[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of oxidative stress in interstitial cystitis/bladder pain syndrome

Abstract

Interstitial cystitis/bladder pain syndrome (IC/BPS) is characterized by bladder and/or pelvic pain, increased urinary urgency and frequency and nocturia. The pathophysiology of IC/BPS is poorly understood, and theories include chronic inflammation, autoimmune dysregulation, bacterial cystitis, urothelial dysfunction, deficiency of the glycosaminoglycan (GAG) barrier and urine cytotoxicity. Multiple treatment options exist, including behavioural interventions, oral medications, intravesical instillations and procedures such as hydrodistension; however, many clinical trials fail, and patients experience an unsatisfactory treatment response, likely owing to IC/BPS phenotype heterogeneity and the use of non-targeted interventions. Oxidative stress is implicated in the pathogenesis of IC/BPS as reactive oxygen species impair bladder function via their involvement in multiple molecular mechanisms. Kinase signalling pathways, nociceptive receptors, mast-cell activation, urothelial dysregulation and circadian rhythm disturbance have all been linked to reactive oxygen species and IC/BPS. However, further research is necessary to fully uncover the role of oxidative stress in the pathways driving IC/BPS pathogenesis. The development of new models in which these pathways can be manipulated will aid this research and enable further investigation of promising therapeutic targets.

Key points

  • Interstitial cystitis/bladder pain syndrome (IC/BPS) has neither a known exact cause nor a definitive cure, and no FDA-approved treatment has been introduced since 1996.

  • Studies suggest that various molecular pathways are involved in IC/BPS, including the JUN N-terminal kinase (JNK) pathway, transient receptor potential (TRP) channels, activated mast cells, mucosal signalling, circadian rhythm regulation, inflammation and neural dysregulation.

  • Reactive oxygen species are a common factor in different molecular pathways and channels implicated in IC/BPS.

  • Current animal model systems do not fully recapitulate the pathophysiological conditions in human IC/BPS, and targeting specific molecular pathway disruption in animal models might serve as a better option than existing models.

  • As IC/BPS might be multifactorial, future research should target different implicated pathways simultaneously and study the role of reactive oxygen species as a root cause in IC/BPS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proposed pathological mechanisms of IC/BPS.
Fig. 2: Animal models of IC/BPS.

Similar content being viewed by others

References

  1. Berry, S. H. et al. Prevalence of symptoms of bladder pain syndrome/interstitial cystitis among adult females in the United States. J. Urol. 186, 540–544 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hanno, P. M. et al. AUA guideline for the diagnosis and treatment of interstitial cystitis/bladder pain syndrome. J. Urol. 185, 2162–2170 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  3. D’Amico, R. et al. Hidrox® and chronic cystitis: biochemical evaluation of inflammation, oxidative stress, and pain. Antioxidants 10, 1046 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Suskind, A. M. et al. The prevalence and overlap of interstitial cystitis/bladder pain syndrome and chronic prostatitis/chronic pelvic pain syndrome in men: results of the RAND Interstitial Cystitis Epidemiology male study. J. Urol. 189, 141–145 (2013).

    Article  PubMed  Google Scholar 

  5. Hanno, P. et al. Summary of the 2023 report of the international consultation on incontinence interstitial cystitis/bladder pain syndrome (IC/BPS) committee. Continence 8, 101056 (2023).

    Article  Google Scholar 

  6. Lim, Y., Leslie, S. W. & O’Rourke, S. Interstitial cystitis/bladder pain syndrome (StatPearls, 2023).

  7. Crescenze, I. M. et al. Advanced management of patients with ulcerative interstitial cystitis/bladder pain syndrome. Urology 133, 78–83 (2019).

    Article  PubMed  Google Scholar 

  8. Duh, K. et al. Crosstalk between the immune system and neural pathways in interstitial cystitis/bladder pain syndrome. Discov. Med. 25, 243–250 (2018).

    PubMed  Google Scholar 

  9. Patnaik, S. S. et al. Etiology, pathophysiology and biomarkers of interstitial cystitis/painful bladder syndrome. Arch. Gynecol. Obstet. 295, 1341–1359 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Hauser, P. J. et al. Abnormal expression of differentiation related proteins and proteoglycan core proteins in the urothelium of patients with interstitial cystitis. J. Urol. 179, 764–769 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Porru, D. et al. Different clinical presentation of interstitial cystitis syndrome. Int. Urogynecol J. Pelvic Floor Dysfunct. 15, 198–202 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Yosef, A. et al. Chronic pelvic pain: pathogenesis and validated assessment. Middle East Fertil. Soc. J. 21, 205–221 (2016).

    Article  Google Scholar 

  13. Giusto, L. L., Zahner, P. M. & Shoskes, D. A. An evaluation of the pharmacotherapy for interstitial cystitis. Expert Opin. Pharmacother. 19, 1097–1108 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Dayem, A. A., Kim, K., Lee, S. B., Kim, A. & Cho, S.-G. Application of adult and pluripotent stem cells in interstitial cystitis/bladder pain syndrome therapy: methods and perspectives. J. Clin. Med. 9, E766 (2020).

    Article  Google Scholar 

  15. Matsumoto, S., Ueda, T. & Kakizaki, H. Effect of supplementation with hydrogen-rich water in patients with interstitial cystitis/painful bladder syndrome. Urology 81, 226–230 (2013).

    Article  PubMed  Google Scholar 

  16. Ener, K. et al. Evaluation of oxidative stress status and antioxidant capacity in patients with painful bladder syndrome/interstitial cystitis: preliminary results of a randomised study. Int. Urol. Nephrol. 47, 1297–1302 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Ni, B. et al. Nrf2 pathway ameliorates bladder dysfunction in cyclophosphamide-induced cystitis via suppression of oxidative stress. Oxid. Med. Cell Longev. 2021, 4009308 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Vona, R., Pallotta, L., Cappelletti, M., Severi, C. & Matarrese, P. The impact of oxidative stress in human pathology: focus on gastrointestinal disorders. Antioxidants 10, 201 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schieber, M. & Chandel, N. S. ROS function in redox signaling and oxidative stress. Curr. Biol. 24, R453–R462 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mohammad, A. et al. A curious case of cysteines in human peroxiredoxin I. Redox Biol. 37, 101738 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kumar, R. et al. Deciphering the in vivo redox behavior of human peroxiredoxins I and II by expressing in budding yeast. Free Radic. Biol. Med. 145, 321–329 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Lin, A. T. L. & Juan, Y.-S. Ischemia, hypoxia and oxidative stress in bladder outlet obstruction and bladder overdistention injury. Low. Urin. Tract Symptoms 4, 27–31 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Yu, H.-J. et al. Hypoxia preconditioning attenuates bladder overdistension-induced oxidative injury by up-regulation of Bcl-2 in the rat. J. Physiol. 554, 815–828 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Chien, C.-T., Yu, H.-J., Lin, T.-B., Lai, M.-K. & Hsu, S.-M. Substance P via NK1 receptor facilitates hyperactive bladder afferent signaling via action of ROS. Am. J. Physiol. Ren. Physiol. 284, F840–F851 (2003).

    Article  CAS  Google Scholar 

  25. Wróbel, A. et al. Intravesical administration of blebbistatin prevents cyclophosphamide-induced toxicity of the urinary bladder in female Wistar rats. Neurourol. Urodyn. 38, 1044–1052 (2019).

    Article  PubMed  Google Scholar 

  26. Nicholas, S., Yuan, S. Y., Brookes, S. J. H., Spencer, N. J. & Zagorodnyuk, V. P. Hydrogen peroxide preferentially activates capsaicin-sensitive high threshold afferents via TRPA1 channels in the guinea pig bladder. Br. J. Pharmacol. 174, 126–138 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. de Jongh, R. et al. Oxidative stress reduces the muscarinic receptor function in the urinary bladder. Neurourol. Urodyn. 26, 302–308 (2007).

    Article  PubMed  Google Scholar 

  28. Li, J. et al. Therapeutic effect of urine-derived stem cells for protamine/lipopolysaccharide-induced interstitial cystitis in a rat model. Stem Cell Res. Ther. 8, 107 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Andersson, K.-E. Re: systemic therapy for bladder pain syndrome/interstitial cystitis (BPS/IC): systematic review of published trials in the last 5 years. Eur. Urol. 79, 431–432 (2021).

    Article  PubMed  Google Scholar 

  30. Johnson, J. R., Clabots, C. & Rosen, H. Effect of inactivation of the global oxidative stress regulator oxyR on the colonization ability of Escherichia coli O1:K1:H7 in a mouse model of ascending urinary tract infection. Infect. Immun. 74, 461–468 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Joshi, C. S., Mora, A., Felder, P. A. & Mysorekar, I. U. NRF2 promotes urothelial cell response to bacterial infection by regulating reactive oxygen species and RAB27B expression. Cell Rep. 37, 109856 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Kurutas, E. B., Ciragil, P., Gul, M. & Kilinc, M. The effects of oxidative stress in urinary tract infection. Mediators Inflamm. 2005, 242–244 (2005).

    Article  PubMed  Google Scholar 

  33. Jiang, Y.-H., Jhang, J.-F., Ho, H.-C., Chiou, D.-Y. & Kuo, H.-C. Urine oxidative stress biomarkers as novel biomarkers in interstitial cystitis/bladder pain syndrome. Biomedicines 10, 1701 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Saima et al. Caftaric acid ameliorates oxidative stress, inflammation, and bladder overactivity in rats having interstitial cystitis: an In Silico Study. ACS Omega 8, 28196–28206 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bishop, B. L. et al. Cyclic AMP-regulated exocytosis of Escherichia coli from infected bladder epithelial cells. Nat. Med. 13, 625–630 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Schilling, J. D., Mulvey, M. A., Vincent, C. D., Lorenz, R. G. & Hultgren, S. J. Bacterial invasion augments epithelial cytokine responses to Escherichia coli through a lipopolysaccharide-dependent mechanism. J. Immunol. 166, 1148–1155 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Stemler, K. M. et al. Protamine sulfate induced bladder injury protects from distention induced bladder pain. J. Urol. 189, 343–351 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Davis, J. M., Rasmussen, S. B. & O’Brien, A. D. Cytotoxic necrotizing factor type 1 production by uropathogenic Escherichia coli modulates polymorphonuclear leukocyte function. Infect. Immun. 73, 5301–5310 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Smith, Y. C., Rasmussen, S. B., Grande, K. K., Conran, R. M. & O’Brien, A. D. Hemolysin of uropathogenic Escherichia coli evokes extensive shedding of the uroepithelium and hemorrhage in bladder tissue within the first 24 hours after intraurethral inoculation of mice. Infect. Immun. 76, 2978–2990 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sindhu, S. et al. MIP-1α expression induced by co-stimulation of human monocytic cells with palmitate and TNF-α involves the TLR4-IRF3 pathway and is amplified by oxidative stress. Cells 9, 1799 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yu, L. et al. Mucosal infection rewires TNFα signaling dynamics to skew susceptibility to recurrence. eLife 8, e46677 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Robinson, R. et al. Interleukin-6 trans-signaling inhibition prevents oxidative stress in a mouse model of early diabetic retinopathy. Redox Biol. 34, 101574 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang, C.-C. et al. Involvement of interleukin-6-regulated nitric oxide synthase in hemorrhagic cystitis and impaired bladder contractions in young rats induced by acrolein, a urinary metabolite of cyclophosphamide. Toxicol. Sci. 131, 302–310 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Ye, S. et al. Intravesical CD74 and CXCR4, macrophage migration inhibitory factor (MIF) receptors, mediate bladder pain. PLoS ONE 16, e0255975 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ma, F. et al. Disulfide high mobility group box-1 causes bladder pain through bladder Toll-like receptor 4. BMC Physiol. 17, 6 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Jüttner, S. et al. Migration inhibitory factor induces killing of Leishmania major by macrophages: dependence on reactive nitrogen intermediates and endogenous TNF-α. J. Immunol. 161, 2383–2390 (1998).

    Article  PubMed  Google Scholar 

  47. Alam, A. et al. Novel anti-inflammatory activity of epoxyazadiradione against macrophage migration inhibitory factor: inhibition of tautomerase and proinflammatory activities of macrophage migration inhibitory factor. J. Biol. Chem. 287, 24844–24861 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chuang, Y.-C. et al. Macrophage migration inhibitory factor induces autophagy via reactive oxygen species generation. PLoS ONE 7, e37613 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cutrullis, R. A., Petray, P. B. & Corral, R. S. MIF-driven activation of macrophages induces killing of intracellular Trypanosoma cruzi dependent on endogenous production of tumor necrosis factor, nitric oxide and reactive oxygen species. Immunobiology 222, 423–431 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Lv, W. et al. Macrophage migration inhibitory factor promotes breast cancer metastasis via activation of HMGB1/TLR4/NF kappa B axis. Cancer Lett. 375, 245–255 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Ye, S. et al. Bladder oxidative stress and HMGB1 release contribute to PAR4-mediated bladder pain in mice. Front. Syst. Neurosci. 16, 882493 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen, C.-L., Wu, S.-T., Cha, T.-L., Sun, G.-H. & Meng, E. Molecular pathophysiology and potential therapeutic strategies of ketamine-related cystitis. Biology 11, 502 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Heck, B. N. Interstitial cystitis: enhancing early identification in primary care settings. J. Nurse Pract.3, 509–519 (2007).

    Article  Google Scholar 

  54. Zeke, A., Misheva, M., Reményi, A. & Bogoyevitch, M. A. JNK signaling: regulation and functions based on complex protein-protein partnerships. Microbiol. Mol. Biol. Rev. 80, 793–835 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bogoyevitch, M. A. & Kobe, B. Uses for JNK: the many and varied substrates of the c-Jun N-terminal kinases. Microbiol. Mol. Biol. Rev. 70, 1061–1095 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Brown, K. et al. Structural basis for the interaction of TAK1 kinase with its activating protein TAB1. J. Mol. Biol. 354, 1013–1020 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Kanayama, A. et al. TAB2 and TAB3 activate the NF-κB pathway through binding to polyubiquitin chains. Mol. Cell 15, 535–548 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Wang, C. et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346–351 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Fan, Y. et al. Lysine 63-linked polyubiquitination of TAK1 at lysine 158 is required for tumor necrosis factor - and interleukin-1β-induced IKK/NF-κB and JNK/AP-1 activation. J. Biol. Chem. 285, 5347–5360 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Chen, I.-T., Hsu, P.-H., Hsu, W.-C., Chen, N.-J. & Tseng, P.-H. Polyubiquitination of transforming growth factor β-activated kinase 1 (TAK1) at lysine 562 residue regulates TLR4-mediated JNK and p38 MAPK activation. Sci. Rep. 5, 12300 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Soga, M., Matsuzawa, A. & Ichijo, H. Oxidative stress-induced diseases via the ASK1 signaling pathway. Int. J. Cell Biol. 2012, 439587 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Saitoh, M. et al. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J. 17, 2596–2606 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tobiume, K., Saitoh, M. & Ichijo, H. Activation of apoptosis signal-regulating kinase 1 by the stress-induced activating phosphorylation of pre-formed oligomer. J. Cell Physiol. 191, 95–104 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Zhang, Q., Zhang, G., Meng, F. & Tian, H. Biphasic activation of apoptosis signal-regulating kinase 1-stress-activated protein kinase 1-c-Jun N-terminal protein kinase pathway is selectively mediated by Ca2+-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors involving oxidative stress following brain ischemia in rat hippocampus. Neurosci. Lett. 337, 51–55 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Zhao, J. et al. The c-Jun N-terminal kinase (JNK) pathway is activated in human interstitial cystitis (IC) and rat protamine sulfate induced cystitis. Sci. Rep. 6, 19670 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Su, F. et al. Multimodal single-cell analyses outline the immune microenvironment and therapeutic effectors of interstitial cystitis/bladder pain syndrome. Adv. Sci. 9, 2106063 (2022).

