[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MULTIPLE MYELOMA, GAMMOPATHIES

Targeting ABCD1-ACOX1-MET/IGF1R axis suppresses multiple myeloma

Abstract

Multiple myeloma (MM) remains an incurable hematological malignancy that necessitates the identification of novel therapeutic strategies. Here, we report that intracellular levels of very long chain fatty acids (VLCFAs) control the cytotoxicity of MM chemotherapeutic agents. Inhibition of VLCFA biosynthesis reduced cell death in MM cells caused by the proteasome inhibitor, bortezomib. Conversely, inhibition of VLCFA degradation via suppression of peroxisomal acyl-CoA oxidase 1 (ACOX1) increased the cytotoxicity of bortezomib, its next-generation analog, carfilzomib, and the immunomodulatory agent lenalidomide. Furthermore, treatment with an orally available ACOX1 inhibitor cooperated with bortezomib in suppressing the growth of bortezomib-resistant MM xenografts in mice. Increased VLCFA levels caused by genetic or pharmacological inhibition of VLCFA degradation reduced the activity of two major kinases involved in MM pathogenesis, MET proto-oncogene (MET) and insulin-like growth factor 1 receptor (IGF1R). Mechanistically, inhibition of ACOX1 promoted the accumulation of VLCFA-containing cerebrosides, altered MET and IGF1R interaction with a cerebroside analog, and selectively inhibited the association of these kinases with the plasma membrane signaling platforms, importantly, without disrupting the platforms’ integrity. Our study revealed a specific metabolic vulnerability of MM cells and identified a targetable axis linking VLCFA metabolism to the regulation of MET and IGF1R activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ELOVL1 inhibition ameliorates BTZ cytotoxicity in MM cells.
Fig. 2: ABCD1 suppression cooperates with BTZ in MM cells.
Fig. 3: Genetic or pharmacological inhibition ACOX1 cooperates with BTZ in MM cells.
Fig. 4: Pharmacological inhibition ACOX1 cooperates with BTZ in suppressing MM cell xenograft growth.
Fig. 5: TDYA alters sphingolipid VLCFA composition, activity of MET and IGF1R, their association with DRMs and interactions with cerebroside analog.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Rajkumar SV. Multiple myeloma: 2022 update on diagnosis, risk stratification, and management. Am J Hematol. 2022;97:1086–107.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Bhatt P, Kloock C, Comenzo R. Relapsed/Refractory Multiple Myeloma: A Review of Available Therapies and Clinical Scenarios Encountered in Myeloma Relapse. Curr Oncol. 2023;30:2322–47.

    PubMed  PubMed Central  Google Scholar 

  3. Gandolfi S, Laubach JP, Hideshima T, Chauhan D, Anderson KC, Richardson PG. The proteasome and proteasome inhibitors in multiple myeloma. Cancer Metastasis Rev. 2017;36:561–84.

    CAS  PubMed  Google Scholar 

  4. Rafae A, van Rhee F, Al Hadidi S. Perspectives on the Treatment of Multiple Myeloma. Oncologist. 2024;29:200–12.

    PubMed  Google Scholar 

  5. Robak P, Drozdz I, Szemraj J, Robak T. Drug resistance in multiple myeloma. Cancer Treat Rev. 2018;70:199–208.

    CAS  PubMed  Google Scholar 

  6. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008;7:11–20.

    CAS  PubMed  Google Scholar 

  7. Weir P, Donaldson D, McMullin MF, Crawford L. Metabolic alterations in multiple myeloma: from oncogenesis to proteasome inhibitor resistance. Cancers. 2023;15:1682.

  8. Lipchick BC, Utley A, Han Z, Moparthy S, Yun DH, Bianchi-Smiraglia A, et al. The fatty acid elongase ELOVL6 regulates bortezomib resistance in multiple myeloma. Blood Adv. 2021;5:1933–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Longo J, Smirnov P, Li Z, Branchard E, van Leeuwen JE, Licht JD, et al. The mevalonate pathway is an actionable vulnerability of t(4;14)-positive multiple myeloma. Leukemia. 2021;35:796–808.

