[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interaction of methyl-CpG-binding protein 2 (MeCP2) with distinct enhancers in the mouse cortex

Abstract

Mutations in methyl-CpG-binding protein 2 (MeCP2) cause Rett syndrome. MeCP2 is thought to regulate gene transcription by binding to methylated DNA broadly across the genome. Here, using cleavage under target and release under nuclease (CUT&RUN) assays in the adult mouse cortex, we show that MeCP2 strongly binds to specific gene enhancers that we call MeCP2-binding hotspots (MBHs). Unexpectedly, we find that MeCP2 binding to MBHs occurs in a DNA methylation-independent manner at MBHs. Multiple MBH sites surrounding genes mediate the transcriptional repression of genes enriched for neuronal functions. We show that MBHs regulate genes irrespective of genic methylation levels, suggesting that MeCP2 controls transcription via an intragenic methylation-independent mechanism. Hence, disruption of intragenic methylation-independent gene regulation by MeCP2 may in part underlie Rett syndrome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CUT&RUN uncovers MBHs across the neural genome.
Fig. 2: MeCP2 binding to MBH sites is largely methylation-independent at MBHs.
Fig. 3: MECP2 modulates enhancer activity at MBH sites.
Fig. 4: MeCP2 preferentially represses genes harboring multiple MBH sites.
Fig. 5: MBHs are correlated with gene repression independently of intragenic mCA.

Similar content being viewed by others

Data availability

The sequencing data have been deposited in the GEO under accession no. GSE266300. Publicly available datasets include GSE150538, GSE67293, GSE139509, GSE213752 and GSE103214.

Code availability

The core next-generation sequencing analysis was performed using publicly available open-source software, as described in the Methods. The custom R scripts used in the analysis are available upon request.

References

  1. Amir, R. E. et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet. 23, 185–188 (1999).

    Article  PubMed  CAS  Google Scholar 

  2. Leonard, H., Cobb, S. & Downs, J. Clinical and biological progress over 50 years in Rett syndrome. Nat. Rev. Neurol. 13, 37–51 (2017).

    Article  PubMed  CAS  Google Scholar 

  3. Zoghbi, H. Y. Rett syndrome and the ongoing legacy of close clinical observation. Cell 167, 293–297 (2016).

    Article  PubMed  CAS  Google Scholar 

  4. Baubec, T., Ivánek, R., Lienert, F. & Schübeler, D. Methylation-dependent and -independent genomic targeting principles of the MBD protein family. Cell 153, 480–492 (2013).

    Article  PubMed  CAS  Google Scholar 

  5. Lewis, J. D. et al. Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 69, 905–914 (1992).

    Article  PubMed  CAS  Google Scholar 

  6. Lister, R. et al. Global epigenomic reconfiguration during mammalian brain development. Science 341, 1237905 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Guo, J. U. et al. Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat. Neurosci. 17, 215–222 (2014).

    Article  PubMed  CAS  Google Scholar 

  8. Chen, L. et al. MeCP2 binds to non-CG methylated DNA as neurons mature, influencing transcription and the timing of onset for Rett syndrome. Proc. Natl Acad. Sci. USA 112, 5509–5514 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Gabel, H. W. et al. Disruption of DNA-methylation-dependent long gene repression in Rett syndrome. Nature 522, 89–93 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Lagger, S. et al. MeCP2 recognizes cytosine methylated tri-nucleotide and di-nucleotide sequences to tune transcription in the mammalian brain. PLoS Genet. 13, e1006793 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Boxer, L. D. et al. MeCP2 represses the rate of transcriptional initiation of highly methylated long genes. Mol. Cell 77, 294–309 (2020).

    Article  PubMed  CAS  Google Scholar 

  12. Clemens, A. W. et al. MeCP2 represses enhancers through chromosome topology-associated DNA methylation. Mol. Cell 77, 279–293 (2020).