    Article  CAS  Google Scholar 

  67. Bouchelouche, K., Alvarez, S., Horn, T., Nordling, J. & Bouchelouche, P. Human detrusor smooth muscle cells release interleukin-6, interleukin-8, and RANTES in response to proinflammatory cytokines interleukin-1β and tumor necrosis factor-α. Urology 67, 214–219 (2006).

    Article  PubMed  Google Scholar 

  68. Corcoran, A. et al. A role for prolyl hydroxylase domain proteins in hippocampal synaptic plasticity. Hippocampus 23, 861–872 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Esposito, K. et al. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation 106, 2067–2072 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Mukhopadhyay, B. et al. Correlation of oxidative damage with pro-inflammatory markers (IL-6, TNF-α) in meningocele. J. Clin. Diagn. Res. 10, BC08–BC10 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Ogawa, N., Kurokawa, T. & Mori, Y. Sensing of redox status by TRP channels. Cell Calcium 60, 115–122 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Nilius, B. & Owsianik, G. The transient receptor potential family of ion channels. Genome Biol. 12, 218 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Clapham, D. E. TRP channels as cellular sensors. Nature 426, 517–524 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Clapham, D. E., Julius, D., Montell, C. & Schultz, G. International Union of Pharmacology. XLIX. Nomenclature and structure-function relationships of transient receptor potential channels. Pharmacol. Rev. 57, 427–450 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Acs, G., Palkovits, M. & Blumberg, P. M. Comparison of [3H]resiniferatoxin binding by the vanilloid (capsaicin) receptor in dorsal root ganglia, spinal cord, dorsal vagal complex, sciatic and vagal nerve and urinary bladder of the rat. Life Sci. 55, 1017–1026 (1994).

    Article  CAS  PubMed  Google Scholar 

  76. Furuta, A., Suzuki, Y., Hayashi, N., Egawa, S. & Yoshimura, N. Transient receptor potential A1 receptor-mediated neural cross-talk and afferent sensitization induced by oxidative stress: implication for the pathogenesis of interstitial cystitis/bladder pain syndrome. Int. J. Urol. 19, 429–436 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Liu, B. et al. Increased severity of inflammation correlates with elevated expression of TRPV1 nerve fibers and nerve growth factor on interstitial cystitis/bladder pain syndrome. Urol. Int. 92, 202–208 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Shie, J.-H., Liu, H.-T. & Kuo, H.-C. Increased cell apoptosis of urothelium mediated by inflammation in interstitial cystitis/painful bladder syndrome. Urology 79, 484.e7–13 (2012).

    Article  PubMed  Google Scholar 

  79. Birder, L. A. et al. Altered urinary bladder function in mice lacking the vanilloid receptor TRPV1. Nat. Neurosci. 5, 856–860 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Andersson, K.-E. TRP channels as lower urinary tract sensory targets. Med. Sci. 7, E67 (2019).

    Google Scholar 

  81. Merrill, L., Gonzalez, E. J., Girard, B. M. & Vizzard, M. A. Receptors, channels, and signalling in the urothelial sensory system in the bladder. Nat. Rev. Urol. 13, 193–204 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Everaerts, W. et al. Inhibition of the cation channel TRPV4 improves bladder function in mice and rats with cyclophosphamide-induced cystitis. Proc. Natl Acad. Sci. USA 107, 19084–19089 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Uslusoy, F. Inhibition of the TRPM2 and TRPV1 channels through hypericum perforatum in sciatic nerve injury-induced rats demonstrates their key role in apoptosis and mitochondrial oxidative stress of sciatic nerve and dorsal root ganglion. Front. Physiol. 8, 335 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Pape, J., Falconi, G., De Mattos Lourenco, T. R., Doumouchtsis, S. K. & Betschart, C. Variations in bladder pain syndrome/interstitial cystitis (IC) definitions, pathogenesis, diagnostics and treatment: a systematic review and evaluation of national and international guidelines. Int. Urogynecol. J. 30, 1795–1805 (2019).

    Article  PubMed  Google Scholar 

  85. Gratzke, C. et al. Transient receptor potential A1 (TRPA1) activity in the human urethra–evidence for a functional role for TRPA1 in the outflow region. Eur. Urol. 55, 696–704 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Weinhold, P. et al. TRPA1 receptor induced relaxation of the human urethra involves TRPV1 and cannabinoid receptor mediated signals, and cyclooxygenase activation. J. Urol. 183, 2070–2076 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Krystel-Whittemore, M., Dileepan, K. N. & Wood, J. G. Mast cell: a multi-functional master cell. Front. Immunol. 6, 620 (2015).

    PubMed  Google Scholar 

  88. da Silva, E. Z. M., Jamur, M. C. & Oliver, C. Mast cell function: a new vision of an old cell. J. Histochem. Cytochem. 62, 698–738 (2014).

    Article  PubMed  Google Scholar 

  89. Chelombitko, M. A., Fedorov, A. V., Ilyinskaya, O. P., Zinovkin, R. A. & Chernyak, B. V. Role of reactive oxygen species in mast cell degranulation. Biochemistry 81, 1564–1577 (2016).

    CAS  PubMed  Google Scholar 

  90. Fitzsimmons, C. M., Falcone, F. H. & Dunne, D. W. Helminth allergens, parasite-specific IgE, and its protective role in human immunity. Front. Immunol. 5, 61 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Kawakami, T., Kitaura, J., Xiao, W. & Kawakami, Y. IgE regulation of mast cell survival and function. Novartis Found. Symp. 271, 100–107 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Saito, H., Ishizaka, T. & Ishizaka, K. Mast cells and IgE: from history to today. Allergol. Int. 62, 3–12 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. Gringhuis, S. I. et al. Effect of redox balance alterations on cellular localization of LAT and downstream T-cell receptor signaling pathways. Mol. Cell Biol. 22, 400–411 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gius, D. Redox-sensitive signaling factors and antioxidants: how tumor cells respond to ionizing radiation. J. Nutr. 134, 3213S–3214S (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Suzuki, Y., Yoshimaru, T., Inoue, T., Niide, O. & Ra, C. Role of oxidants in mast cell activation. Chem. Immunol. Allergy 87, 32–42 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Catalli, A., Karpov, V., Pundir, P., Dimitrijevic, A. & Kulka, M. Comparison of the inhibitory effects of resveratrol and tranilast on IgE, 48/80 and substance P dependent-mast cell activation. Allergy Asthma Clin. Immun. 6, 1–1 (2010).

    Google Scholar 

  97. Son, A. et al. Redox regulation of mast cell histamine release in thioredoxin-1 (TRX) transgenic mice. Cell Res. 16, 230–239 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Shan, H. et al. Differential expression of histamine receptors in the bladder wall tissues of patients with bladder pain syndrome/interstitial cystitis — significance in the responsiveness to antihistamine treatment and disease symptoms. BMC Urol. 19, 115 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Grundy, L. et al. Histamine induces peripheral and central hypersensitivity to bladder distension via the histamine H1 receptor and TRPV1. Am. J. Physiol. Renal Physiol. 318, F298–F314 (2020).

    Article  CAS  PubMed  Google Scholar 

  100. Janssen, D. A. W. et al. The distribution and function of chondroitin sulfate and other sulfated glycosaminoglycans in the human bladder and their contribution to the protective bladder barrier. J. Urol. 189, 336–342 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Ochodnický, P. et al. Bradykinin modulates spontaneous nerve growth factor production and stretch-induced ATP release in human urothelium. Pharmacol. Res. 70, 147–154 (2013).

    Article  PubMed  Google Scholar 

  102. Yoshida, M. et al. Non-neuronal cholinergic system in human bladder urothelium. Urology 67, 425–430 (2006).

    Article  PubMed  Google Scholar 

  103. Sellers, D., Chess-Williams, R. & Michel, M. C. Modulation of lower urinary tract smooth muscle contraction and relaxation by the urothelium. Naunyn Schmiedebergs Arch. Pharmacol. 391, 675–694 (2018).

    Article  CAS  PubMed  Google Scholar 

  104. Nocchi, L., Daly, D. M., Chapple, C. & Grundy, D. Induction of oxidative stress causes functional alterations in mouse urothelium via a TRPM8-mediated mechanism: implications for aging. Aging Cell 13, 540–550 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Perše, M., Injac, R. & Erman, A. Oxidative status and lipofuscin accumulation in urothelial cells of bladder in aging mice. PLoS ONE 8, e59638 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Valko, M., Rhodes, C. J., Moncol, J., Izakovic, M. & Mazur, M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 160, 1–40 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Jost, S. P. Renewal of normal urothelium in adult mice. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 51, 65–70 (1986).

    Article  CAS  PubMed  Google Scholar 

  108. Valko, M. et al. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39, 44–84 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Brunk, U. T. & Terman, A. The mitochondrial-lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur. J. Biochem. 269, 1996–2002 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Terman, A. & Brunk, U. T. Ceroid/lipofuscin formation in cultured human fibroblasts: the role of oxidative stress and lysosomal proteolysis. Mech. Ageing Dev. 104, 277–291 (1998).

    Article  CAS  PubMed  Google Scholar 

  111. Terman, A. & Brunk, U. T. Lipofuscin. Int. J. Biochem. Cell Biol. 36, 1400–1404 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Terman, A., Dalen, H., Eaton, J. W., Neuzil, J. & Brunk, U. T. Aging of cardiac myocytes in culture: oxidative stress, lipofuscin accumulation, and mitochondrial turnover. Ann. NY Acad. Sci. 1019, 70–77 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Gomez-Pinilla, P. J. et al. Melatonin restores impaired contractility in aged guinea pig urinary bladder. J. Pineal Res. 44, 416–425 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Juan, Y.-S. et al. Green tea catechins decrease oxidative stress in surgical menopause-induced overactive bladder in a rat model. BJU Int. 110, E236–E244 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Serin, Y. & Acar Tek, N. Effect of circadian rhythm on metabolic processes and the regulation of energy balance. Ann. Nutr. Metab. 74, 322–330 (2019).

    Article  CAS  PubMed  Google Scholar 

  116. Meng, Q.-J. et al. Entrainment of disrupted circadian behavior through inhibition of casein kinase 1 (CK1) enzymes. Proc. Natl Acad. Sci. USA 107, 15240–15245 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Edgar, R. S. et al. Peroxiredoxins are conserved markers of circadian rhythms. Nature 485, 459–464 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kim, J. W. Effect of shift work on nocturia. Urology 87, 153–160 (2016).

    Article  PubMed  Google Scholar 

  119. Richards, J. & Gumz, M. L. Mechanism of the circadian clock in physiology. Am. J. Physiol. Regul. Integr. Comp. Physiol. 304, R1053–R1064 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Warren, J. W., Wesselmann, U., Morozov, V. & Langenberg, P. W. Numbers and types of nonbladder syndromes as risk factors for interstitial cystitis/painful bladder syndrome. Urology 77, 313–319 (2011).

    Article  PubMed  Google Scholar 

  121. Wilking, M., Ndiaye, M., Mukhtar, H. & Ahmad, N. Circadian rhythm connections to oxidative stress: implications for human health. Antioxid. Redox Signal. 19, 192–208 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ihara, T. et al. Intermittent restraint stress induces circadian misalignment in the mouse bladder, leading to nocturia. Sci. Rep. 9, 10069 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Fontella, F. U. et al. Repeated restraint stress induces oxidative damage in rat hippocampus. Neurochem. Res. 30, 105–111 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Sharifian, A., Farahani, S., Pasalar, P., Gharavi, M. & Aminian, O. Shift work as an oxidative stressor. J. Circadian Rhythms 3, 15 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Zelzer, S. et al. Work intensity, low-grade inflammation, and oxidative status: a comparison between office and slaughterhouse workers. Oxid. Med. Cell Longev. 2018, 2737563 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Ihara, T. et al. Clock genes regulate the circadian expression of Piezo1, TRPV4, Connexin26, and VNUT in an ex vivo mouse bladder mucosa. PLoS ONE 12, e0168234 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Nakamura, Y., Ishimaru, K., Shibata, S. & Nakao, A. Regulation of plasma histamine levels by the mast cell clock and its modulation by stress. Sci. Rep. 7, 39934 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Birder, L. & Andersson, K.-E. Animal modelling of interstitial cystitis/bladder pain syndrome. Int. Neurourol. J. 22, S3–S9 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Ayza, M. A. et al. Potential protective effects of antioxidants against cyclophosphamide-induced nephrotoxicity. Int. J. Nephrol. 2022, 5096825 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Nafees, S., Rashid, S., Ali, N., Hasan, S. K. & Sultana, S. Rutin ameliorates cyclophosphamide induced oxidative stress and inflammation in Wistar rats: role of NFκB/MAPK pathway. Chem. Biol. Interact. 231, 98–107 (2015).

    Article  CAS  PubMed  Google Scholar 

  131. Smaldone, M. C. et al. Multiplex analysis of urinary cytokine levels in rat model of cyclophosphamide-induced cystitis. Urology 73, 421–426 (2009).

    Article  PubMed  Google Scholar 

  132. Boucher, M. et al. Cyclophosphamide-induced cystitis in freely-moving conscious rats: behavioral approach to a new model of visceral pain. J. Urol. 164, 203–208 (2000).

    Article  CAS  PubMed  Google Scholar 

  133. Juszczak, K., Królczyk, G., Filipek, M., Dobrowolski, Z. F. & Thor, P. J. Animal models of overactive bladder: cyclophosphamide (CYP)-induced cystitis in rats. Folia Med. Cracov. 48, 113–123 (2007).

    CAS  PubMed  Google Scholar 

  134. Hu, V. Y. et al. COX-2 and prostanoid expression in micturition pathways after cyclophosphamide-induced cystitis in the rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284, R574–R585 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Vera, P. L., Wang, X. & Meyer-Siegler, K. L. Upregulation of macrophage migration inhibitory factor (MIF) and CD74, receptor for MIF, in rat bladder during persistent cyclophosphamide-induced inflammation. Exp. Biol. Med. 233, 620–626 (2008).

    Article  CAS  Google Scholar 

  136. Vera, P. L., Iczkowski, K. A., Wang, X. & Meyer-Siegler, K. L. Cyclophosphamide-induced cystitis increases bladder CXCR4 expression and CXCR4-macrophage migration inhibitory factor association. PLoS ONE 3, e3898 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Augé, C., Gamé, X., Vergnolle, N., Lluel, P. & Chabot, S. Characterization and validation of a chronic model of cyclophosphamide-induced interstitial cystitis/bladder pain syndrome in rats. Front. Pharmacol. 11, 1305 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Bluthé, R. M. et al. Role of interleukin-1β and tumour necrosis factor-α in lipopolysaccharide-induced sickness behaviour: a study with interleukin-1 type I receptor-deficient mice. Eur. J. Neurosci. 12, 4447–4456 (2000).

    PubMed  Google Scholar 

  139. Basu Mallik, S. et al. Caffeic acid attenuates lipopolysaccharide-induced sickness behaviour and neuroinflammation in mice. Neurosci. Lett. 632, 218–223 (2016).

    Article  CAS  PubMed  Google Scholar 

  140. Varatharaj, A. & Galea, I. The blood-brain barrier in systemic inflammation. Brain Behav. Immun. 60, 1–12 (2017).

    Article  CAS  PubMed  Google Scholar 

  141. Kurosawa, N., Shimizu, K. & Seki, K. The development of depression-like behavior is consolidated by IL-6-induced activation of locus coeruleus neurons and IL-1β-induced elevated leptin levels in mice. Psychopharmacology 233, 1725–1737 (2016).

    Article  CAS  PubMed  Google Scholar 

  142. Kawamorita, N. et al. Liposome based intravesical therapy targeting nerve growth factor ameliorates bladder hypersensitivity in rats with experimental colitis. J. Urol. 195, 1920–1926 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Yoshizumi, M., Parker, R. A., Eisenach, J. C. & Hayashida, K. Gabapentin inhibits γ-amino butyric acid release in the locus coeruleus but not in the spinal dorsal horn after peripheral nerve injury in rats. Anesthesiology 116, 1347–1353 (2012).

    Article  CAS  PubMed  Google Scholar 

  144. Rose, C., Parker, A., Jefferson, B. & Cartmell, E. The characterization of feces and urine: a review of the literature to inform advanced treatment technology. Crit. Rev. Env. Sci. Technol. 45, 1827–1879 (2015).

    Article  CAS  Google Scholar 

  145. Choi, B.-H. et al. Mast cell activation and response to tolterodine in the rat urinary bladder in a chronic model of intravesical protamine sulfate and bacterial endotoxin-induced cystitis. Mol. Med. Rep. 10, 670–676 (2014).

    Article  CAS  PubMed  Google Scholar 

  146. Berger, G. et al. Experimental cannabinoid 2 receptor activation by phyto-derived and synthetic cannabinoid ligands in LPS-induced interstitial cystitis in mice. Molecules 24, E4239 (2019).

    Article  Google Scholar 

  147. Lin, C.-C., Huang, Y.-C., Lee, W.-C. & Chuang, Y.-C. New frontiers or the treatment of interstitial cystitis/bladder pain syndrome — focused on stem cells, platelet-rich plasma, and low-energy shock wave. Int. Neurourol. J. 24, 211–221 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Dobberfuhl, A. D., Oti, T., Sakamoto, H. & Marson, L. Identification of CNS neurons innervating the levator ani and ventral bulbospongiosus muscles in male rats. J. Sex. Med. 11, 664–677 (2014).

    Article  CAS  PubMed  Google Scholar 

  149. Yang, W. et al. Ca2+/calmodulin-dependent protein kinase II is associated with pelvic pain of neurogenic cystitis. Am. J. Physiol. Renal Physiol. 303, F350–F356 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Rudick, C. N., Bryce, P. J., Guichelaar, L. A., Berry, R. E. & Klumpp, D. J. Mast cell-derived histamine mediates cystitis pain. PLoS ONE 3, e2096 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Yang, W., Searl, T. J., Yaggie, R., Schaeffer, A. J. & Klumpp, D. J. A MAPP Network study: overexpression of tumor necrosis factor-α in mouse urothelium mimics interstitial cystitis. Am. J. Physiol. Renal Physiol. 315, F36–F44 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Jasmin, L., Janni, G., Manz, H. J. & Rabkin, S. D. Activation of CNS circuits producing a neurogenic cystitis: evidence for centrally induced peripheral inflammation. J. Neurosci. 18, 10016–10029 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Suzuki, Y. et al. Fc epsilon RI signaling of mast cells activates intracellular production of hydrogen peroxide: role in the regulation of calcium signals. J. Immunol. 171, 6119–6127 (2003).

    Article  CAS  PubMed  Google Scholar 

  154. Masini, E. et al. Reduction of antigen-induced respiratory abnormalities and airway inflammation in sensitized guinea pigs by a superoxide dismutase mimetic. Free Radic. Biol. Med. 39, 520–531 (2005).

    Article  CAS  PubMed  Google Scholar 

  155. Izgi, K. et al. Uroplakin peptide-specific autoimmunity initiates interstitial cystitis/painful bladder syndrome in mice. PLoS ONE 8, e72067 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Liu, B.-K. et al. The effects of neurokinin-1 receptor antagonist in an experimental autoimmune cystitis model resembling bladder pain syndrome/interstitial cystitis. Inflammation 42, 246–254 (2019).

    Article  CAS  PubMed  Google Scholar 

  157. Jin, X.-W., Liu, B.-K., Zhang, X., Zhao, Z.-H. & Shao, Y. Establishment of a novel autoimmune experimental model of bladder pain syndrome/interstitial cystitis in C57BL/6 mice. Inflammation 40, 861–870 (2017).

    Article  CAS  PubMed  Google Scholar 

  158. Bicer, F. et al. Chronic pelvic allodynia is mediated by CCL2 through mast cells in an experimental autoimmune cystitis model. Am. J. Physiol. Renal Physiol. 308, F103–F113 (2015).

    Article  CAS  PubMed  Google Scholar 

  159. Previte, D. M. et al. Reactive oxygen species are required for driving efficient and sustained aerobic glycolysis during CD4+ T cell activation. PLoS ONE 12, e0175549 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Siddiqui, A. et al. Association of oxidative stress and inflammatory markers with chronic stress in patients with newly diagnosed type 2 diabetes. Diabetes Metab. Res. Rev. 35, e3147 (2019).

    Article  PubMed  Google Scholar 

  161. Macaulay, A. J., Stern, R. S., Holmes, D. M. & Stanton, S. L. Micturition and the mind: psychological factors in the aetiology and treatment of urinary symptoms in women. Br. Med. J. 294, 540–543 (1987).

    Article  CAS  Google Scholar 

  162. Fan, Y.-H., Lin, A. T. L., Wu, H.-M., Hong, C.-J. & Chen, K.-K. Psychological profile of Taiwanese interstitial cystitis patients. Int. J. Urol. 15, 416–418 (2008).

    Article  PubMed  Google Scholar 

  163. Zhang, C. et al. Association between occupational stress and risk of overactive bladder and other lower urinary tract symptoms: a cross-sectional study of female nurses in China. Neurourol. Urodyn. 32, 254–260 (2013).

    Article  PubMed  Google Scholar 

  164. Bradley, C. S. et al. Overactive bladder and mental health symptoms in recently deployed female veterans. J. Urol. 191, 1327–1332 (2014).

    Article  PubMed  Google Scholar 

  165. Lai, H., Gardner, V., Vetter, J. & Andriole, G. L. Correlation between psychological stress levels and the severity of overactive bladder symptoms. BMC Urol. 15, 14 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Lai, H. et al. Animal models of urologic chronic pelvic pain syndromes: findings from the multidisciplinary approach to the study of chronic pelvic pain research network. Urology 85, 1454–1465 (2015).

    Article  PubMed  Google Scholar 

  167. Smith, A. L. et al. The effects of acute and chronic psychological stress on bladder function in a rodent model. Urology 78, 967.e1–967.e7 (2011).

    Article  PubMed  Google Scholar 

  168. Lee, U. J. et al. Chronic psychological stress in high-anxiety rats induces sustained bladder hyperalgesia. Physiol. Behav. 139, 541–548 (2015).

    Article  CAS  PubMed  Google Scholar 

  169. Chang, A. et al. Social stress in mice induces voiding dysfunction and bladder wall remodeling. Am. J. Physiol. Renal Physiol. 297, F1101–F1108 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Cetinel, S., Ercan, F., Cikler, E., Contuk, G. & Sener, G. Protective effect of melatonin on water avoidance stress induced degeneration of the bladder. J. Urol. 173, 267–270 (2005).

    Article  CAS  PubMed  Google Scholar 

  171. Matos, R. et al. The water avoidance stress induces bladder pain due to a prolonged alpha1A adrenoceptor stimulation. Naunyn Schmiedebergs Arch. Pharmacol. 390, 839–844 (2017).

    Article  CAS  PubMed  Google Scholar 

  172. Kullmann, F. A. et al. Serotonergic paraneurones in the female mouse urethral epithelium and their potential role in peripheral sensory information processing. Acta Physiol. 222, e12919 (2018).

    Article  Google Scholar 

  173. Wang, Z. et al. Effects of water avoidance stress on peripheral and central responses during bladder filling in the rat: a multidisciplinary approach to the study of urologic chronic pelvic pain syndrome (MAPP) research network study. PLoS ONE 12, e0182976 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Mingin, G. C., Peterson, A., Erickson, C. S., Nelson, M. T. & Vizzard, M. A. Social stress induces changes in urinary bladder function, bladder NGF content, and generalized bladder inflammation in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R893–R900 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Pierce, A. N. et al. Urinary bladder hypersensitivity and dysfunction in female mice following early life and adult stress. Brain Res. 1639, 58–73 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Fuentes, I. M., Pierce, A. N., Di Silvestro, E. R., Maloney, M. O. & Christianson, J. A. Differential influence of early life and adult stress on urogenital sensitivity and function in male mice. Front. Syst. Neurosci. 11, 97 (2017).

    Article  PubMed  Google Scholar 

  177. Merrill, L., Malley, S. & Vizzard, M. A. Repeated variate stress in male rats induces increased voiding frequency, somatic sensitivity, and urinary bladder nerve growth factor expression. Am. J. Physiol. Regul. Integr. Comp. Physiol. 305, R147–R156 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Merrill, L. & Vizzard, M. A. Intravesical TRPV4 blockade reduces repeated variate stress-induced bladder dysfunction by increasing bladder capacity and decreasing voiding frequency in male rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R471–R480 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Yoon, H., Lee, D., Chun, K., Yoon, H. & Yoo, J. Effect of stress on the expression of rho-kinase and collagen in rat bladder tissue. Korean J. Urol. 51, 132–138 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Kullmann, F. A. et al. Stress-induced autonomic dysregulation of mitochondrial function in the rat urothelium. Neurourol. Urodyn. 38, 572–581 (2019).

    Article  CAS  PubMed  Google Scholar 

  181. Dobberfuhl, A.D., van Uem, S. & Versi, E. Trigone as a diagnostic and therapeutic target for bladder-centric interstitial cystitis/bladder pain syndrome. Int. Urogynecol. J. 32, 3105–3111 (2021).

    Article  PubMed  Google Scholar 

  182. Foster, H. E. et al. Effect of amitriptyline on symptoms in treatment naïve patients with interstitial cystitis/painful bladder syndrome. J. Urol. 183, 1853–1858 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  183. van Ophoven, A., Pokupic, S., Heinecke, A. & Hertle, L. A prospective, randomized, placebo controlled, double-blind study of amitriptyline for the treatment of interstitial cystitis. J. Urol. 172, 533–536 (2004).

    Article  PubMed  Google Scholar 

  184. van Ophoven, A. & Hertle, L. Long-term results of amitriptyline treatment for interstitial cystitis. J. Urol. 174, 1837–1840 (2005).

    Article  PubMed  Google Scholar 

  185. Hanno, P. M., Buehler, J. & Wein, A. J. Use of amitriptyline in the treatment of interstitial cystitis. J. Urol. 141, 846–848 (1989).

    Article  CAS  PubMed  Google Scholar 

  186. Cordero, M. D. et al. Coenzyme Q10 and alpha-tocopherol protect against amitriptyline toxicity. Toxicol. Appl. Pharmacol. 235, 329–337 (2009).

    Article  CAS  PubMed  Google Scholar 

  187. Murina, F., Graziottin, A., Felice, R. & Gambini, D. Alpha lipoic acid plus omega-3 fatty acids for vestibulodynia associated with painful bladder syndrome. J. Obstet. Gynaecol. Can. 39, 131–137 (2017).

    Article  PubMed  Google Scholar 

  188. Sant, G. R. et al. A pilot clinical trial of oral pentosan polysulfate and oral hydroxyzine in patients with interstitial cystitis. J. Urol. 170, 810–815 (2003).

    Article  CAS  PubMed  Google Scholar 

  189. Leurs, R., Church, M. K. & Taglialatela, M. H1-antihistamines: inverse agonism, anti-inflammatory actions and cardiac effects. Clin. Exp. Allergy 32, 489–498 (2002).

    Article  CAS  PubMed  Google Scholar 

  190. Thilagarajah, R., Witherow, R. O. & Walker, M. M. Oral cimetidine gives effective symptom relief in painful bladder disease: a prospective, randomized, double-blind placebo-controlled trial. BJU Int. 87, 207–212 (2001).

    Article  CAS  PubMed  Google Scholar 

  191. Estaphan, S., Abdel-Malek, R., Rashed, L. & Mohamed, E. A. Cimetidine a promising radio-protective agent through modulating Bax/Bcl2 ratio: an in vivo study in male rats. J. Cell. Physiol. 235, 8495–8506 (2020).

    Article  CAS  PubMed  Google Scholar 

  192. Ibrahim, S. S. A., El-Aal, S. A. A., Reda, A. M., Achy, S. E. & Shahine, Y. Anti-neoplastic action of cimetidine/vitamin C on histamine and the PI3K/AKT/mTOR pathway in Ehrlich breast cancer. Sci. Rep. 12, 11514 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Molderings, G. J. et al. Pharmacological treatment options for mast cell activation disease. Naunyn Schmiedebergs Arch. Pharmacol. 389, 671–694 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Bowie, A. G. & O’Neill, L. A. Vitamin C inhibits NF-κB activation by TNF via the activation of p38 mitogen-activated protein kinase. J. Immunol. 165, 7180–7188 (2000).