    CAS  PubMed  Google Scholar 

  10. Torcasio R, Gallo Cantafio ME, Ikeda RK, Ganino L, Viglietto G, Amodio N. Lipid metabolic vulnerabilities of multiple myeloma. Clin Exp Med. 2023;23:3373–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. García-Ortiz A, Rodríguez-García Y, Encinas J, Maroto-Martín E, Castellano E, Teixidó J, et al. The Role of Tumor Microenvironment in Multiple Myeloma Development and Progression. Cancers. 2021;13:217.

  12. Lu Q, Yang D, Li H, Niu T, Tong A. Multiple myeloma: signaling pathways and targeted therapy. Mol Biomed. 2024;5:25.

    PubMed  PubMed Central  Google Scholar 

  13. Bolomsky A, Young RM. Pathogenic signaling in multiple myeloma. Semin Oncol. 2022;49:27–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Giannoni P, de Totero D. The HGF/c-MET axis as a potential target to overcome survival signals and improve therapeutic efficacy in multiple myeloma. Cancer Drug Resist. 2021;4:923–33.

    PubMed  PubMed Central  Google Scholar 

  15. Gambella M, Palumbo A, Rocci A. MET/HGF pathway in multiple myeloma: from diagnosis to targeted therapy? Expert Rev Mol Diagn. 2015;15:881–93.

    CAS  PubMed  Google Scholar 

  16. Heredia-Guerrero SC, Evers M, Keppler S, Schwarzfischer M, Fuhr V, Rauert-Wunderlich H, et al. Functional Investigation of IGF1R Mutations in Multiple Myeloma. Cancers. 2024;16:2139.

  17. Vishwamitra D, George SK, Shi P, Kaseb AO, Amin HM. Type I insulin-like growth factor receptor signaling in hematological malignancies. Oncotarget. 2017;8:1814–44.

    PubMed  Google Scholar 

  18. Dolgin E. IGF-1R drugs travel from cancer cradle to Graves. Nat Biotechnol. 2020;38:385–8.

    CAS  PubMed  Google Scholar 

  19. Dong Y, Xu J, Sun B, Wang J, Wang Z. MET-Targeted Therapies and Clinical Outcomes: A Systematic Literature Review. Mol Diagn Ther. 2022;26:203–27.

    PubMed  PubMed Central  Google Scholar 

  20. George KS, Wu S. Lipid raft: A floating island of death or survival. Toxicol Appl Pharmacol. 2012;259:311–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang Y, Li X, Becker KA, Gulbins E. Ceramide-enriched membrane domains-structure and function. Biochim Biophys Acta. 2009;1788:178–83.

    CAS  PubMed  Google Scholar 

  22. Isik OA, Cizmecioglu O. Rafting on the Plasma Membrane: Lipid Rafts in Signaling and Disease. Adv Exp Med Biol. 2023;1436:87–108.

    CAS  PubMed  Google Scholar 

  23. Li B, Qin Y, Yu X, Xu X, Yu W. Lipid raft involvement in signal transduction in cancer cell survival, cell death and metastasis. Cell Prolif. 2022;55:e13167.

    CAS  PubMed  Google Scholar 

  24. Casaletto JB, McClatchey AI. Spatial regulation of receptor tyrosine kinases in development and cancer. Nat Rev Cancer. 2012;12:387–400.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Bocharov EV, Sharonov GV, Bocharova OV, Pavlov KV. Conformational transitions and interactions underlying the function of membrane embedded receptor protein kinases. Biochim Biophys Acta Biomembr. 2017;1859:1417–29.

    CAS  PubMed  Google Scholar 

  26. Sviridov D, Mukhamedova N, Miller YI. Lipid rafts as a therapeutic target. J Lipid Res. 2020;61:687–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Tsukamoto S, Hirotsu K, Kumazoe M, Goto Y, Sugihara K, Suda T, et al. Green tea polyphenol EGCG induces lipid-raft clustering and apoptotic cell death by activating protein kinase Cδ and acid sphingomyelinase through a 67 kDa laminin receptor in multiple myeloma cells. Biochem J. 2012;443:525–34.

    CAS  PubMed  Google Scholar 

  28. Scheel-Toellner D, Wang K, Singh R, Majeed S, Raza K, Curnow SJ, et al. The death-inducing signalling complex is recruited to lipid rafts in Fas-induced apoptosis. Biochem Biophys Res Commun. 2002;297:876–9.

    CAS  PubMed  Google Scholar 

  29. Berthier A, Lemaire-Ewing S, Prunet C, Monier S, Athias A, Bessède G, et al. Involvement of a calcium-dependent dephosphorylation of BAD associated with the localization of Trpc-1 within lipid rafts in 7-ketocholesterol-induced THP-1 cell apoptosis. Cell Death Differ. 2004;11:897–905.

    CAS  PubMed  Google Scholar 

  30. Janas E, Priest R, Wilde JI, White JH, Malhotra R. Rituxan (anti-CD20 antibody)-induced translocation of CD20 into lipid rafts is crucial for calcium influx and apoptosis. Clin Exp Immunol. 2005;139:439–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Gajate C, Mollinedo F. Edelfosine and perifosine induce selective apoptosis in multiple myeloma by recruitment of death receptors and downstream signaling molecules into lipid rafts. Blood. 2007;109:711–9.

    CAS  PubMed  Google Scholar 

  32. Xu ZX, Ding T, Haridas V, Connolly F, Gutterman JU. Avicin D, a plant triterpenoid, induces cell apoptosis by recruitment of Fas and downstream signaling molecules into lipid rafts. PLoS One. 2009;4:e8532.

    PubMed  PubMed Central  Google Scholar 

  33. Reis-Sobreiro M, Gajate C, Mollinedo F. Involvement of mitochondria and recruitment of Fas/CD95 signaling in lipid rafts in resveratrol-mediated antimyeloma and antileukemia actions. Oncogene. 2009;28:3221–34.

    CAS  PubMed  Google Scholar 

  34. Mollinedo F, de la Iglesia-Vicente J, Gajate C, Estella-Hermoso de Mendoza A, Villa-Pulgarin JA, Campanero MA, et al. Lipid raft-targeted therapy in multiple myeloma. Oncogene. 2010;29:3748–57.

    CAS  PubMed  Google Scholar 

  35. Li Y, Gao L, Tan X, Li F, Zhao M, Peng S. Lipid rafts-mediated endocytosis and physiology-based cell membrane traffic models of doxorubicin liposomes. Biochim Biophys Acta. 2016;1858:1801–11.

    CAS  PubMed  Google Scholar 

  36. Kulkarni R, Wiemer EAC, Chang W. Role of Lipid Rafts in Pathogen-Host Interaction - A Mini Review. Front Immunol. 2021;12:815020.

    CAS  PubMed  Google Scholar 

  37. Sassa T, Kihara A. Metabolism of very long-chain Fatty acids: genes and pathophysiology. Biomol Ther. 2014;22:83–92.

    CAS  Google Scholar 

  38. Wanders RJ. Peroxisomes, lipid metabolism, and peroxisomal disorders. Mol Genet Metab. 2004;83:16–27.

    CAS  PubMed  Google Scholar 

  39. Kawaguchi K, Morita M. ABC Transporter Subfamily D: Distinct Differences in Behavior between ABCD1-3 and ABCD4 in Subcellular Localization, Function, and Human Disease. Biomed Res Int. 2016;2016:6786245.

    PubMed  PubMed Central  Google Scholar 

  40. Wanders RJ, Waterham HR. Biochemistry of mammalian peroxisomes revisited. Annu Rev Biochem. 2006;75:295–332.

    CAS  PubMed  Google Scholar 

  41. Kemp S, Wanders R. Biochemical aspects of X-linked adrenoleukodystrophy. Brain Pathol. 2010;20:831–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ferdinandusse S, Denis S, Hogenhout EM, Koster J, van Roermund CW, IJlst L, et al. Clinical, biochemical, and mutational spectrum of peroxisomal acyl-coenzyme A oxidase deficiency. Hum Mutat. 2007;28:904–12.

    CAS  PubMed  Google Scholar 

  43. Kihara A. Very long-chain fatty acids: elongation, physiology and related disorders. J Biochem. 2012;152:387–95.

    CAS  PubMed  Google Scholar 

  44. Zeng J, Deng S, Wang Y, Li P, Tang L, Pang Y. Specific Inhibition of Acyl-CoA Oxidase-1 by an Acetylenic Acid Improves Hepatic Lipid and Reactive Oxygen Species (ROS) Metabolism in Rats Fed a High Fat Diet. J Biol Chem. 2017;292:3800–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Yao H, Wang Y, Zhang X, Li P, Shang L, Chen X, et al. Targeting peroxisomal fatty acid oxidation improves hepatic steatosis and insulin resistance in obese mice. J Biol Chem. 2023;299:102845.

    CAS  PubMed  Google Scholar 

  46. Lai YH, Liu H, Chiang WF, Chen TW, Chu LJ, Yu JS, et al. MiR-31-5p-ACOX1 Axis Enhances Tumorigenic Fitness in Oral Squamous Cell Carcinoma Via the Promigratory Prostaglandin E2. Theranostics. 2018;8:486–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang Q, Yang X, Wu J, Ye S, Gong J, Cheng WM, et al. Reprogramming of palmitic acid induced by dephosphorylation of ACOX1 promotes β-catenin palmitoylation to drive colorectal cancer progression. Cell Discov. 2023;9:26.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Tannoury M, Ayoub M, Dehgane L, Nemazanyy I, Dubois K, Izabelle C, et al. ACOX1-mediated peroxisomal fatty acid oxidation contributes to metabolic reprogramming and survival in chronic lymphocytic leukemia. Leukemia. 2024;38:302–17.

    CAS  PubMed  Google Scholar 

  49. Shen S, Faouzi S, Souquere S, Roy S, Routier E, Libenciuc C, et al. Melanoma Persister Cells Are Tolerant to BRAF/MEK Inhibitors via ACOX1-Mediated Fatty Acid Oxidation. Cell Rep. 2020;33:108421.

    CAS  PubMed  Google Scholar 

  50. Mannava S, Moparthy KC, Wheeler LJ, Leonova KI, Wawrzyniak JA, Bianchi-Smiraglia A, et al. Ribonucleotide reductase and thymidylate synthase or exogenous deoxyribonucleosides reduce DNA damage and senescence caused by C-MYC depletion. Aging. 2012;4:917–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Jiang X, Zhu Z, Qin H, Tripathi P, Zhong L, Elsherbini A, et al. Visualization of Ceramide-Associated Proteins in Ceramide-Rich Platforms Using a Cross-Linkable Ceramide Analog and Proximity Ligation Assays With Anti-ceramide Antibody. Front Cell Dev Biol. 2019;7:166.

    PubMed  PubMed Central  Google Scholar 

  52. Come JH, Senter TJ, Clark MP, Court JJ, Gale-Day Z, Gu W, et al. Discovery and Optimization of Pyrazole Amides as Inhibitors of ELOVL1. J Med Chem. 2021;64:17753–76.

    CAS  PubMed  Google Scholar 

  53. Zierfuss B, Buda A, Villoria-González A, Logist M, Fabjan J, Parzer P, et al. Saturated very long-chain fatty acids regulate macrophage plasticity and invasiveness. J Neuroinflammation. 2022;19:305.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Rodríguez-Pascau L, Vilalta A, Cerrada M, Traver E, Forss-Petter S, Weinhofer I, et al. The brain penetrant PPARγ agonist leriglitazone restores multiple altered pathways in models of X-linked adrenoleukodystrophy. Sci Transl Med. 2021;13:eabc0555.

  55. Krönke J, Udeshi ND, Narla A, Grauman P, Hurst SN, McConkey M, et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science. 2014;343:301–5.

    PubMed  Google Scholar 

  56. Abe Y, Honsho M, Nakanishi H, Taguchi R, Fujiki Y. Very-long-chain polyunsaturated fatty acids accumulate in phosphatidylcholine of fibroblasts from patients with Zellweger syndrome and acyl-CoA oxidase1 deficiency. Biochim Biophys Acta. 2014;1841:610–9.

    CAS  PubMed  Google Scholar 

  57. Lu D, He A, Tan M, Mrad M, El Daibani A, Hu D, et al. Liver ACOX1 regulates levels of circulating lipids that promote metabolic health through adipose remodeling. Nat Commun. 2024;15:4214.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Chung HL, Wangler MF, Marcogliese PC, Jo J, Ravenscroft TA, Zuo Z, et al. Loss- or Gain-of-Function Mutations in ACOX1 Cause Axonal Loss via Different Mechanisms. Neuron. 2020;106:589–606.e6.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ishibashi Y, Kohyama-Koganeya A, Hirabayashi Y. New insights on glucosylated lipids: metabolism and functions. Biochim Biophys Acta. 2013;1831:1475–85.

    CAS  PubMed  Google Scholar 

  60. Ségaliny AI, Tellez-Gabriel M, Heymann MF, Heymann D. Receptor tyrosine kinases: Characterisation, mechanism of action and therapeutic interests for bone cancers. J Bone Oncol. 2015;4:1–12.

    PubMed  PubMed Central  Google Scholar 

  61. Bickel PE, Scherer PE, Schnitzer JE, Oh P, Lisanti MP, Lodish HF. Flotillin and epidermal surface antigen define a new family of caveolae-associated integral membrane proteins. J Biol Chem. 1997;272:13793–802.

    CAS  PubMed  Google Scholar 

  62. Meister M, Tikkanen R. Endocytic trafficking of membrane-bound cargo: a flotillin point of view. Membranes. 2014;4:356–71.

    PubMed  PubMed Central  Google Scholar 

  63. Honda A, Nozumi M, Ito Y, Natsume R, Kawasaki A, Nakatsu F, et al. Very-long-chain fatty acids are crucial to neuronal polarity by providing sphingolipids to lipid rafts. Cell Rep. 2023;42:113195.

    CAS  PubMed  Google Scholar 

  64. Kilsdonk EP, Yancey PG, Stoudt GW, Bangerter FW, Johnson WJ, Phillips MC, et al. Cellular cholesterol efflux mediated by cyclodextrins. J Biol Chem. 1995;270:17250–6.

    CAS  PubMed  Google Scholar 

  65. Sonnino S, Mauri L, Chigorno V, Prinetti A. Gangliosides as components of lipid membrane domains. Glycobiology. 2007;17:1r–13r.

    CAS  PubMed  Google Scholar 

  66. de Groot S, Röttgering B, Gelderblom H, Pijl H, Szuhai K, Kroep JR Unraveling the Resistance of IGF-Pathway Inhibition in Ewing Sarcoma. Cancers. 2020;12:3568.

  67. Rivas S, Marín A, Samtani S, González-Feliú E, Armisén R MET Signaling Pathways, Resistance Mechanisms, and Opportunities for Target Therapies. Int J Mol Sci. 2022;23:13898.

  68. Outhwaite IR, Singh S, Berger BT, Knapp S, Chodera JD, Seeliger MA Death by a thousand cuts through kinase inhibitor combinations that maximize selectivity and enable rational multitargeting. Elife. 2023;12:e86189.

  69. Wang Y, Zhang X, Yao H, Chen X, Shang L, Li P, et al. Peroxisome-generated succinate induces lipid accumulation and oxidative stress in the kidneys of diabetic mice. J Biol Chem. 2022;298:101660.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Wu W, Merriman K, Nabaah A, Seval N, Seval D, Lin H, et al. The association of diabetes and anti-diabetic medications with clinical outcomes in multiple myeloma. Br J Cancer. 2014;111:628–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Avivi I, Yekutiel N, Cohen I, Cohen YC, Chodick G, Weil C. Diabetes, but not pre-diabetes, is associated with shorter time to second-line therapy and worse outcomes in patients with multiple myeloma. Leuk Lymphoma. 2021;62:2785–92.

    CAS  PubMed  Google Scholar 

  72. Shah UA, Moshier E, Derkach A, Huang Y, Mailankody S, Tan CR, et al. Prevalence and impact of diabetes on survival of patients with multiple myeloma in different racial groups. Blood Adv. 2024;8:236–47.

    CAS  PubMed  Google Scholar 

  73. Chen XF, Tian MX, Sun RQ, Zhang ML, Zhou LS, Jin L, et al. SIRT5 inhibits peroxisomal ACOX1 to prevent oxidative damage and is downregulated in liver cancer. EMBO Rep. 2018;19.

  74. Coskun Ü, Grzybek M, Drechsel D, Simons K. Regulation of human EGF receptor by lipids. Proc Natl Acad Sci USA. 2011;108:9044–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang S, Zhu N, Li HF, Gu J, Zhang CJ, Liao DF, et al. The lipid rafts in cancer stem cell: a target to eradicate cancer. Stem Cell Res Ther. 2022;13:432.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Tsukamoto S, Huang Y, Kumazoe M, Lesnick C, Yamada S, Ueda N, et al. Sphingosine Kinase-1 Protects Multiple Myeloma from Apoptosis Driven by Cancer-Specific Inhibition of RTKs. Mol Cancer Ther. 2015;14:2303–12.

    CAS  PubMed  Google Scholar 

  77. Barwick BG, Neri P, Bahlis NJ, Nooka AK, Dhodapkar MV, Jaye DL, et al. Multiple myeloma immunoglobulin lambda translocations portend poor prognosis. Nat Commun. 2019;10:1911.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health, National Cancer Institute grants R01CA264984 (MAN), R21CA280499 (YK), P30CA014236 (Duke Cancer Institute), and the Paula and Rodger Riney Foundation (LHB), and Duke Functional Genomics Core Facility. Junqi Lu was a recipient of the 2023 Duke Master Student Biomedical Engineering Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

ZH designed and performed most of the experiments and analyzed data; ZY, ZM, MB designed and performed experiments and analyzed data; YW, LBW performed experiments and analyzed data; JL performed statistical analysis; KL, LL and JW analyzed clinical data; JL performed lipidomic analysis and analyzed data; JDC performed experiments; CMF designed experiments and supervised data analysis; YK and EB designed experiments and helped write the manuscript; LHB designed experiments, supervised data analysis and helped write the manuscript; MAN conceived the study, designed experiments, supervised data analysis and wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Mikhail A. Nikiforov.

Ethics declarations

Competing interests

The author declares no competing interests.

Ethics approval and consent to participate

All methods were performed in accordance with the relevant guidelines and regulations. The study was approved by the Duke University Health System Institutional Review Board (IRB protocol #: Pro00006268) and the Wake Forest University Institutional Review Board (IRB protocol #: IRB00059639). All patients provided written informed consent. All animal experiments were approved by the Duke Institutional Animal Care and Use Committee (IACUC protocol #: A227-21-11-24).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Z., Yan, Z., Ma, Z. et al. Targeting ABCD1-ACOX1-MET/IGF1R axis suppresses multiple myeloma. Leukemia 39, 720–733 (2025). https://doi.org/10.1038/s41375-025-02522-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-025-02522-9

Search

Quick links