states on silicon. Light Sci. Appl. 8, 41 (2019).
Metcalf, B. J. et al. Quantum teleportation on a photonic chip. Nat. Photon. 8, 770–774 (2014).
Taballione, C. et al. 8 × 8 Reconfigurable quantum photonic processor based on silicon nitride waveguides. Opt. Express 27, 26842–26857 (2019).
Zhang, H. et al. Resource-efficient high-dimensional subspace teleportation with a quantum autoencoder. Sci. Adv. 8, eabn9783 (2022).
Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011).
Fiaschi, N. et al. Optomechanical quantum teleportation. Nat. Photon. 15, 817–821 (2021).
Lago-Rivera, D., Rakonjac, J. V., Grandi, S. & de Riedmatten, H. Long-distance multiplexed quantum teleportation from a telecom photon to a solid-state qubit. Preprint at https://arxiv.org/abs/2209.06249 (2022).
Zhu, T.-X. et al. On-demand integrated quantum memory for polarization qubits. Phys. Rev. Lett. 128, 180501 (2022).
Seri, A. et al. Laser-written integrated platform for quantum storage of heralded single photons. Optica 5, 934–941 (2018).
Kindem, J. M. et al. Control and single-shot readout of an ion embedded in a nanophotonic cavity. Nature 580, 201–204 (2020).
Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001).
Gross, D. & Eisert, J. Novel schemes for measurement-based quantum computation. Phys. Rev. Lett. 98, 220503 (2007).
Eisert, J., Jacobs, K., Papadopoulos, P. & Plenio, M. B. Optimal local implementation of nonlocal quantum gates. Phys. Rev. A 62, 052317 (2000).
Huang, Y.-F., Ren, X.-F., Zhang, Y.-S., Duan, L.-M. & Guo, G.-C. Experimental teleportation of a quantum controlled-not gate. Phys. Rev. Lett. 93, 240501 (2004).
Gao, W.-B. et al. Teleportation-based realization of an optical quantum two-qubit entangling gate. Proc. Natl Acad. Sci. USA 107, 20869–20874 (2010).
Ewert, F. & van Loock, P. Teleportation-assisted optical controlled-sign gates. Phys. Rev. A 99, 032333 (2019).
Qiao, H. et al. Conditional teleportation of quantum-dot spin states. Nat. Commun. 11, 3022 (2020).
Kojima, Y. et al. Probabilistic teleportation of a quantum dot spin qubit. npj Quantum Inf. 7, 68 (2021).
Shor, P. W. Fault-tolerant quantum computation. In Proceedings of 37th Conference on Foundations of Computer Science 56–65 (IEEE, 1996).
Terhal, B. M. Quantum error correction for quantum memories. Rev. Mod. Phys. 87, 307 (2015).
Reagor, M. et al. Quantum memory with millisecond coherence in circuit QED. Phys. Rev. B 94, 014506 (2016).
Fedorov, K. G. et al. Experimental quantum teleportation of propagating microwaves. Sci. Adv. 7, eabk0891 (2021).
Zhong, Y. et al. Violating Bell’s inequality with remotely connected superconducting qubits. Nat. Phys. 15, 741–744 (2019).
Yan, H. et al. Entanglement purification and protection in a superconducting quantum network. Phys. Rev. Lett. 128, 080504 (2022).
Wu, J., Cui, C., Fan, L. & Zhuang, Q. Deterministic microwave-optical transduction based on quantum teleportation. Phys. Rev. Appl. 16, 064044 (2021).
Ning, W. et al. Deterministic entanglement swapping in a superconducting circuit. Phys. Rev. Lett. 123, 060502 (2019).
Krutyanskiy, V. et al. Entanglement of trapped-ion qubits separated by 230 meters. Preprint at https://arxiv.org/abs/2208.14907 (2022).
Walther, H., Varcoe, B. T., Englert, B.-G. & Becker, T. Cavity quantum electrodynamics. Rep. Prog. Phys. 69, 1325 (2006).
Langenfeld, S. et al. Quantum teleportation between remote qubit memories with only a single photon as a resource. Phys. Rev. Lett. 126, 130502 (2021).
Kandel, Y. P. et al. Coherent spin-state transfer via Heisenberg exchange. Nature 573, 553–557 (2019).
Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).
Jing, B. et al. Entanglement of three quantum memories via interference of three single photons. Nat. Photon. 13, 210–213 (2019).
Pompili, M. et al. Realization of a multinode quantum network of remote solid-state qubits. Science 372, 259–264 (2021).
Walshe, B. W., Baragiola, B. Q., Alexander, R. N. & Menicucci, N. C. Continuous-variable gate teleportation and bosonic-code error correction. Phys. Rev. A 102, 062411 (2020).
Luo, Y.-H. et al. Quantum teleportation of physical qubits into logical code spaces. Proc. Natl Acad. Sci. USA 118, e2026250118 (2021).
Nielsen, M. A. & Chuang, I. Quantum Computation and Quantum Information Ch. 10 (Cambridge Univ. Press, 2002).
Huang, H.-L. et al. Emulating quantum teleportation of a Majorana zero mode qubit. Phys. Rev. Lett. 126, 090502 (2021).
Sarma, S. D., Freedman, M. & Nayak, C. Majorana zero modes and topological quantum computation. npj Quantum Inf. 1, 15001 (2015).
Olivo, A. & Grosshans, F. Ancilla-assisted linear optical Bell measurements and their optimality. Phys. Rev. A 98, 042323 (2018).
Aktas, D. et al. Entanglement distribution over 150 km in wavelength division multiplexed channels for quantum cryptography. Laser Photonics Rev. 10, 451–457 (2016).
Zhong, H.-S. et al. 12-Photon entanglement and scalable scattershot boson sampling with optimal entangled-photon pairs from parametric down-conversion. Phys. Rev. Lett. 121, 250505 (2018).
Qiu, X., Li, F., Liu, H., Chen, X. & Chen, L. Optical vortex copier and regenerator in the Fourier domain. Photonics Res. 6, 641–646 (2018).
Schimpf, C. et al. Quantum dots as potential sources of strongly entangled photons: perspectives and challenges for applications in quantum networks. Appl. Phys. Lett. 118, 100502 (2021).
Kaneda, F. & Kwiat, P. G. High-efficiency single-photon generation via large-scale active time multiplexing. Sci. Adv. 5, eaaw8586 (2019).
Lu, J. et al. Ultralow-threshold thin-film lithium niobate optical parametric oscillator. Optica 8, 539–544 (2021).
Goss, N. et al. High-fidelity qutrit entangling gates for superconducting circuits. Preprint at https://arxiv.org/abs/2206.07216 (2022).
Riebe, M. et al. Deterministic entanglement swapping with an ion-trap quantum computer. Nat. Phys. 4, 839–842 (2008).
Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).
van Leent, T. et al. Long-distance distribution of atom-photon entanglement at telecom wavelength. Phys. Rev. Lett. 124, 010510 (2020).
Luo, X.-Y. et al. Postselected entanglement between two atomic ensembles separated by 12.5 km. Phys. Rev. Lett. 129, 050503 (2022).
Gong, M. et al. Quantum walks on a programmable two-dimensional 62-qubit superconducting processor. Science 372, 948–952 (2021).
Kielpinski, D., Monroe, C. & Wineland, D. J. Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002).
Schäfer, F., Fukuhara, T., Sugawa, S., Takasu, Y. & Takahashi, Y. Tools for quantum simulation with ultracold atoms in optical lattices. Nat. Rev. Phys. 2, 411–425 (2020).
Ebadi, S. et al. Quantum phases of matter on a 256-atom programmable quantum simulator. Nature 595, 227–232 (2021).
Chen, L. et al. Planar-integrated magneto-optical trap. Phys. Rev. Appl. 17, 034031 (2022).
Yao, R. et al. Experimental realization of a multiqubit quantum memory in a 218-ion chain. Phys. Rev. A 106, 062617 (2022).
Rakonjac, J. V. et al. Entanglement between a telecom photon and an on-demand multimode solid-state quantum memory. Phys. Rev. Lett. 127, 210502 (2021).
Sakr, H. et al. Hollow core optical fibres with comparable attenuation to silica fibres between 600 and 1100 nm. Nat. Commun. 11, 6030 (2020).
Acknowledgements
This work was supported by the National Key Research and Development Program of China (No. 2021YFE0113100), NSFC (Nos 11874345, 11821404, 11904357, 12174367 and 12204458), the Innovation Program for Quantum Science and Technology (No. 2021ZD0301200), the Fundamental Research Funds for the Central Universities, USTC Tang Scholarship, Science and Technological Fund of Anhui Province for Outstanding Youth (2008085J02), China Postdoctoral Science Foundation (2021M700138) and China Postdoctoral for Innovative Talents (BX2021289). This work was partially supported by the USTC Center for Micro and Nanoscale Research and Fabrication.
Author information
Authors and Affiliations
Contributions
X.-M.H. wrote the manuscript with the help of Y.G and B.-H.L. B.-H.L, C.-F.L and G.-C.G. supervised the research. All authors discussed the content extensively.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Physics thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Hu, XM., Guo, Y., Liu, BH. et al. Progress in quantum teleportation. Nat Rev Phys 5, 339–353 (2023). https://doi.org/10.1038/s42254-023-00588-x
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42254-023-00588-x
This article is cited by
-
Five-user quantum virtual local area network with an AlGaAs entangled photon source
Science China Physics, Mechanics & Astronomy (2025)
-
Teleportation of a genuine single-rail vacuum-one-photon qubit generated via a quantum dot source
npj Nanophotonics (2024)
-
Quantum teleportation via a hybrid channel and investigation of its success probability
Scientific Reports (2024)
-
Nonlocal photonic quantum gates over 7.0 km
Nature Communications (2024)
-
Teleportation with embezzling catalysts
Communications Physics (2024)