    Article  PubMed  CAS  Google Scholar 

  13. Lavery, L. A. et al. Losing Dnmt3a dependent methylation in inhibitory neurons impairs neural function by a mechanism impacting Rett syndrome. eLife 9, e52981 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Skene, P. J. & Henikoff, S. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. eLife 6, e21856 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Stroud, H. et al. An activity-mediated transition in transcription in early postnatal neurons. Neuron 107, 874–890 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Stroud, H. et al. Early-life gene expression in neurons modulates lasting epigenetic states. Cell 171, 1151–1164 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Bajikar, S. S. et al. MeCP2 regulates Gdf11, a dosage-sensitive gene critical for neurological function. eLife 12, e83806 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chen, W. G. et al. Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science 302, 885–889 (2003).

    Article  PubMed  CAS  Google Scholar 

  20. Krishnaraj, R., Ho, G. & Christodoulou, J. RettBASE: Rett syndrome database update. Hum. Mutat. 38, 922–931 (2017).

    Article  PubMed  Google Scholar 

  21. Zhou, J. et al. A novel pathogenic mutation of MeCP2 impairs chromatin association independent of protein levels. Genes Dev. 37, 883–900 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Ibrahim, A. et al. MeCP2 is a microsatellite binding protein that protects CA repeats from nucleosome invasion. Science 372, eabd558 (2021).

    Article  Google Scholar 

  23. Rube, H. T. et al. Sequence features accurately predict genome-wide MeCP2 binding in vivo. Nat. Commun. 7, 11025 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Buhrmester, H., von Kries, J. P. & Stratling, W. H. Nuclear matrix protein ARBP recognizes a novel DNA sequence motif with high affinity. Biochemistry 34, 4108–4117 (1995).

    Article  PubMed  CAS  Google Scholar 

  25. Weitzel, J. M., Buhrmester, H. & Strätling, W. H. Chicken MAR-binding protein ARBP is homologous to rat methyl-CpG-binding protein MeCP2. Mol. Cell. Biol. 17, 5656–5666 (1997).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Connelly, J. C. et al. Absence of MeCP2 binding to non-methylated GT-rich sequences in vivo. Nucleic Acids Res. 48, 3542–3552 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Kinde, B., Wu, D. Y., Greenberg, M. E. & Gabel, H. W. DNA methylation in the gene body influences MeCP2-mediated gene repression. Proc. Natl Acad. Sci. USA 113, 15114–15119 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Shen, Y. et al. A map of the cis-regulatory sequences in the mouse genome. Nature 488, 116–120 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Renthal, W. et al. Characterization of human mosaic Rett syndrome brain tissue by single-nucleus RNA sequencing. Nat. Neurosci. 21, 1670–1679 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Johnson, B. S. et al. Biotin tagging of MeCP2 in mice reveals contextual insights into the Rett syndrome transcriptome. Nat. Med. 23, 1203–1214 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Liu, Y. et al. MECP2 directly interacts with RNA polymerase II to modulate transcription in human neurons. Neuron 112, 1943–1958 (2024).

    Article  PubMed  CAS  Google Scholar 

  32. Sonn, J. Y. et al. MeCP2 interacts with the super elongation complex to regulate transcription. Preprint at bioRxiv https://doi.org/10.1101/2024.06.30.601446 (2024).

  33. Lyst, M. J. et al. Rett syndrome mutations abolish the interaction of MeCP2 with the NCoR/SMRT co-repressor. Nat. Neurosci. 16, 898–902 (2013).

    Article  PubMed  CAS  Google Scholar 

  34. Tillotson, R. et al. Radically truncated MeCP2 rescues Rett syndrome-like neurological defects. Nature 550, 398–401 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Yao, Z. et al. A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation. Cell 184, 3222–3241 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Skene, P. J. et al. Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol. Cell 37, 457–468 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Baker, S. A. et al. An AT-hook domain in MeCP2 determines the clinical course of Rett syndrome and related disorders. Cell 152, 984–996 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Lyst, M. J., Connelly, J., Merusi, C. & Bird, A. Sequence-specific DNA binding by AT-hook motifs in MeCP2. FEBS Lett. 590, 2927–2933 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Piccolo, F. M. et al. MeCP2 nuclear dynamics in live neurons results from low and high affinity chromatin interactions. eLife 8, e51449 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Jiang, Y. et al. The methyltransferase SETDB1 regulates a large neuron-specific topological chromatin domain. Nat. Genet. 49, 1239–1250 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Guy, J., Hendrich, B., Holmes, M., Martin, J. E. & Bird, A. A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat. Genet. 27, 322–326 (2001).

    Article  PubMed  CAS  Google Scholar 

  42. Kaneda, M. et al. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 429, 900–903 (2004).

    Article  PubMed  CAS  Google Scholar 

  43. Tronche, F. et al. Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat. Genet. 23, 99–103 (1999).

    Article  PubMed  CAS  Google Scholar 

  44. Zang, C. et al. A clustering approach for identification of enriched domains from histone modification ChIP-Seq data. Bioinformatics 25, 1952–1958 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Kechin, A., Boyarskikh, U., Kel, A. & Filipenko, M. cutPrimers: a new tool for accurate cutting of primers from reads of targeted next generation sequencing. J. Comput. Biol. 24, 1138–1143 (2017).

    Article  PubMed  CAS  Google Scholar 

  46. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Feng, J., Liu, T., Qin, B., Zhang, Y. & Liu, X. S Identifying ChIP-seq enrichment using MACS. Nat. Protoc. 7, 1728–1740 (2012).

    Article  PubMed  CAS  Google Scholar 

  50. Neph, S. et al. BEDOPS: high-performance genomic feature operations. Bioinformatics 28, 1919–1920 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Liao, Y., Smyth, G. K. & Shi, W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 47, e47 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article  PubMed  CAS  Google Scholar 

  55. Ramírez, F., Dündar, F., Diehl, S., Grüning, B. A. & Manke, T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 42, W187–W191 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Nystrom, S. L. & McKay, D. J. Memes: a motif analysis environment in R using tools from the MEME Suite. PLoS Comput. Biol. 17, e1008991 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Akalin, A. et al. methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol. 13, R87 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Favorov, A. et al. Exploring massive, genome scale datasets with the GenometriCorr package. PLoS Comput. Biol. 8, e1002529 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).

    Article  PubMed  CAS  Google Scholar 

  60. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Yu, G., Wang, L.-G. & He, Q.-Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31, 2382–2383 (2015).

    Article  PubMed  CAS  Google Scholar 

  62. Shen, L. GeneOverlap: test and visualize gene overlaps. R package version 1.42.0. GitHub https://github.com/shenlab-sinai/GeneOverlap (2024).

  63. Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  64. Gu, Z., Eils, R., Schlesner, M. & Ishaque, N. EnrichedHeatmap: an R/Bioconductor package for comprehensive visualization of genomic signal associations. BMC Genomics 19, 234 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Salameh, T. J. et al. A supervised learning framework for chromatin loop detection in genome-wide contact maps. Nat. Commun. 11, 3428 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Stroud laboratory and G. Konopka for discussions. This work was supported by the UT Southwestern Endowed Scholars Program, the Simons Foundation Autism Research Initiative, the International Rett Syndrome Foundation, the Klingenstein-Simons Fellowship, the Whitehall Foundation and the Brain and Behavior Research Foundation to H.S., and the O’Donnell Brain Institute Sprouts Grant to M.E. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

G.P.M. performed all the data analyses. E.X.S., T.C., M.E. and H.S. performed the experiments. M.E.G. provided key reagents. H.S. conceived the study. H.S. and G.P.M. wrote the manuscript, with edits from E.X.S., T.C. and M.E.

Corresponding author

Correspondence to Hume Stroud.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks Eric Nestler, Huda Zoghbi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, G.P., Sun, E.X., Chin, T. et al. Interaction of methyl-CpG-binding protein 2 (MeCP2) with distinct enhancers in the mouse cortex. Nat Neurosci 28, 62–71 (2025). https://doi.org/10.1038/s41593-024-01808-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-024-01808-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing