[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Interplay between periodontitis and chronic kidney disease

Abstract

Periodontitis is a ubiquitous chronic inflammatory disease affecting the supporting tissues of the teeth and is a major cause of multiple tooth loss. Despite being preventable, periodontitis and dental caries are responsible for more years lost to disability than any other human condition. The most severe form of periodontitis affects 1 billion individuals, and its prevalence is increasing globally. Periodontitis arises from a dysregulated and hyperactive inflammatory response to dysbiosis in the periodontal microbiome. This response has systemic effects associated with premature mortality and elevated risk of several systemic non-communicable diseases (NCDs), including atheromatous cardiovascular disease, type 2 diabetes and chronic kidney disease (CKD). This risk association between periodontitis and NCDs is independent of their shared common risk factors, suggesting that periodontitis is a non-traditional risk factor for NCDs such as CKD. As periodontitis progresses, the immune cells and mediators underpinning its pathophysiology leak into the systemic circulation through the ulcerated oral mucosal lining, inducing in a systemic inflammatory profile that closely mirrors that observed in patients with CKD. The relationship between periodontitis and CKD seems to be bi-directional, but large-scale intervention studies are required to clarify causality and could lead to new care pathways for managing each condition as an exposure for the other.

Key points

  • Periodontitis is a ubiquitous chronic inflammatory non-communicable disease (NCD) and the most common cause of multiple tooth loss in humans. Alongside dental caries, periodontitis is responsible for more years lost to disability than any other human disease.

  • Periodontitis shares common risk factors with other NCDs but is also an independent risk factor for type 2 diabetes mellitus, atherogenic cardiovascular disease and chronic kidney disease (CKD), amongst other NCDs.

  • Periodontitis arises from a dysregulated and hyperactive immune-inflammatory response to dysbiosis within the periodontal microbiome. These responses cause local injury that leads to the release of inflammatory mediators and pathogenic bacteria into the vasculature, with systemic effects that can affect distant organs.

  • Several studies suggest a bidirectional causal relationship between periodontitis and CKD, with systemic oxidative stress being identified as an important mediator.

  • Immune cell hyper-activity and -reactivity is a feature of periodontitis. Among innate immune cells of myeloid lineage (predominantly neutrophils), persistent hyperreactivity is likely driven by maladaptive innate immune training. Clonal haematopoiesis of indeterminate potential in older individuals might be another source of pro-inflammatory cells that contribute to the bidirectional link between periodontitis and CKD.

  • Large-scale intervention studies are needed to examine the causal nature of the relationship between periodontitis and CKD definitively, and could lead to novel therapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Influence of periodontitis and diabetes on CKD survival.
Fig. 2: Progression from pristine health to periodontitis.
Fig. 3: Potential causal pathways linking periodontal disease and kidney dysfunction.
Fig. 4: Biologically plausible mechanisms underlying the interplay between periodontitis and CKD.

Similar content being viewed by others

References

  1. Caton, J. G. et al. A new classification scheme for periodontal and peri-implant diseases and conditions — introduction and key changes from the 1999 classification. J. Clin. Periodontol. 45, S1–S8 (2018).

    Article  PubMed  Google Scholar 

  2. Chapple, I. L. C. et al. Periodontal health and gingival diseases and conditions on an intact and a reduced periodontium: consensus report of workgroup 1 of the 2017 world workshop on the classification of periodontal and peri-implant diseases and conditions. J. Periodontol. 89, S74–S84 (2018).

    Article  PubMed  Google Scholar 

  3. Kinane, D. F. & Attström, R. & European Workshop Periodontology group B. Advances in the pathogenesis of periodontitis. Group B consensus report of the fifth European Workshop in Periodontology. J. Clin. Periodontol. 32, 130–131 (2005).

    Article  PubMed  Google Scholar 

  4. Peric, M., Marhl, U., Gennai, S., Marruganti, C. & Graziani, F. Treatment of gingivitis is associated with reduction of systemic inflammation and improvement of oral health-related quality of life: a randomized clinical trial. J. Clin. Periodontol. 49, 899–910 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Roberts, H. M., Yonel, Z., Kantarci, A., Grant, M. M. & Chapple, I. L. C. Impact of gingivitis on circulating neutrophil reactivity and gingival crevicular fluid inflammatory proteins. Int. J. Environ. Res. Public. Health 19, 6339 (2022).

  6. The Economist Intelligence Unit. Time to take gum disease seriously. The societal and economic impact of periodontitis. https://impact.economist.com/perspectives/sites/default/files/eiu-efp-oralb-gum-disease.pdf (2021).

  7. Van Dyke, T. E., Bartold, P. M. & Reynolds, E. C. The nexus between periodontal inflammation and dysbiosis. Front. Immunol. 11, 511 (2020).

  8. Chen, M. X., Zhong, Y. J., Dong, Q. Q., Wong, H. M. & Wen, Y. F. Global, regional, and national burden of severe periodontitis, 1990–2019: an analysis of the Global Burden of Disease Study 2019. J. Clin. Periodontol. 48, 1165–1188 (2021).

    Article  PubMed  Google Scholar 

  9. Nascimento, G. G., Alves-Costa, S. & Romandini, M. Burden of severe periodontitis and edentulism in 2021, with projections up to 2050: The Global Burden of Disease 2021 study. J. Periodontal Res. 59, 823–867 (2024).

    Article  PubMed  Google Scholar 

  10. Passarelli, P. C. et al. Reasons for tooth extractions and related risk factors in adult patients: a cohort study. Int. J. Environ. Res. Public Health 17, 2575 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Botelho, J. et al. Economic burden of periodontitis in the United States and Europe — an updated estimation. J. Periodontol. 93, 373–379 (2022).

    Article  PubMed  Google Scholar 

  12. James, S. L. et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1789–1858 (2018).

    Article  Google Scholar 

  13. Sharma, P., Yonel, Z., Busby, M., Chapple, I. L. & Dietrich, T. Association between periodontal health status and patient-reported outcomes in patients managed in a non-specialist, general dental practice. J. Clin. Periodontol. 45, 1440–1447 (2018).