    Article  CAS  PubMed  Google Scholar 

  195. DePhillipo, N. N. et al. Efficacy of vitamin C supplementation on collagen synthesis and oxidative stress after musculoskeletal injuries: a systematic review. Orthop. J. Sports Med. 6, 2325967118804544 (2018).

    PubMed  PubMed Central  Google Scholar 

  196. Campo, G. M. et al. NF-kB and caspases are involved in the hyaluronan and chondroitin-4-sulphate-exerted antioxidant effect in fibroblast cultures exposed to oxidative stress. J. Appl. Toxicol. 28, 509–517 (2008).

    Article  CAS  PubMed  Google Scholar 

  197. Payne, C. K., Joyce, G. F., Wise, M. & Clemens, J. Q., Urologic Diseases in America Project. Interstitial cystitis and painful bladder syndrome. J. Urol. 177, 2042–2049 (2007).

    Article  PubMed  Google Scholar 

  198. Rajasekaran, M., Stein, P. & Parsons, C. L. Toxic factors in human urine that injure urothelium. Int. J. Urol. 13, 409–414 (2006).

    Article  CAS  PubMed  Google Scholar 

  199. Cervigni, M. Interstitial cystitis/bladder pain syndrome and glycosaminoglycans replacement therapy. Transl. Androl. Urol. 4, 638–642 (2015).

    PubMed  PubMed Central  Google Scholar 

  200. Clemens, J. Q., Erickson, D. R., Varela, N. P. & Lai, H. H. Diagnosis and treatment of interstitial cystitis/bladder pain syndrome. J. Urol. 208, 34–42 (2022).

    Article  PubMed  Google Scholar 

  201. Crescenze, I. M., Tucky, B., Li, J., Moore, C. & Shoskes, D. Efficacy, side effects, and monitoring of oral cyclosporine in interstitial cystitis/bladder pain syndrome. Urology 107, 49–54 (2017).

    Article  PubMed  Google Scholar 

  202. Yazdani, I., Majdani, R., Ghasemnejad-berenji, M. & Dehpour, A. R. Beneficial effects of cyclosporine A in combination with nortriptyline on germ cell-specific apoptosis, oxidative stress and epididymal sperm qualities following testicular ischemia/reperfusion in rats: a comparative study. BMC Pharmacol. Toxicol. 23, 59 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Fowler, C. J., Beck, R. O., Gerrard, S., Betts, C. D. & Fowler, C. G. Intravesical capsaicin for treatment of detrusor hyperreflexia. J. Neurol. Neurosurg. Psychiatry 57, 169–173 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Fischer, M. J. M., Ciotu, C. I. & Szallasi, A. The mysteries of capsaicin-sensitive afferents. Front. Physiol. 11, 554195 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Szallasi, A. Resiniferatoxin: nature’s precision medicine to silence TRPV1-positive afferents. Int. J. Mol. Sci. 24, 15042 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Fowler, C. J., Griffiths, D. & de Groat, W. C. The neural control of micturition. Nat. Rev. Neurosci. 9, 453–466 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Apostolidis, A. et al. Capsaicin receptor TRPV1 in urothelium of neurogenic human bladders and effect of intravesical resiniferatoxin. Urology 65, 400–405 (2005).

    Article  PubMed  Google Scholar 

  208. Kwan, H.-Y., Huang, Y. & Yao, X. TRP channels in endothelial function and dysfunction. Biochim. Biophys. Acta Mol. Basis Dis. 1772, 907–914 (2007).

    Article  CAS  Google Scholar 

  209. Yoshizumi, M., Watanabe, C. & Mizoguchi, H. Gabapentin reduces painful bladder hypersensitivity in rats with lipopolysaccharide‐induced chronic cystitis. Pharmacol. Res. Perspect. 9, e00697 (2020).

    Article  PubMed Central  Google Scholar 

  210. Hansen, H. C. Interstitial cystitis and the potential role of gabapentin. South. Med. J. 93, 238–242 (2000).

    Article  CAS  PubMed  Google Scholar 

  211. Abdelnaser, M., Alaaeldin, R., Attya, M. E. & Fathy, M. Hepatoprotective potential of gabapentin in cecal ligation and puncture-induced sepsis; targeting oxidative stress, apoptosis, and NF-κB/MAPK signaling pathways. Life Sci. 320, 121562 (2023).

    Article  CAS  PubMed  Google Scholar 

  212. Mahal, A., Young-Lin, N., Dobberfuhl, A., Estes, J. & Comiter, C. V. Peroxisome proliferator-activated receptor gamma agonist as a novel treatment for interstitial cystitis: a rat model. Investig. Clin. Urol. 59, 257–262 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Zhang, Z. et al. Pioglitazone inhibits diabetes-induced atrial mitochondrial oxidative stress and improves mitochondrial biogenesis, dynamics, and function through the PPAR-γ/PGC-1α signaling pathway. Front. Pharmacol. 12, 658362 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Tang, H. et al. Pioglitazone and bladder cancer risk: a systematic review and meta-analysis. Cancer Med. 7, 1070–1080 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Broderick, G. A. et al. Effects of tadalafil on lower urinary tract symptoms secondary to benign prostatic hyperplasia in men with or without erectile dysfunction. Urology 75, 1452–1458 (2010).

    Article  PubMed  Google Scholar 

  216. Truss, M. C., Uckert, S., Stief, C. G., Forssmann, W. G. & Jonas, U. Cyclic nucleotide phosphodiesterase (PDE) isoenzymes in the human detrusor smooth muscle. II. Effect of various PDE inhibitors on smooth muscle tone and cyclic nucleotide levels in vitro. Urol. Res. 24, 129–134 (1996).

    Article  CAS  PubMed  Google Scholar 

  217. Fukui, Y., Kato, M., Inoue, Y., Matsubara, A. & Itoh, K. A metabonomic approach identifies human urinary phenylacetylglutamine as a novel marker of interstitial cystitis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 877, 3806–3812 (2009).

    Article  CAS  PubMed  Google Scholar 

  218. Chen, H. et al. Efficacy of daily low-dose sildenafil for treating interstitial cystitis: results of a randomized, double-blind, placebo-controlled trial — treatment of interstitial cystitis/painful bladder syndrome with low-dose sildenafil. Urology 84, 51–56 (2014).

    Article  PubMed  Google Scholar 

  219. Digesu, G. A., Tailor, V., Bhide, A. A. & Khullar, V. The role of bladder instillation in the treatment of bladder pain syndrome: is intravesical treatment an effective option for patients with bladder pain as well as LUTS? Int. Urogynecol. J. 31, 1387–1392 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Bulama, I. et al. Antioxidant-based neuroprotective effect of dimethylsulfoxide against induced traumatic brain injury in a rats model. Front. Pharmacol. 13, 998179 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Li, L.-F. et al. Low-molecular-weight heparin reduces ventilation-induced lung injury through hypoxia inducible factor-1α in a murine endotoxemia model. Int. J. Mol. Sci. 21, 3097 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Mokhtari, V., Afsharian, P., Shahhoseini, M., Kalantar, S. M. & Moini, A. A review on various uses of N-acetyl cysteine. Cell J. 19, 11–17 (2017).

    PubMed  Google Scholar 

  223. Maharaj, D., Srinivasan, G., Makepeace, S., Hickey, C. J. & Gouvea, J. Clinical remission using personalized low-dose intravenous infusions of N-acetylcysteine with minimal toxicities for interstitial cystitis/bladder pain syndrome. J. Pers. Med. 11, 342 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Raghu, G. et al. The multifaceted therapeutic role of N-acetylcysteine (NAC) in disorders characterized by oxidative stress. Curr. Neuropharmacol. 19, 1202–1224 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Ens, G. & Garrido, G. L. Role of cystoscopy and hydrodistention in the diagnosis of interstitial cystitis/bladder pain syndrome. Transl. Androl. Urol. 4, 624–628 (2015).

    PubMed  PubMed Central  Google Scholar 

  226. Chen, Y., Ying, Z., Xiao, Y., Liu, Y. & Wu, S. The diagnostic and therapeutic efficacy of cystoscopy with hydrodistension and random biopsies in clinically suspected interstitial cystitis/bladder pain syndrome. Eur. J. Obstet. Gynecol. Reprod. Biol. 265, 156–161 (2021).

    Article  PubMed  Google Scholar 

  227. Chai, T. C. et al. Bladder stretch alters urinary heparin-binding epidermal growth factor and antiproliferative factor in patients with interstitial cystitis. J. Urol. 163, 1440–1444 (2000).

    Article  CAS  PubMed  Google Scholar 

  228. Rashid, H. H. et al. Interstitial cystitis antiproliferative factor (APF) as a cell-cycle modulator. BMC Urol. 4, 3 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Qiu, Z. et al. In vitro antioxidant and antiproliferative effects of ellagic acid and its colonic metabolite, urolithins, on human bladder cancer T24 cells. Food Chem. Toxicol. 59, 428–437 (2013).

    Article  CAS  PubMed  Google Scholar 

  230. Chen, W. et al. Amitriptyline plus hydrodistension versus hydrodistension alone for treating interstitial cystitis/ bladder pain syndrome. Med. Clin. Sci. 4, 1–6 (2022).

    Article  CAS  Google Scholar 

  231. Simsir, A., Kizilay, F. & Ozyurt, C. The effect of hydrodistension in combination with pentosan polysulfate on treatment outcomes and compliance in the treatment of bladder pain syndrome. Pak. J. Med. Sci. 35, 189–194 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Jiang, Y.-H., Yu, W.-R. & Kuo, H.-C. Therapeutic effect of botulinum toxin A on sensory bladder disorders — from bench to bedside. Toxins 12, 166 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Smith, C. P. et al. Botulinum toxin type A normalizes alterations in urothelial ATP and NO release induced by chronic spinal cord injury. Neurochem. Int. 52, 1068–1075 (2008).

    Article  CAS  PubMed  Google Scholar 

  234. Lucioni, A. et al. Botulinum toxin type A inhibits sensory neuropeptide release in rat bladder models of acute injury and chronic inflammation. BJU Int. 101, 366–370 (2008).

    Article  CAS  PubMed  Google Scholar 

  235. Yiangou, Y. et al. Capsaicin receptor VR1 and ATP-gated ion channel P2X3 in human urinary bladder. BJU Int. 87, 774–779 (2001).

    Article  CAS  PubMed  Google Scholar 

  236. Kuo, H.-C. & Chancellor, M. B. Comparison of intravesical botulinum toxin type A injections plus hydrodistention with hydrodistention alone for the treatment of refractory interstitial cystitis/painful bladder syndrome. BJU Int. 104, 657–661 (2009).

    Article  CAS  PubMed  Google Scholar 

  237. Jiang, Y.-H., Jhang, J.-F., Lee, Y.-K. & Kuo, H.-C. Low-energy shock wave plus intravesical instillation of botulinum toxin A for interstitial cystitis/bladder pain syndrome: pathophysiology and preliminary result of a novel minimally invasive treatment. Biomedicines 10, 396 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Liu, H.-T. & Kuo, H.-C. Intravesical botulinum toxin A injections plus hydrodistension can reduce nerve growth factor production and control bladder pain in interstitial cystitis. Urology 70, 463–468 (2007).

    Article  PubMed  Google Scholar 

  239. Yu, W.-R., Jiang, Y.-H., Jhang, J.-F., Chang, W.-C. & Kuo, H.-C. Treatment outcomes of intravesical botulinum toxin A injections on patients with interstitial cystitis/bladder pain syndrome. Toxins 14, 871 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Liu, T., Shindel, A. W., Lin, G. & Lue, T. F. Cellular signaling pathways modulated by low-intensity extracorporeal shock wave therapy. Int. J. Impot. Res. 31, 170–176 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Chen, Y.-T. et al. Extracorporeal shock wave therapy ameliorates cyclophosphamide-induced rat acute interstitial cystitis though inhibiting inflammation and oxidative stress — in vitro and in vivo experiment studies. Am. J. Transl. Res. 6, 631–648 (2014).

    PubMed  PubMed Central  Google Scholar 

  242. Wang, H.-J., Lee, W.-C., Tyagi, P., Huang, C.-C. & Chuang, Y.-C. Effects of low energy shock wave therapy on inflammatory moleculars, bladder pain, and bladder function in a rat cystitis model. Neurourol. Urodyn. 36, 1440–1447 (2017).

    Article  CAS  PubMed  Google Scholar 

  243. Shen, Y.-C., Tyagi, P., Lee, W.-C., Chancellor, M. & Chuang, Y.-C. Improves symptoms and urinary biomarkers in refractory interstitial cystitis/bladder pain syndrome patients randomized to extracorporeal shock wave therapy versus placebo. Sci. Rep. 11, 7558 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Jhang, L.-S. et al. Use of low-intensity extracorporeal shock wave therapy in the management of interstitial cystitis/bladder pain syndrome patients: a thirty case study in a tertiary medical center. Neurourol. Urodyn. 42, 65–72 (2023).

    Article  CAS  PubMed  Google Scholar 

  245. Boswell, S. G., Cole, B. J., Sundman, E. A., Karas, V. & Fortier, L. A. Platelet-rich plasma: a milieu of bioactive factors. Arthroscopy 28, 429–439 (2012).

    Article  PubMed  Google Scholar 

  246. Foster, T. E., Puskas, B. L., Mandelbaum, B. R., Gerhardt, M. B. & Rodeo, S. A. Platelet-rich plasma: from basic science to clinical applications. Am. J. Sports Med. 37, 2259–2272 (2009).

    Article  PubMed  Google Scholar 

  247. Jiang, Y.-H. et al. Repeated intravesical injections of platelet-rich plasma improve symptoms and alter urinary functional proteins in patients with refractory interstitial cystitis. Sci. Rep. 10, 15218 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  248. Jhang, J.-F. et al. Improved urothelial cell proliferation, cytoskeleton and barrier function protein expression in the patients with interstitial cystitis/bladder pain syndrome after intravesical platelet-rich plasma injection. Int. Neurourol. J. 26, S57–S67 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.D.D. and A.M. have received support from the McCormick and Gabilan Faculty Fellowship Award (SPO 272363) and the National Institutes of Health (NIH 1R01DK134989). A.D.D. has also received support from the National Institutes of Health (NIH 2R44DK127580, NIH 1R01CA249807) and California Institute of Regenerative Medicine (CIRM DISC2-13205).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made a substantial contribution to discussion of content, and wrote and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Amy D. Dobberfuhl.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Hann-Chorng Kuo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammad, A., Laboulaye, M.A., Shenhar, C. et al. Mechanisms of oxidative stress in interstitial cystitis/bladder pain syndrome. Nat Rev Urol 21, 433–449 (2024). https://doi.org/10.1038/s41585-023-00850-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-023-00850-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing