Extended Data Fig. 4: Variation of distribution, bimodality, and cell cycle dependence in distinct high- and low-expressing cell populations. | Nature

Extended Data Fig. 4: Variation of distribution, bimodality, and cell cycle dependence in distinct high- and low-expressing cell populations.

From: Spatiotemporal dissection of the cell cycle with single-cell proteogenomics

Extended Data Fig. 4

a, Scatterplot showing the three clusters generated by k-means clustering based on kurtosis and skewness as features for CCD proteins. b, Scatterplot showing the three clusters generated by k-means clustering based on kurtosis and skewness as features for non-CCD proteins. c, Violin plots and histograms showing the population distributions of the normalized mean intensity of each cell per protein for three selected CCD proteins (GATA6, CCNB1, and DEF6). d, Bimodal protein distributions were evaluated for cell cycle dependence separately in both low- and high-expressing cells if the two populations were determined to be distinct. This determination was performed using a Kruskal–Wallis test, adjusted for multiple testing, and if they had greater than a twofold difference in expression between them. e, GATA6 expression over the cell cycle. While GATA6 produces a bimodal population intensity distribution, it represents a single population of cells and was evaluated for cell cycle dependence as such, rather than as two populations of high- and low-expressing cells. f, SLC25A42 expression over the cell cycle is exhibited as two distinct populations of high- and low-expressing cells (left). The low-expressing cells (centre) have CCD expression, forming a second harmonic over the cell cycle, while the high-expressing cells (right) do not display correlation to the cell cycle. g, HPSE expression over the cell cycle has two distinct populations of high- and low-expressing cells that both display non-CCD expression, which may point to a temporal component related to a different cellular process.

Back to article page