    Article  PubMed  Google Scholar 

  14. Pattamatta, M., Chapple, I., Listl, S. The value-for money of preventing and managing periodontitis: opportunities and challenges. Periodontol. 2000 https://doi.org/10.1111/prd.12569 (2024).

  15. Bikbov, B. et al. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 395, 709–733 (2020).

    Article  Google Scholar 

  16. Foreman, K. J. et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016–40 for 195 countries and territories. Lancet 392, 2052–2090 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chapple, I. L. C. et al. Primary prevention of periodontitis: managing gingivitis. J. Clin. Periodontol. 42, S71–S76 (2015).

    Article  PubMed  Google Scholar 

  18. Garcia, R. I., Krall, E. A. & Vokonas, P. S. Periodontal disease and mortality from all causes in the VA dental longitudinal study. Ann. Periodontol. 3, 339–349 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Soikkonen, K., Wolf, J., Salo, T. & Tilvis, R. Radiographic periodontal attachment loss as an indicator of death risk in the elderly. J. Clin. Periodontol. 27, 87–92 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Söder, B., Jin, L. J., Klinge, B. & Söder, P. O. Periodontitis and premature death: a 16-year longitudinal study in a Swedish urban population. J. Periodontal Res. 42, 361–366 (2007).

    Article  PubMed  Google Scholar 

  21. Linden, G. J. et al. All-cause mortality and periodontitis in 60–70-year-old men: a prospective cohort study. J. Clin. Periodontol. 39, 940–946 (2012).

    Article  PubMed  Google Scholar 

  22. Monsarrat, P. et al. Clinical research activity in periodontal medicine: a systematic mapping of trial registers. J. Clin. Periodontol. 43, 390–400 (2016).

    Article  PubMed  Google Scholar 

  23. Sanz, M. et al. Scientific evidence on the links between periodontal diseases and diabetes: consensus report and guidelines of the joint workshop on periodontal diseases and diabetes by the International Diabetes Federation and the European Federation of Periodontology. Diabetes Res. Clin. Pract. 137, 231–241 (2018).

    Article  PubMed  Google Scholar 

  24. Sanz, M. et al. Periodontitis and cardiovascular diseases: consensus report. J. Clin. Periodontol. 47, 268–288 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Meyle, J. & Chapple, I. Molecular aspects of the pathogenesis of periodontitis. Periodontol 2000 69, 7–17 (2015).

    Article  PubMed  Google Scholar 

  26. Rothman, K. J. Epidemiology: An introduction. 168–180 (Oxford University Press, 2002).

  27. Sharma, P., Dietrich, T., Ferro, C. J., Cockwell, P. & Chapple, I. L. C. Association between periodontitis and mortality in stages 3-5 chronic kidney disease: NHANES III and linked mortality study. J. Clin. Periodontol. 43, 104–113 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Milward, M. R. et al. Differential activation of NF-κB and gene expression in oral epithelial cells by periodontal pathogens. Clin. Exp. Immunol. 148, 307–324 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hajishengallis, G. et al. Complement-dependent mechanisms and interventions in periodontal disease. Front. Immunol. 10, 406 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Petr, V. & Thurman, J. M. The role of complement in kidney disease. Nat. Rev. Nephrol. 19, 771–787 (2023).

    Article  PubMed  Google Scholar 

  31. Cooper, P. R., Palmer, L. J. & Chapple, I. L. C. Neutrophil extracellular traps as a new paradigm in innate immunity: friend or foe? Periodontol 2000 63, 165–197 (2013).

    Article  PubMed  Google Scholar 

  32. Silva, L. M. et al. Fibrin is a critical regulator of neutrophil effector function at the oral mucosal barrier. Science 374, eabl5450 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Bennett, W. R. et al. Activation of the complement system by recombinant tissue plasminogen activator. J. Am. Coll. Cardiol. 10, 627–632 (1987).

    Article  CAS  PubMed  Google Scholar 

  34. Lee, J. S. et al. Interleukin-23-independent IL-17 production regulates intestinal epithelial permeability. Immunity 43, 727–738 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Song, L. et al. Interleukin-17A facilitates osteoclast differentiation and bone resorption via activation of autophagy in mouse bone marrow macrophages. Mol. Med. Rep. 19, 4743–4752 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hajishengallis, G. & Lamont, R. J. Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Mol. Oral. Microbiol. 27, 409–419 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dias, I. H. K. et al. Sulforaphane restores cellular glutathione levels and reduces chronic periodontitis neutrophil hyperactivity in vitro. PLoS ONE 8, e66407 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Matthews, J. B., Wright, H. J., Roberts, A., Cooper, P. R. & Chapple, I. L. C. Hyperactivity and reactivity of peripheral blood neutrophils in chronic periodontitis. Clin. Exp. Immunol. 147, 255–264 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Matthews, J. B. et al. Neutrophil hyper-responsiveness in periodontitis. J. Dent. Res. 86, 718–722 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Wright, H. J., Matthews, J. B., Chapple, I. L. C., Ling-Mountford, N. & Cooper, P. R. Periodontitis associates with a type 1 IFN signature in peripheral blood neutrophils. J. Immunol. 181, 5775–5784 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Ling, M. R., Chapple, I. L. C. & Matthews, J. B. Peripheral blood neutrophil cytokine hyper-reactivity in chronic periodontitis. Innate Immun. 21, 714–725 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Mitroulis, I. et al. Modulation of myelopoiesis progenitors is an integral component of trained immunity. Cell 172, 147 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li, X. et al. Maladaptive innate immune training of myelopoiesis links inflammatory comorbidities. Cell 185, 1709–1727.e18 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dias, I. H. K. et al. Gingipains from Porphyromonas gingivalis increase the chemotactic and respiratory burst-priming properties of the 77-amino-acid interleukin-8 variant. Infect. Immun. 76, 317–323 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Roberts, H. M. et al. Impaired neutrophil directional chemotactic accuracy in chronic periodontitis patients. J. Clin. Periodontol. 42, 1–11 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hirschfeld, J., White, P. C., Milward, M. R., Cooper, P. R. & Chapple, I. L. C. Modulation of neutrophil extracellular trap and reactive oxygen species release by periodontal bacteria. Infect. Immun. 85, e00297–e00317 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. de Pablo, P. et al. The autoantibody repertoire in periodontitis: a role in the induction of autoimmunity to citrullinated proteins in rheumatoid arthritis? Ann. Rheum. Dis. 73, 580–586 (2014).

    Article  PubMed  Google Scholar 

  48. Diabetes: a defining disease of the 21st century. Lancet 401, 2087 (2023).

  49. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet 402, 203–234 (2023).

  50. de Boer, I. H. et al. Executive summary of the 2020 KDIGO Diabetes Management in CKD Guideline: evidence-based advances in monitoring and treatment. Kidney Int. 98, 839–848 (2020).

    Article  PubMed  Google Scholar 

  51. Bommer, C. et al. Global economic burden of diabetes in adults: projections from 2015 to 2030. Diabetes Care 41, 963–970 (2018).

    Article  PubMed  Google Scholar 

  52. Daryabor, G., Atashzar, M. R., Kabelitz, D., Meri, S. & Kalantar, K. The effects of type 2 diabetes mellitus on organ metabolism and the immune system. Front. Immunol. 11, 1582 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hirschfeld, J. & Chapple, I. L. C. Periodontitis and Systemic Diseases: Clinical Evidence and Biological Plausibility, 1st edn (Quintessenz Verlag, 2021).

  54. Herrera, D. et al. Association between periodontal diseases and cardiovascular diseases, diabetes and respiratory diseases: consensus report of the Joint Workshop by the European Federation of Periodontology (EFP) and the European arm of the World Organization of Family Doctors (WONCA Europe). J. Clin. Periodontol. 50, 819–841 (2023).

    Article  CAS  PubMed  Google Scholar 

  55. Chen, S., Gao, X. & Song, J. Oxidative stress-related biomarkers in chronic periodontitis patients with or without type 2 diabetes: a systematic review and meta-analysis. J. Periodontal Res. 58, 780–790 (2023).

    Article  CAS  PubMed  Google Scholar 

  56. Atieh, M. A., M. Faggion, C. & Seymour, G. J. Cytokines in patients with type 2 diabetes and chronic periodontitis: a systematic review and meta-analysis. Diabetes Res. Clin. Pract. 104, e38–e45 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Artese, H. P. et al. Periodontal therapy and systemic inflammation in type 2 diabetes mellitus: a meta-analysis. PLoS ONE 10, e0128344 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Nie, L. et al. Diabetes induces macrophage dysfunction through cytoplasmic dsDNA/AIM2 associated pyroptosis. J. Leukoc. Biol. 110, 497–510 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Karima, M. et al. Enhanced superoxide release and elevated protein kinase C activity in neutrophils from diabetic patients: association with periodontitis. J. Leukoc. Biol. 78, 862–870 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Hoogeveen, E. K. The epidemiology of diabetic kidney disease. Kidney Dial. 2, 433–442 (2022).

    Article  Google Scholar 

  61. Kang, N. et al. Periodontitis induced by Porphyromonas gingivalis drives impaired glucose metabolism in mice. Front. Cell Infect. Microbiol. 12, 998600 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Blasco-Baque, V. et al. Periodontitis induced by Porphyromonas gingivalis drives periodontal microbiota dysbiosis and insulin resistance via an impaired adaptive immune response. Gut 66, 872–885 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Ishikawa, M. et al. Oral Porphyromonas gingivalis translocates to the liver and regulates hepatic glycogen synthesis through the Akt/GSK-3β signaling pathway. Biochim. Biophys. Acta 1832, 2035–2043 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Ramenzoni, L. L. et al. Bacterial supernatants elevate glucose-dependent insulin secretion in rat pancreatic INS-1 line and islet β-cells via PI3K/AKT signaling. Mol. Cell Biochem. 452, 17–27 (2019).

    Article  CAS  PubMed  Google Scholar 

  65. Bhat, U. G., Ilievski, V., Unterman, T. G. & Watanabe, K. Porphyromonas gingivalis lipopolysaccharide upregulates insulin secretion from pancreatic β cell line MIN6. J. Periodontol. 85, 1629–1636 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zuo, L., Zhou, T., Pannell, B. K., Ziegler, A. C. & Best, T. M. Biological and physiological role of reactive oxygen species — the good, the bad and the ugly. Acta Physiol. 214, 329–348 (2015).

    Article  CAS  Google Scholar 

  67. Amdur, R. L. et al. Inflammation and progression of CKD: the CRIC study. Clin. J. Am. Soc. Nephrol. 11, 1546–1556 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Alzamil, H. Elevated serum TNF-α is related to obesity in type 2 diabetes mellitus and is associated with glycemic control and insulin resistance. J. Obes. 2020, 5076858 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zhao, M. et al. Diabetes mellitus promotes susceptibility to periodontitis — novel insight into the molecular mechanisms. Front. Endocrinol. 14, 1192625 (2023).

    Article  Google Scholar 

  70. Yamagishi, S.-I. & Matsui, T. Advanced glycation end products, oxidative stress and diabetic nephropathy. Oxid. Med. Cell. Longev. 3, 938285 (2010).

    Article  Google Scholar 

  71. Dowey, R., Iqbal, A., Heller, S. R., Sabroe, I. & Prince, L. R. A bittersweet response to infection in diabetes; targeting neutrophils to modify inflammation and improve host immunity. Front. Immunol. 12, 678771 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Castanheira, F. V. S. & Kubes, P. Neutrophils and NETs in modulating acute and chronic inflammation. Blood 133, 2178–2185 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Fredman, G. et al. Impaired phagocytosis in localized aggressive periodontitis: rescue by Resolvin E1. PLoS ONE 6, e24422 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chapple, I. L. C., Hirschfeld, J., Kantarci, A., Wilensky, A. & Shapira, L. The role of the host — neutrophil biology. Periodontol. 2000 https://doi.org/10.1111/prd.12490 (2023).

  75. Lindstrom, M. et al. Global burden of cardiovascular diseases and risks collaboration, 1990–2021. J. Am. Coll. Cardiol. 80, 2372–2425 (2022).

    Article  PubMed  Google Scholar 

  76. Björkegren, J. L. M. & Lusis, A. J. Atherosclerosis: recent developments. Cell 185, 1630–1645 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Lorber, D. Importance of cardiovascular disease risk management in patients with type 2 diabetes mellitus. Diabetes, Metab. Syndr. Obes. 7, 169–183 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Jankowski, J., Floege, J., Fliser, D., Böhm, M. & Marx, N. Cardiovascular disease in chronic kidney disease. Circulation 143, 1157–1172 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kebschull, M., Demmer, R. T. & Papapanou, P. N. “Gum bug, leave my heart alone!” — epidemiologic and mechanistic evidence linking periodontal infections and atherosclerosis. J. Dent. Res. 89, 879–902 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Herrera, D., Molina, A., Buhlin, K. & Klinge, B. Periodontal diseases and association with atherosclerotic disease. Periodontol 2000 83, 66–89 (2020).

    Article  PubMed  Google Scholar 

  81. Afzoon, S., Amiri, M. A., Mohebbi, M., Hamedani, S. & Farshidfar, N. A systematic review of the impact of Porphyromonas gingivalis on foam cell formation: implications for the role of periodontitis in atherosclerosis. BMC Oral. Health 23, 481 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Brun, A. et al. Oral microbiota and atherothrombotic carotid plaque vulnerability in periodontitis patients. A cross-sectional study. J. Periodontal Res. 56, 339–350 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Ziebolz, D. et al. Periodontal bacteria DNA findings in human cardiac tissue — is there a link of periodontitis to heart valve disease? Int. J. Cardiol. 251, 74–79 (2018).

    Article  CAS  PubMed  Google Scholar 

  84. Szulc, M. et al. Presence of periodontopathic bacteria DNA in atheromatous plaques from coronary and carotid arteries. Biomed. Res. Int. 2015, 825397 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Kozarov, E. V., Dorn, B. R., Shelburne, C. E., Dunn, W. A. Jr. & Progulske-Fox, A. Human atherosclerotic plaque contains viable invasive Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis. Arterioscler. Thromb. Vasc. Biol. 25, e17–18 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Farrugia, C. et al. Mechanisms of vascular damage by systemic dissemination of the oral pathogen Porphyromonas gingivalis. FEBS J. 288, 1479–1495 (2021).

    Article  CAS  PubMed  Google Scholar 

  87. Rivera, M. F. et al. Polymicrobial infection with major periodontal pathogens induced periodontal disease and aortic atherosclerosis in hyperlipidemic ApoEnull mice. PLoS ONE 8, e57178 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Roth, G. A. et al. Porphyromonas gingivalis infection and cell death in human aortic endothelial cells. FEMS Microbiol. Lett. 272, 106–113 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Hasheminasabgorji, E. & Jha, J. C. Dyslipidemia, diabetes and atherosclerosis: role of inflammation and ROS-redox-sensitive factors. Biomedicines 9, 1602 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Allen, M. R., Chen, N. X., Gattone, V. H. II & Moe, S. M. Adverse mandibular bone effects associated with kidney disease are only partially corrected with bisphosphonate and/or calcium treatment. Am. J. Nephrol. 38, 458–464 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Mirzaei, A. et al. Association of periodontitis with lipid profile: an updated systematic review and meta-analysis. J. Diabetes Metab. Disord. 21, 1377–1393 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lan, Y. et al. Temporal relationship between atherogenic dyslipidemia and inflammation and their joint cumulative effect on type 2 diabetes onset: a longitudinal cohort study. BMC Med. 21, 31 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Rotariu, D. et al. Oxidative stress — complex pathological issues concerning the hallmark of cardiovascular and metabolic disorders. Biomed. Pharmacother. 152, 113238 (2022).

    Article  CAS  PubMed  Google Scholar 

  94. Irwandi, R. A., Kuswandani, S. O., Harden, S., Marletta, D. & D’Aiuto, F. Circulating inflammatory cell profiling and periodontitis: a systematic review and meta-analysis. J. Leukoc. Biol. 111, 1069–1096 (2022).

    Article  CAS  PubMed  Google Scholar 

  95. Congrains, A., Kamide, K., Ohishi, M. & Rakugi, H. ANRIL: molecular mechanisms and implications in human health. Int. J. Mol. Sci. 14, 1278–1292 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wyganowska-Świątkowska, M., Surdacka, A., Skrzypczak-Jankun, E. & Jankun, J. The plasminogen activation system in periodontal tissue (Review). Int. J. Mol. Med. 33, 763–768 (2014).

    Article  PubMed  Google Scholar 

  97. Loos, B. G. & Van Dyke, T. E. The role of inflammation and genetics in periodontal disease. Periodontol 2000 83, 26–39 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Vlasschaert, C. et al. Clonal haematopoiesis, ageing and kidney disease. Nat. Rev. Nephrol. 20, 161–174 (2024).

    Article  PubMed  Google Scholar 

  99. Jaiswal, S. et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N. Engl. J. Med. 377, 111–121 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Dawoud, A. A. Z., Gilbert, R. D., Tapper, W. J. & Cross, N. C. P. Clonal myelopoiesis promotes adverse outcomes in chronic kidney disease. Leukemia 36, 507–515 (2022).

    Article  CAS  PubMed  Google Scholar 

  101. Hajishengallis, G., Li, X., Divaris, K. & Chavakis, T. Maladaptive trained immunity and clonal hematopoiesis as potential mechanistic links between periodontitis and inflammatory comorbidities. Periodontol 2000 89, 215–230 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Webster, A. C., Nagler, E. V., Morton, R. L. & Masson, P. Chronic kidney disease. Lancet 389, 1238–1252 (2017).

    Article  PubMed  Google Scholar 

  103. Afkarian, M. et al. Kidney disease and increased mortality risk in type 2 diabetes. J. Am. Soc. Nephrol. 24, 302–308 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Fox, C. S. et al. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis. Lancet 380, 1662–1673 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  105. van der Velde, M. et al. Lower estimated glomerular filtration rate and higher albuminuria are associated with all-cause and cardiovascular mortality. A collaborative meta-analysis of high-risk population cohorts. Kidney Int. 79, 1341–1352 (2011).

    Article  PubMed  Google Scholar 

  106. Kalantar-Zadeh, K., Jafar, T. H., Nitsch, D., Neuen, B. L. & Perkovic, V. Chronic kidney disease. Lancet 398, 786–802 (2021).

    Article  CAS  PubMed  Google Scholar 

  107. Zoccali, C. et al. Cardiovascular complications in chronic kidney disease: a review from the European Renal and Cardiovascular Medicine Working Group of the European Renal Association. Cardiovasc. Res. 119, 2017–2032 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Major, R. W. et al. Cardiovascular disease risk factors in chronic kidney disease: a systematic review and meta-analysis. PLoS ONE 13, e0192895 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Ravarotto, V., Bertoldi, G., Stefanelli, L. F., Nalesso, F. & Calo, L. A. Pathomechanism of oxidative stress in cardiovascular-renal remodeling and therapeutic strategies. Kidney Res. Clin. Pract. 41, 533–544 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Dalrymple, L. S. & Go, A. S. Epidemiology of acute infections among patients with chronic kidney disease. Clin. J. Am. Soc. Nephrol. 3, 1487–1493 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Voroneanu, L. et al. Gut microbiota in chronic kidney disease: from composition to modulation towards better outcomes — a systematic review. J. Clin. Med. 12, e12051948 (2023).

    Article  Google Scholar 

  112. Bello, A. K. et al. Epidemiology of haemodialysis outcomes. Nat. Rev. Nephrol. 18, 378–395 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Birdwell, K. A. & Park, M. Post-transplant cardiovascular disease. Clin. J. Am. Soc. Nephrol. 16, 1878–1889 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article  CAS  PubMed  Google Scholar 

  115. Ridker, P. M. et al. IL-6 inhibition with ziltivekimab in patients at high atherosclerotic risk (RESCUE): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet 397, 2060–2069 (2021).

    Article  CAS  PubMed  Google Scholar 

  116. Rayego-Mateos, S. et al. Targeting inflammation to treat diabetic kidney disease: the road to 2030. Kidney Int. 103, 282–296 (2023).

    Article  CAS  PubMed  Google Scholar 

  117. Tong, A. et al. Implementing core outcomes in kidney disease: report of the Standardized Outcomes in Nephrology (SONG) implementation workshop. Kidney Int. 94, 1053–1068 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Fletcher, B. R. et al. Symptom burden and health-related quality of life in chronic kidney disease: a global systematic review and meta-analysis. PLoS Med. 19, e1003954 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Matsushita, K. et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 375, 2073–2081 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Genco, R. J. & Sanz, M. Clinical and public health implications of periodontal and systemic diseases: an overview. Periodontol 2000 83, 7–13 (2020).

    Article  PubMed  Google Scholar 

  121. KDIGO. KDIGO 2022 Clinical practice guideline for diabetes management in chronic kidney disease. Kidney Int. 102, S1–s127 (2022).

    Article  Google Scholar 

  122. Kar, D. et al. Association of smoking and cardiometabolic parameters with albuminuria in people with type 2 diabetes mellitus: a systematic review and meta-analysis. Acta Diabetol. 56, 839–850 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Sanz, A. B. et al. NF-κB in renal inflammation. J. Am. Soc. Nephrol. 21, 1254–1262 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Pichler, R., Afkarian, M., Dieter, B. P. & Tuttle, K. R. Immunity and inflammation in diabetic kidney disease: translating mechanisms to biomarkers and treatment targets. Am. J. Physiol. Renal Physiol. 312, F716–F731 (2017).

    Article  CAS  PubMed  Google Scholar 

  125. Lim, Y. J., Sidor, N. A., Tonial, N. C., Che, A. & Urquhart, B. L. Uremic toxins in the progression of chronic kidney disease and cardiovascular disease: mechanisms and therapeutic targets. Toxins 13, 142 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Guan, Z., VanBeusecum, J. P. & Inscho, E. W. Endothelin and the renal microcirculation. Semin. Nephrol. 35, 145–155 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Li, H.-D. et al. Roles and crosstalks of macrophages in diabetic nephropathy. Front. Immunol. 13, 1015142 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Qu, L. & Jiao, B. The interplay between immune and metabolic pathways in kidney disease. Cells 12, 1584 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lee, H., Fessler, M. B., Qu, P., Heymann, J. & Kopp, J. B. Macrophage polarization in innate immune responses contributing to pathogenesis of chronic kidney disease. BMC Nephrol. 21, 270 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Tang, P. C.-T. et al. TGF-β1 signaling: immune dynamics of chronic kidney diseases. Front. Med. 8, 628519 (2021).

    Article  Google Scholar 

  131. Widjaja, A. A. et al. Targeting endogenous kidney regeneration using anti-IL11 therapy in acute and chronic models of kidney disease. Nat. Commun. 13, 7497 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bekassy, Z., Lopatko Fagerström, I., Bader, M. & Karpman, D. Crosstalk between the renin-angiotensin, complement and kallikrein-kinin systems in inflammation. Nat. Rev. Immunol. 22, 411–428 (2022).

    Article  CAS  PubMed  Google Scholar 

  133. Machnik, A. et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat. Med. 15, 545–552 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Lautrette, A. et al. Angiotensin II and EGF receptor cross-talk in chronic kidney diseases: a new therapeutic approach. Nat. Med. 11, 867–874 (2005).

    Article  CAS  PubMed  Google Scholar 

  135. Townsend, R. R. et al. Association of pulse wave velocity with chronic kidney disease progression and mortality: findings from the CRIC study (Chronic Renal Insufficiency Cohort). Hypertension 71, 1101–1107 (2018).

    Article  CAS  PubMed  Google Scholar 

  136. Peyster, E. et al. Inflammation and arterial stiffness in chronic kidney disease: findings from the CRIC study. Am. J. Hypertens. 30, 400–408 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Rosner, M. H. et al. Classification of uremic toxins and their role in kidney failure. Clin. J. Am. Soc. Nephrol. 16, 1918–1928 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wang, Y. & Gao, L. Inflammation and cardiovascular disease associated with hemodialysis for end-stage renal disease. Front. Pharmacol. 13, 800950 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Underwood, C. F. et al. Uraemia: an unrecognized driver of central neurohumoral dysfunction in chronic kidney disease? Acta Physiol. 219, 305–323 (2017).

    Article  CAS  Google Scholar 

  140. Sidibé, A. et al. Reduction of arterial stiffness after kidney transplantation: a systematic review and meta-analysis. J. Am. Heart Assoc. 6, e007235 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Menon, V. et al. C-reactive protein and albumin as predictors of all-cause and cardiovascular mortality in chronic kidney disease. Kidney Int. 68, 766–772 (2005).

    Article  CAS  PubMed  Google Scholar 

  142. Schrauben, S. J. et al. Association of multiple plasma biomarker concentrations with progression of prevalent diabetic kidney disease: findings from the chronic renal insufficiency cohort (CRIC) study. J. Am. Soc. Nephrol. 32, 115–126 (2021).

    Article  CAS  PubMed  Google Scholar 

  143. Zheng, Z. et al. Subtyping CKD patients by consensus clustering: the chronic renal insufficiency cohort (CRIC) study. J. Am. Soc. Nephrol. 32, 639–653 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Amdur, R. L. et al. Use of measures of inflammation and kidney function for prediction of atherosclerotic vascular disease events and death in patients with CKD: findings from the CRIC study. Am. J. Kidney Dis. 73, 344–353 (2019).

    Article  PubMed  Google Scholar 

  145. He, I. et al. Demystifying the connection between periodontal disease and chronic kidney disease — an umbrella review. J. Periodontal Res. 58, 874–892 (2023).

    Article  CAS  PubMed  Google Scholar 

  146. Parsegian, K., Randall, D., Curtis, M. & Ioannidou, E. Association between periodontitis and chronic kidney disease. Periodontol. 2000 89, 114–124 (2022).

    Article  PubMed  Google Scholar 

  147. Chen, Y. T. et al. Periodontal disease and risks of kidney function decline and mortality in older people: a community-based cohort study. Am. J. Kidney Dis. 66, 223–230 (2015).

    Article  PubMed  Google Scholar 

  148. Grubbs, V. et al. Association between periodontal disease and kidney function decline in African Americans: the Jackson Heart Study. J. Periodontol. 86, 1126–1132 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Grubbs, V. et al. The association of periodontal disease with kidney function decline: a longitudinal retrospective analysis of the MrOS dental study. Nephrol. Dial. Transpl. 31, 466–472 (2016).

    Article  Google Scholar 

  150. Ito, S. et al. Porphyromonas gingivalis infection in the oral cavity is associated with elevated galactose-deficient IgA1 and increased nephritis severity in IgA nephropathy. Clin. Exp. Nephrol. 28, 192–200 (2023).

    Article  PubMed  Google Scholar 

  151. Lee, S. et al. Effect of periodontitis induced by Fusobacterium nucleatum on the microbiota of the gut and surrounding organs. Odontology 112, 177–184 (2023).

    Article  PubMed  Google Scholar 

  152. Li, L. et al. Periodontitis exacerbates and promotes the progression of chronic kidney disease through oral flora, cytokines, and oxidative stress. Front. Microbiol. 12, 656372 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Mahendra, J. et al. Impact of red complex bacteria and TNF-α levels on the diabetic and renal status of chronic kidney disease patients in the presence and absence of periodontitis. Biology 11, 451 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Iwasaki, M. et al. Serum antibody to Porphyromonas gingivalis in chronic kidney disease. J. Dent. Res. 91, 828–833 (2012).

    Article  CAS  PubMed  Google Scholar 

  155. Cachofeiro, V. et al. Oxidative stress and inflammation, a link between chronic kidney disease and cardiovascular disease. Kidney Int. Suppl. S4–9 (2008).

  156. Sharma, P. et al. The periodontal health component of the Renal Impairment In Secondary Care (RIISC) cohort study: a description of the rationale, methodology and initial baseline results. J. Clin. Periodontol. 41, 653–661 (2014).

    Article  PubMed  Google Scholar 

  157. Kirkman, D. L., Muth, B. J., Ramick, M. G., Townsend, R. R. & Edwards, D. G. Role of mitochondria-derived reactive oxygen species in microvascular dysfunction in chronic kidney disease. Am. J. Physiol. Renal Physiol. 314, F423–F429 (2018).

    Article  PubMed  Google Scholar 

  158. Shang, J. X., Liu, H. F., Zheng, Y. L. & Zhang, Z. Role of oxidative stress in the relationship between periodontitis and systemic diseases. Front. Physiol. 14, 1210449 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Chapple, I. L. & Matthews, J. B. The role of reactive oxygen and antioxidant species in periodontal tissue destruction. Periodontol. 2000 43, 160–232 (2007).

    Article  PubMed  Google Scholar 

  160. Chapple, I. L. C., Brock, G., Eftimiadi, C. & Matthews, J. B. Glutathione in gingival crevicular fluid and its relation to local antioxidant capacity in periodontal health and disease. Mol. Pathol. 55, 367–373 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Franca, L. F. C. et al. Periodontitis changes renal structures by oxidative stress and lipid peroxidation. J. Clin. Periodontol. 44, 568–576 (2017).

    Article  CAS  PubMed  Google Scholar 

  162. Kurt-Bayrakdar, S. et al. Periodontitis exacerbates the renal degenerative effects of obesity in rats. J. Periodontal Res. 56, 1058–1069 (2021).

    Article  CAS  PubMed  Google Scholar 

  163. Li, X. et al. Resveratrol protects renal damages induced by periodontitis via preventing mitochondrial dysfunction in rats. Oral. Dis. 29, 1812–1825 (2023).

    Article  PubMed  Google Scholar 

  164. Lacson, E. Jr. & Levin, N. W. C-reactive protein and end-stage renal disease. Semin. Dial. 17, 438–448 (2004).

    Article  PubMed  Google Scholar 

  165. Yue, H. et al. Effects of non-surgical periodontal therapy on systemic inflammation and metabolic markers in patients undergoing haemodialysis and/or peritoneal dialysis: a systematic review and meta-analysis. BMC Oral. Health 20, 9 (2020).

    Article  Google Scholar 

  166. Demmer, R. T. et al. The influence of anti-infective periodontal treatment on C-reactive protein: a systematic review and meta-analysis of randomized controlled trials. PLoS ONE 8, 9 (2013).

    Article  Google Scholar 

  167. Luthra, S. et al. Treatment of periodontitis and C-reactive protein: a systematic review and meta-analysis of randomized clinical trials. J. Clin. Periodontol. 50, 45–60 (2023).

    Article  CAS  PubMed  Google Scholar 

  168. Zhang, Y. W. et al. Effect of non-surgical periodontal treatment on cytokines/adipocytokines levels among periodontitis patients with or without obesity: a systematic review and meta-analysis. BMC Oral. Health 23, 20 (2023).

    Article  CAS  Google Scholar 

  169. Siribamrungwong, M., Yothasamutr, K. & Puangpanngam, K. Periodontal treatment reduces chronic systemic inflammation in peritoneal dialysis patients. Ther. Apher. Dial. 18, 305–308 (2014).

    Article  CAS  PubMed  Google Scholar 

  170. Gurkan, A. et al. Renin-angiotensin gene polymorphisms in relation to severe chronic periodontitis. J. Clin. Periodontol. 36, 204–211 (2009).

    Article  CAS  PubMed  Google Scholar 

  171. Santos, C. F. et al. Functional local renin-angiotensin system in human and rat periodontal tissue. PLoS ONE 10, e0134601 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Tsioufis, C., Kasiakogias, A., Thomopoulos, C. & Stefanadis, C. Periodontitis and blood pressure: the concept of dental hypertension. Atherosclerosis 219, 1–9 (2011).

    Article  CAS  PubMed  Google Scholar 

  173. Boltchi, F. E., Rees, T. D. & Iacopino, A. M. Cyclosporine A-induced gingival overgrowth: a comprehensive review. Quintessence Int. 30, 775–783 (1999).

    CAS  PubMed  Google Scholar 

  174. Chojnacka-Purpurowicz, J., Wygonowska, E., Placek, W. & Owczarczyk-Saczonek, A. Cyclosporine-induced gingival overgrowth-Review. Dermatol. Ther. 35, 5 (2022).

    Article  Google Scholar 

  175. Drozdzik, A. & Drozdzik, M. Drug-induced gingival overgrowth-molecular aspects of drug actions. Int. J. Mol. Sci. 24, 17 (2023).

    Article  Google Scholar 

  176. Lauritano, D. et al. Role of cyclosporine in gingival hyperplasia: an in vitro study on gingival fibroblasts. Int. J. Mol. Sci. 21, 13 (2020).

    Article  Google Scholar 

  177. Almeida, P. A. et al. Salivary metabolic profile of children and adolescents after hemodialysis. Metabolomics 13, 141 (2017).

  178. Andaloro, C., Sessa, C., Bua, N. & La Mantia, I. Chronic kidney disease in children: assessment of oral health status. Dent. Med. Probl. 55, 23–27 (2018).

    Article  PubMed  Google Scholar 

  179. Davidovich, E., Davidovits, M., Peretz, B., Shapira, J. & Aframian, D. J. The correlation between dental calculus and disturbed mineral metabolism in paediatric patients with chronic kidney disease. Nephrol. Dial. Transplant. 24, 2439–2445 (2009).

    Article  CAS  PubMed  Google Scholar 

  180. Sezer, B. et al. Association between serum biomarkers and oral health status in children with chronic kidney disease: a cross-sectional study. Clin. Oral. Invest. 27, 3731–3740 (2023).

    Article  Google Scholar 

  181. Sezer, B. et al. Assessment of the oral health status of children with chronic kidney disease. Pediatr. Nephrol. 38, 269–277 (2023).

    Article  PubMed  Google Scholar 

  182. Velan, E. & Sheller, B. Oral health in children with chronic kidney disease. Pediatr. Nephrol. 36, 3067–3075 (2021).

    Article  PubMed  Google Scholar 

  183. Dos Santos, V. C. et al. Prevalence of oral injuries and salivary changes in patients with chronic renal failure on hemodialysis: systematic review and meta-analysis. Biosci. J. 39, 17 (2023).

    Google Scholar 

  184. Rodrigues, R. et al. Salivary changes in chronic kidney disease and in patients undergoing hemodialysis: a systematic review and meta-analysis. J. Nephrol. 35, 1339–1367 (2022).

    Article  CAS  PubMed  Google Scholar 

  185. Ruospo, M. et al. Prevalence and severity of oral disease in adults with chronic kidney disease: a systematic review of observational studies. Nephrol. Dial. Transplant. 29, 364–375 (2014).

    Article  PubMed  Google Scholar 

  186. Choi, N. G., Sullivan, J. E., DiNitto, D. M. & Kunik, M. E. Health care utilization among adults with CKD and psychological distress. Kidney Med. 1, 162–170 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Grubbs, V., Plantinga, L. C., Tuot, D. S. & Powe, N. R. Chronic kidney disease and use of dental services in a United States public healthcare system: a retrospective cohort study. BMC Nephrol. 13, 6 (2012).

    Article  Google Scholar 

  188. Molino, A. R. et al. Health and dental insurance and health care utilization among children, adolescents, and young adults with CKD: findings from the CKiD cohort study. Kidney Med. 4, 12 (2022).

    Article  Google Scholar 

  189. Lertpimonchai, A. et al. Periodontitis as the risk factor of chronic kidney disease: mediation analysis. J. Clin. Periodontol. 46, 631–639 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Sharma, P. et al. Oxidative stress links periodontal inflammation and renal function. J. Clin. Periodontol. 48, 357–367 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Yang, J., Chen, T. Y., Zhu, Y. H., Bai, M. X. & Li, X. G. Causal inference between chronic periodontitis and chronic kidney disease: a bidirectional mendelian randomization analysis in a European population. Front. Genet. 12, 8 (2021).

    Google Scholar 

  192. Grubbs, V. et al. The Kidney and Periodontal Disease (KAPD) study: a pilot randomized controlled trial testing the effect of non-surgical periodontal therapy on chronic kidney disease. Contemp. Clin. Trials 53, 143–150 (2017).

    Article  PubMed  Google Scholar 

  193. Jamieson, L. et al. Periodontal disease and chronic kidney disease among Aboriginal adults; an RCT. BMC Nephrol. 16, 181 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Sharma, P. et al. INfluence of successful periodontal intervention in REnal disease (INSPIRED): study protocol for a randomised controlled pilot clinical trial. Trials 18, 535 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Grubbs, V. et al. Nonsurgical periodontal therapy in CKD: findings of the kidney and periodontal disease (KAPD) pilot randomized controlled trial. Kidney Med. 2, 49–58 (2020).

    Article  PubMed  Google Scholar 

  196. Jamieson, L. M. et al. Lessons learned from a periodontal intervention to reduce progression of chronic kidney disease among Aboriginal Australians. BMC Res. Notes 13, 483 (2020).

  197. Da Silva, T. A., Abreu, L. G. & Lima, R. P. E. A meta-analysis on the effect of periodontal treatment on the glomerular filtration rate of chronic kidney disease individuals. Spec. Care Dent. 41, 670–678 (2021).

    Article  Google Scholar 

  198. Chaudhry, A. et al. Potential effects of non-surgical periodontal therapy on periodontal parameters, inflammatory markers, and kidney function indicators in chronic kidney disease patients with chronic periodontitis. Biomedicines 10, 11 (2022).

    Article  Google Scholar 

  199. Vachhani, K. S. & Bhavsar, N. V. Effects of non-surgical periodontal therapy on serum inflammatory factor high-sensitive C-reactive protein, periodontal parameters and renal biomarkers in patients with chronic periodontitis and chronic kidney disease. Dent. Med. Probl. 58, 489–498 (2021).

    Article  PubMed  Google Scholar 

  200. Artese, H. P. C., Sousa, C. O. D., Luiz, R. R., Sansone, C. & Torres, M. C. M. D. B. Effect of non-surgical periodontal treatment on chronic kidney disease patients. Braz. Oral. Res. 24, 449–454 (2010).

    Article  PubMed  Google Scholar 

  201. Graziani, F. et al. Effects of non-surgical periodontal therapy on the glomerular filtration rate of the kidney: an exploratory trial. J. Clin. Periodontol. 37, 638–643 (2010).

    Article  PubMed  Google Scholar 

  202. Vilela, E. M. et al. Treatment of chronic periodontitis decreases serum prohepcidin levels in patients with chronic kidney disease. Clinics 66, 657–662 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Almeida, S., Figueredo, C. M., Lemos, C., Bregman, R. & Fischer, R. G. Periodontal treatment in patients with chronic kidney disease: a pilot study. J. Periodontal Res. 52, 262–267 (2017).

    Article  CAS  PubMed  Google Scholar 

  204. Clerehugh, V., Tugnait, A. & Genco, R. J. Periodontology at a Glance, 2nd edn (Wiley Blackwell, 2024).

  205. Chapple, I. L. C., Gilbert, A. Understanding Periodontal Diseases. (Quintessence, 2003).

  206. Gruber, R., Stadlinger, B. & Terheyden, H. (eds). Cell-to-Cell Communication: Cell-Atlas — Visual Biology in Oral Medicine. (Quintessence Publishing, 2022).

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article and wrote the manuscript. I.L.C.C., P.C., T.D. and P.S. made substantial contributions to discussions of the content. I.L.C.C., J.H., P.C. and P.S. reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Iain L. C. Chapple.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Kazuhiko Nakano and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Investing gingiva

Specialized mucosal tissue comprising a stromal core with an orthokeratinized stratified squamous epithelial surface that covers and attaches to the alveolar process of the jaw bones.

Periodontal pocket

Pathologically deepened gingival crevice arising owing to apical migration of the junctional epithelial attachment to the enamel of the tooth and in response to dental plaque-induced loss of the periodontal connective tissue attachment to the root and alveolar bone loss.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chapple, I.L.C., Hirschfeld, J., Cockwell, P. et al. Interplay between periodontitis and chronic kidney disease. Nat Rev Nephrol (2024). https://doi.org/10.1038/s41581-024-00910-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41581-024-00910-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing