[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Janus graphene nanoribbons with localized states on a single zigzag edge

Abstract

Topological design of π electrons in zigzag-edged graphene nanoribbons (ZGNRs) leads to a wealth of magnetic quantum phenomena and exotic quantum phases1,2,3,4,5,6,7,8,9,10. Symmetric ZGNRs typically show antiferromagnetically coupled spin-ordered edge states1,2. Eliminating cross-edge magnetic coupling in ZGNRs not only enables the realization of a class of ferromagnetic quantum spin chains11, enabling the exploration of quantum spin physics and entanglement of multiple qubits in the one-dimensional limit3,12, but also establishes a long-sought-after carbon-based ferromagnetic transport channel, pivotal for ultimate scaling of GNR-based quantum electronics1,2,3,9,13. Here we report a general approach for designing and fabricating such ferromagnetic GNRs in the form of Janus GNRs (JGNRs) with two distinct edge configurations. Guided by Lieb’s theorem and topological classification theory14,15,16, we devised two JGNRs by asymmetrically introducing a topological defect array of benzene motifs to one zigzag edge, while keeping the opposing zigzag edge unchanged. This breaks the structural symmetry and creates a sublattice imbalance within each unit cell, initiating a spin-symmetry breaking. Three Z-shaped precursors are designed to fabricate one parent ZGNR and two JGNRs with an optimal lattice spacing of the defect array for a complete quench of the magnetic edge states at the ‘defective’ edge. Characterization by scanning probe microscopy and spectroscopy and first-principles density functional theory confirms the successful fabrication of JGNRs with a ferromagnetic ground-state localized along the pristine zigzag edge.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design principle of JGNRs.
Fig. 2: On-surface synthesis and structural characterization of the JGNRs.
Fig. 3: Fabrication and characterization of 5-ZGNR.
Fig. 4: Electronic structure of JGNRs.

Similar content being viewed by others

Data availability

All data are available in the paper or the Supplementary Information. The scanning probe microscopy spectra data and theoretical calculation results are available in the Zenodo repository at https://doi.org/10.5281/zenodo.13894455 (ref. 49).

References

  1. Ruffieux, P. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 531, 489–492 (2016).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  2. Blackwell, R. E. et al. Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons. Nature 600, 647–652 (2021).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  3. Slota, M. et al. Magnetic edge states and coherent manipulation of graphene nanoribbons. Nature 557, 691–695 (2018).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  4. Lawrence, J. et al. Probing the magnetism of topological end states in 5-armchair graphene nanoribbons. ACS Nano 14, 4499–4508 (2020).

    Article  CAS  PubMed  MATH  Google Scholar 

  5. Fujita, M., Wakabayashi, K., Nakada, K. & Kusakabe, K. Peculiar localized state at zigzag graphite edge. J. Phys. Soc. Jpn 65, 1920–1923 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Yang, L., Park, C.-H., Son, Y.-W., Cohen, M. L. & Louie, S. G. Quasiparticle energies and band gaps in graphene nanoribbons. Phys. Rev. Lett. 99, 186801 (2007).

    Article  ADS  PubMed  Google Scholar 

  7. de Oteyza, D. G. & Frederiksen, T. Carbon-based nanostructures as a versatile platform for tunable π-magnetism. J. Phys. Condens. Matter 34, 443001 (2022).

    Article  Google Scholar 

  8. Yazyev, O. V. & Katsnelson, M. Magnetic correlations at graphene edges: basis for novel spintronics devices. Phys. Rev. Lett. 100, 047209 (2008).

    Article  ADS  PubMed  Google Scholar 

  9. Magda, G. Z. et al. Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons. Nature 514, 608–611 (2014).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  10. Son, Y.-W., Cohen, M. L. & Louie, S. G. Half-metallic graphene nanoribbons. Nature 444, 347–349 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Haldane, F. Excitation spectrum of a generalised Heisenberg ferromagnetic spin chain with arbitrary spin. J. Phys. C 15, L1309 (1982).

    Article  ADS  MATH  Google Scholar 

  12. Trauzettel, B., Bulaev, D. V., Loss, D. & Burkard, G. Spin qubits in graphene quantum dots. Nat. Phys. 3, 192–196 (2007).

    Article  CAS  MATH  Google Scholar 

  13. Wang, H. et al. Graphene nanoribbons for quantum electronics. Nat. Rev. Phys. 3, 791–802 (2021).

    Article  CAS  MATH  Google Scholar 

  14. Lieb, E. H. Two theorems on the Hubbard model. Phys. Rev. Lett. 62, 1201 (1989).

    Article  ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  15. Cao, T., Zhao, F. & Louie, S. G. Topological phases in graphene nanoribbons: junction states, spin centers, and quantum spin chains. Phys. Rev. Lett. 119, 076401 (2017).

    Article  ADS  PubMed  MATH  Google Scholar 

  16. Jiang, J. & Louie, S. G. Topology classification using chiral symmetry and spin correlations in graphene nanoribbons. Nano Lett. 21, 197–202 (2020).

    Article  ADS  PubMed  MATH  Google Scholar 

  17. Hu, J., Zhou, S., Sun, Y., Fang, X. & Wu, L. Fabrication, properties and applications of Janus particles. Chem. Soc. Rev. 41, 4356–4378 (2012).

    Article  CAS  PubMed  MATH  Google Scholar 

  18. Li, R., Cheng, Y. & Huang, W. Recent progress of Janus 2D transition metal chalcogenides: from theory to experiments. Small 14, 1802091 (2018).

    Article  Google Scholar 

  19. Zhang, L. et al. Janus graphene from asymmetric two-dimensional chemistry. Nat. Commun. 4, 1443 (2013).

    Article  ADS  PubMed  MATH  Google Scholar 

  20. Lu, A.-Y. et al. Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol. 12, 744–749 (2017).

    Article  CAS  PubMed  MATH  Google Scholar 

  21. Zhang, J. et al. Janus monolayer transition-metal dichalcogenides. ACS Nano 11, 8192–8198 (2017).

    Article  CAS  PubMed  MATH  Google Scholar 

  22. Zhang, L. et al. Janus two-dimensional transition metal dichalcogenides. J. Appl. Phys. 131, 230902 (2022).

  23. Sun, Q. et al. Coupled spin states in armchair graphene nanoribbons with asymmetric zigzag edge extensions. Nano Lett. 20, 6429–6436 (2020).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  24. Rizzo, D. J. et al. Inducing metallicity in graphene nanoribbons via zero-mode superlattices. Science 369, 1597–1603 (2020).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  25. Zhang, D.-B. & Wei, S.-H. Inhomogeneous strain-induced half-metallicity in bent zigzag graphene nanoribbons. npj Comput. Mater. 3, 32 (2017).

    Article  ADS  MATH  Google Scholar 

  26. Lee, Y.-L., Kim, S., Park, C., Ihm, J. & Son, Y.-W. Controlling half-metallicity of graphene nanoribbons by using a ferroelectric polymer. ACS Nano 4, 1345–1350 (2010).

    Article  CAS  PubMed  MATH  Google Scholar 

  27. Kan, E.-j, Li, Z., Yang, J. & Hou, J. Half-metallicity in edge-modified zigzag graphene nanoribbons. J. Am. Chem. Soc. 130, 4224–4225 (2008).

    Article  CAS  PubMed  MATH  Google Scholar 

  28. Adams, D. J. et al. Stable ferromagnetism and doping-induced half-metallicity in asymmetric graphene nanoribbons. Phys. Rev. B 85, 245405 (2012).

    Article  ADS  Google Scholar 

  29. Ovchinnikov, A. A. Multiplicity of the ground state of large alternant organic molecules with conjugated bonds: (do organic ferromagnetics exist?). Theor. Chim. Acta 47, 297–304 (1978).

    Article  CAS  MATH  Google Scholar 

  30. Ugeda, M. M., Brihuega, I., Guinea, F. & Gómez-Rodríguez, J. M. Missing atom as a source of carbon magnetism. Phys. Rev. Lett. 104, 096804 (2010).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  31. Palacios, J. J., Fernández-Rossier, J. & Brey, L. Vacancy-induced magnetism in graphene and graphene ribbons. Phys. Rev. B 77, 195428 (2008).

    Article  ADS  MATH  Google Scholar 

  32. Song, S. et al. On-surface synthesis of graphene nanostructures with π-magnetism. Chem. Soc. Rev. 50, 3238–3262 (2021).

    Article  CAS  PubMed  MATH  Google Scholar 

  33. Sakaguchi, H., Song, S., Kojima, T. & Nakae, T. Homochiral polymerization-driven selective growth of graphene nanoribbons. Nat. Chem. 9, 57–63 (2017).

    Article  CAS  PubMed  MATH  Google Scholar 

  34. Kojima, T. et al. Vectorial on‐surface synthesis of polar 2D polymer crystals. Adv. Mater. Interfaces 10, 2300214 (2023).

    Article  CAS  MATH  Google Scholar 

  35. Kojima, T. et al. Molecular-vapor-assisted low-temperature growth of graphene nanoribbons. J. Phys. Chem. C 127, 10541–10549 (2023).

    Article  CAS  MATH  Google Scholar 

  36. Piquero-Zulaica, I. et al. Deceptive orbital confinement at edges and pores of carbon-based 1D and 2D nanoarchitectures. Nat. Commun. 15, 1062 (2024).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  37. Li, J. et al. Uncovering the triplet ground state of triangular graphene nanoflakes engineered with atomic precision on a metal surface. Phys. Rev. Lett. 124, 177201 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Li, J. et al. Topological phase transition in chiral graphene nanoribbons: from edge bands to end states. Nat. Commun. 12, 5538 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  39. Kinikar, A. et al. On‐surface synthesis of edge‐extended zigzag graphene nanoribbons. Adv. Mater. 35, 2306311 (2023).

    Article  CAS  Google Scholar 

  40. Neaton, J. B., Hybertsen, M. S. & Louie, S. G. Renormalization of molecular electronic levels at metal-molecule interfaces. Phys. Rev. Lett. 97, 216405 (2006).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  41. Li, J. et al. Single spin localization and manipulation in graphene open-shell nanostructures. Nat. Commun. 10, 200 (2019).

    Article  ADS  PubMed  PubMed Central  MATH  Google Scholar 

  42. Nguyen, G. D. et al. Atomically precise graphene nanoribbon heterojunctions from a single molecular precursor. Nat. Nanotechnol. 12, 1077–1082 (2017).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  43. Chen, Y.-C. et al. Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions. Nat. Nanotechnol. 10, 156–160 (2015).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  44. Hybertsen, M. S. & Louie, S. G. Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys. Rev. B 34, 5390 (1986).

    Article  ADS  CAS  MATH  Google Scholar 

  45. Giannozzi, P. et al. Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  PubMed  MATH  Google Scholar 

  46. Giannozzi, P. et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Hamann, D. Erratum: Optimized norm-conserving vanderbilt pseudopotentials [Phys. Rev. B 88, 085117 (2013)]. Phys. Rev. B 95, 239906 (2017).

    Article  ADS  Google Scholar 

  48. Van Setten, M. J. et al. The PseudoDojo: training and grading a 85 element optimized norm-conserving pseudopotential table. Comput. Phys. Commun. 226, 39–54 (2018).

    Article  ADS  Google Scholar 

  49. Song, S. et al. Janus graphene nanoribbons with localized states on a single zigzag edge. Zenodo https://doi.org/10.5281/zenodo.13894455 (2024).

Download references

Acknowledgements

J.L. acknowledges support from the NRF, Prime Minister’s Office, Singapore, under the Competitive Research Program Award (NRF-CRP29-2022-0004), MOE grants (MOE T2EP50121-0008 and MOE-T2EP10221-0005) and Agency for Science, Technology and Research (A*STAR) under its AME IRG Grant (Project715 number M21K2c0113). S.G.L. acknowledges the support from the US National Science Foundation under grant number DMR-2325410, which provided all the theoretical topological formulation and analyses as well as the DFT calculations. H.S. acknowledges the support from KAKENHI programme number 22H01891. T.K. acknowledges the support from KAKENHI programme number 23K04521. S.S. acknowledges the support from A*STAR under its AME YIRG Grant (M22K3c0094).

Author information

Authors and Affiliations

Authors

Contributions

J.L. supervised the project and organized the collaboration. S.S. and J.L. conceived and designed the experiments. S.S. and Y.T. carried out the STM and nc-AFM measurements. Z.X., S.S., T.K. and H.S. synthesized the organic precursors. S.G.L. conceived the topological equivalence of the defect edge of JGNR with the end of AGNR, and supervised the theoretical analyses and calculations. W.T., J.R. and Y.H. performed the theoretical studies and DFT calculations. F.J.G. assisted in the optimization of the nc-AFM measurements and instrumentation. W.H. participated in scientific discussion. S.S., W.T., S.G.L. and J.L. wrote the paper with inputs from all authors.

Corresponding authors

Correspondence to Hiroshi Sakaguchi, Steven G. Louie or Jiong Lu.

Ethics declarations

Competing interests

F.J.G. holds patents on the qPlus sensor. The other authors declare no competing interests.

Peer review

Peer review information

Nature thanks Ashok Keerthi, David Serrate and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Schematic illustration of the correspondence between the end of a wide AGNR and the edge of JGNR.

The unit cell of the AGNR, commensurate with its termination, is enclosed by an orange dashed curve. The quantities \(W\) and \({W}_{{notco}}\) in Eq. (1) are to be counted within this specific unit cell. The unit cell of the finite-size JGNR is defined by the area between two grey lines, where 1, 2, …, L label the unit cells. A sufficiently wide AGNR can always be found that shares the same termination as the edge of the JGNR. Through this mapping, the associated AGNR contains L repeated units along its width direction. The unit cell of the wide AGNR, commensurate with its termination, is the area enclosed by the orange dashed curve.

Extended Data Fig. 2 JGNR edge states counting.

Sketch of the defective edge of JGNR with different m value, which is mapped to the end of a large width AGNR with unit cell enclosed by the orange dashed curve that is commensurate with its termination on the left (the topological defect edge of interest). W is the number of carbon rows forming the length of the finite-size JGNR (which is equivalent to the number of carbon rows forming the width of the associated AGNR). \({W}_{{co}}\) and \({W}_{{notco}}\) are the number of connected and unconnected carbon pairs, respectively, in the unit cell of the wide AGNR. L is the number of repeat units along the width of the associated AGNR direction (i.e., \(L\) is number of unit cells forming the length of the finite-size ZGNR of physical interest), and the repeat unit is denoted by the area between the two grey dashed lines. The relationships between L and W, Wco and Wnotco are shown. a, A defect edge with m = 1. b, A defect edge with m = 2. c, A defect edge with m = 3. d, A regular zigzag edge. The repeat unit along the width of AGNR direction is a single benzene ring. These quantities are important in the calculation of Z index.

Extended Data Fig. 3 On-surface synthesis of the 5-ZGNR and JGNRs.

a, e, f. STM topographic image of molecular precursor 1, 2, and 3 as deposited on Au(111), respectively. b, f, j. The STM topographic images of polymer chains obtained by annealing the sample of a, e, f up to 473, 473, and 423 K, respectively. c, g, k. STM topographic images of fully cyclized (5,2)-JGNR, (4,2)-JGNR and 5-ZGNR through a subsequent annealing at 623, 623, and 573 K (Vs = 1 V, It = 100 pA), respectively. d, h, l. Constant current zoom-in STM images of an individual (5,2)-JGNR, (4,2)-JGNR and 5-ZGNR, respectively (Vs = −800 mV, It = 200 pA, CO-functionalized tip).

Extended Data Fig. 4 Spatial localization of edge state of 5-ZGNR and TDZ edge state of (5,2)-JGNR.

a, Constant current STM images of 5-ZGNR, (Vs = −800 mV, It = 200 pA, CO-functionalized tip). b, Colour-coded dI/dV spectra collected as a function of position along the red dotted line (from left to right) in a (Vac = 20 mV, Vs = 1.5 V). The dashed line overlayed on b is the point dI/dV spectrum acquired at the position labelled with a cross in a. c, Constant current STM images of (5,2)-JGNR, (Vs = −800 mV, It = 200 pA, CO-functionalized tip). d, Colour-coded dI/dV spectra collected as a function of position along the red dotted line (from top to bottom) in c (Vac = 20 mV, Vs = 1.5 V). The dashed line overlayed on d is the point dI/dV spectrum acquired at the position labelled with a cross in c.

Extended Data Fig. 5 Bias-dependent dI/dV maps of (4,2)-JGNR across a wide energy window.

a, d, Constant-current dI/dV maps of (4,2)-JGNR recorded at various sample biases marked in b by the dashed vertical lines (Vac = 10 mV). b, dI/dV point spectrum of (4,2)-JGNR on Au(111) acquired at the positions marked in panel c (yellow and green cross). Grey dashed line spectrum represents the Au(111) reference spectrum (Vac = 20 mV). c, Constant current STM images of (4,2)-JGNR, (Vs = 800 mV, It = 200 pA, CO-functionalized tip).

Extended Data Fig. 6 Bias-dependent dI/dV maps of (5,2)-JGNR across a wide energy window.

a, d, Constant-current dI/dV maps of (5,2)-JGNR recorded at various sample biases marked in b by the dashed vertical line (Vac = 10 mV). b, dI/dV point spectrum of (5,2)-JGNR on Au(111) acquired at the position marked in panel c (yellow and green cross). Grey dashed line spectrum represents the Au(111) reference spectrum (Vac = 20 mV). c, Constant current STM images of (5,2)-JGNR, (Vs = −800 mV, It = 200 pA, CO-functionalized tip).

Extended Data Fig. 7 Symmetric design and synthesis of precursor 3.

The synthetic scheme towards the Z-shape backbone by simultaneously constructing the two identical methylphenanthrene branches and its single crystal X-ray diffraction (XRD) structure.

Extended Data Fig. 8 Asymmetric design and synthesis of precursor 2.

The synthetic scheme towards the Z-shape backbone by separately constructing the triphenyl branch and the methylphenanthrene branch of precursor 2 and its single crystal XRD structure.

Extended Data Fig. 9 Asymmetric design and synthesis of precursor 1.

The synthetic scheme towards the Z-shape backbone by separately constructing the biphenyl branch and the methylphenanthrene branch of precursor 1 and its single crystal XRD structure.

Supplementary information

Supplementary Information

This file contains Supplementary Figs. 1–15 and Tables 1–3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, S., Teng, Y., Tang, W. et al. Janus graphene nanoribbons with localized states on a single zigzag edge. Nature (2025). https://doi.org/10.1038/s41586-024-08296-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41586-024-08296-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing