[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Shaping epithelial tissues by stem cell mechanics in development and cancer

Abstract

Adult stem cells balance self-renewal and differentiation to build, maintain and repair tissues. The role of signalling pathways and transcriptional networks in controlling stem cell function has been extensively studied, but there is increasing appreciation that mechanical forces also have a crucial regulatory role. Mechanical forces, signalling pathways and transcriptional networks must be coordinated across diverse length and timescales to maintain tissue homeostasis and function. Such coordination between stem cells and neighbouring cells dictates when cells divide, migrate and differentiate. Recent advances in measuring and manipulating the mechanical forces that act upon and are produced by stem cells are providing new insights into development and disease. In this Review, we discuss the mechanical forces involved when epithelial stem cells construct their microenvironment and what happens in cancer when stem cell niche mechanics are disrupted or dysregulated. As the skin has evolved to withstand the harsh mechanical pressures from the outside environment, we often use the stem cells of mammalian skin epithelium as a paradigm for adult stem cells shaping their surrounding tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Epithelial stem cells mechanically sculpt their niches in development and adult homeostasis.
Fig. 2: Stem cell and stromal forces from tissue to cell scales drive morphogenesis of the gut.
Fig. 3: Epithelial cell–cell interactions constitute the molecular platforms for force transmission within the tissue.
Fig. 4: Cancer progenitors and CSCs mechanically sculpt their surrounding tissue to drive tumorigenesis and invasion.

Similar content being viewed by others

References

  1. Comazzetto, S., Shen, B. & Morrison, S. J. Niches that regulate stem cells and hematopoiesis in adult bone marrow. Dev. Cell 56, 1848–1860 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Porpiglia, E. & Blau, H. M. Plasticity of muscle stem cells in homeostasis and aging. Curr. Opin. Genet. Dev. 77, 101999 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Andreotti, J. P. et al. Neural stem cell niche heterogeneity. Semin. Cell Dev. Biol. 95, 42–53 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Collinet, C. & Lecuit, T. Programmed and self-organized flow of information during morphogenesis. Nat. Rev. Mol. Cell Biol. 22, 245–265 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Lechler, T. & Fuchs, E. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature 437, 275–280 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Williams, S. E., Beronja, S., Pasolli, H. A. & Fuchs, E. Asymmetric cell divisions promote Notch-dependent epidermal differentiation. Nature 470, 353–358 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Poulson, N. D. & Lechler, T. Asymmetric cell divisions in the epidermis. Int. Rev. Cell Mol. Biol. 295, 199–232 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gonzales, K. A. U. & Fuchs, E. Skin and its regenerative powers: an alliance between stem cells and their niche. Dev. Cell 43, 387–401 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Aragona, M. et al. Mechanisms of stretch-mediated skin expansion at single-cell resolution. Nature 584, 268–273 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Blanpain, C., Horsley, V. & Fuchs, E. Epithelial stem cells: turning over new leaves. Cell 128, 445–458 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ouspenskaia, T., Matos, I., Mertz, A. F., Fiore, V. F. & Fuchs, E. WNT-SHH antagonism specifies and expands stem cells prior to niche formation. Cell 164, 156–169 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Box, K., Joyce, B. W. & Devenport, D. Epithelial geometry regulates spindle orientation and progenitor fate during formation of the mammalian epidermis. eLife 8, e47102 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yang, H., Adam, R. C., Ge, Y., Hua, Z. L. & Fuchs, E. Epithelial-mesenchymal micro-niches govern stem cell lineage choices. Cell 169, 483–496 e413 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gehart, H. & Clevers, H. Tales from the crypt: new insights into intestinal stem cells. Nat. Rev. Gastroenterol. Hepatol. 16, 19–34 (2019).

    Article  PubMed  Google Scholar 

  15. Krndija, D. et al. Active cell migration is critical for steady-state epithelial turnover in the gut. Science 365, 705–710 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Hagios, C., Lochter, A. & Bissell, M. J. Tissue architecture: the ultimate regulator of epithelial function? Philos. Trans. R. Soc. Lond. B Biol. Sci. 353, 857–870 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Weaver, V. M. Cell and tissue mechanics: the new cell biology frontier. Mol. Biol. Cell 28, 1815–1818 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fuchs, E. & Blau, H. M. Tissue stem cells: architects of their niches. Cell Stem Cell 27, 532–556 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mao, Y. & Wickstrom, S. A. Mechanical state transitions in the regulation of tissue form and function. Nat. Rev. Mol. Cell Biol. 25, 654–670 (2024).

    Article  CAS  PubMed  Google Scholar 

  20. Vining, K. H. & Mooney, D. J. Mechanical forces direct stem cell behaviour in development and regeneration. Nat. Rev. Mol. Cell Biol. 18, 728–742 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Storgel, N., Krajnc, M., Mrak, P., Strus, J. & Ziherl, P. Quantitative morphology of epithelial folds. Biophys. J. 110, 269–277 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Goodwin, K. et al. Basal cell-extracellular matrix adhesion regulates force transmission during tissue morphogenesis. Dev. Cell 39, 611–625 (2016). Evidence of mechanical integration and tension transmission of epithelial cells through cell–cell and cell–ECM adhesions as a crucial driver of morphogenesis in Drosophila dorsal closure.

    Article  CAS  PubMed  Google Scholar 

  23. Kim, H. Y. et al. Localized smooth muscle differentiation is essential for epithelial bifurcation during branching morphogenesis of the mammalian lung. Dev. Cell 34, 719–726 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Savin, T. [Gut looping morphogenesis]. Med. Sci. 27, 1061–1064 (2011).

    Google Scholar 

  25. Shyer, A. E. et al. Villification: how the gut gets its villi. Science 342, 212–218 (2013). This study shows the endoderm patterning and force-driven formation of villi architecture in the developing gut.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sanketi, B. D. et al. Pitx2 patterns an accelerator-brake mechanical feedback through latent TGFbeta to rotate the gut. Science 377, eabl3921 (2022). Pitx2 is identified as a key regulator integrating TGFβ signalling in gradients into asymmetrical forces to induce gut rotation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shyer, A. E., Huycke, T. R., Lee, C., Mahadevan, L. & Tabin, C. J. Bending gradients: how the intestinal stem cell gets its home. Cell 161, 569–580 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sumigray, K. D., Terwilliger, M. & Lechler, T. Morphogenesis and compartmentalization of the intestinal crypt. Dev. Cell 45, 183–197 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Perez-Gonzalez, C. et al. Mechanical compartmentalization of the intestinal organoid enables crypt folding and collective cell migration. Nat. Cell Biol. 23, 745–757 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang, Q. et al. Cell fate coordinates mechano-osmotic forces in intestinal crypt formation. Nat. Cell Biol. 23, 733–744 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huycke, T. R. et al. Patterning and folding of intestinal villi by active mesenchymal dewetting. Cell 187, 3072–3089 (2024).

    Article  CAS  PubMed  Google Scholar 

  32. Fiore, V. F. et al. Mechanics of a multilayer epithelium instruct tumour architecture and function. Nature 585, 433–439 (2020). Demonstrates that the stiffness of the stem cell-secreted basement membrane is a key regulator of tumour architecture and predicts progression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sui, L. et al. Differential lateral and basal tension drive folding of Drosophila wing discs through two distinct mechanisms. Nat. Commun. 9, 4620 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gibson, W. T. & Gibson, M. C. Cell topology, geometry, and morphogenesis in proliferating epithelia. Curr. Top. Dev. Biol. 89, 87–114 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Hertwig, O. Das Problem der Befruchtung und der Isotropie des Eies. Jenaische Z. Naturwiss. 18, 276–318 (1884).

    Google Scholar 

  36. van Leen, E. V., di Pietro, F. & Bellaiche, Y. Oriented cell divisions in epithelia: from force generation to force anisotropy by tension, shape and vertices. Curr. Opin. Cell Biol. 62, 9–16 (2020).

    Article  PubMed  Google Scholar 

  37. Lemke, S. B. & Nelson, C. M. Dynamic changes in epithelial cell packing during tissue morphogenesis. Curr. Biol. 31, R1098–R1110 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Eisenhoffer, G. T. et al. Crowding induces live cell extrusion to maintain homeostatic cell numbers in epithelia. Nature 484, 546–549 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Marinari, E. et al. Live-cell delamination counterbalances epithelial growth to limit tissue overcrowding. Nature 484, 542–545 (2012). Together with Eisenhoffer et al., shows that mechanical forces driven by the epithelium are crucial to maintain homeostasis against overcrowding.

    Article  CAS  PubMed  Google Scholar 

  40. Betschinger, J., Mechtler, K. & Knoblich, J. A. The Par complex directs asymmetric cell division by phosphorylating the cytoskeletal protein Lgl. Nature 422, 326–330 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Homem, C. C. & Knoblich, J. A. Drosophila neuroblasts: a model for stem cell biology. Development 139, 4297–4310 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Bosveld, F. et al. Epithelial tricellular junctions act as interphase cell shape sensors to orient mitosis. Nature 530, 495–498 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Higashi, T., Arnold, T. R., Stephenson, R. E., Dinshaw, K. M. & Miller, A. L. Maintenance of the epithelial barrier and remodeling of cell-cell junctions during cytokinesis. Curr. Biol. 26, 1829–1842 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Higashi, T. & Miller, A. L. Tricellular junctions: how to build junctions at the TRICkiest points of epithelial cells. Mol. Biol. Cell 28, 2023–2034 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lowell, S., Jones, P., Le Roux, I., Dunne, J. & Watt, F. M. Stimulation of human epidermal differentiation by delta-notch signalling at the boundaries of stem-cell clusters. Curr. Biol. 10, 491–500 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Mesa, K. R. et al. Homeostatic epidermal stem cell self-renewal is driven by local differentiation. Cell Stem Cell 23, 677–686 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Uroz, M. et al. Regulation of cell cycle progression by cell-cell and cell-matrix forces. Nat. Cell Biol. 20, 646–654 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Thery, M. et al. The extracellular matrix guides the orientation of the cell division axis. Nat. Cell Biol. 7, 947–953 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Dekoninck, S. et al. Defining the design principles of skin epidermis postnatal growth. Cell 181, 604–620 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang, B. & Chen, T. Local and systemic mechanisms that control the hair follicle stem cell niche. Nat. Rev. Mol. Cell Biol. 25, 87–100 (2024).

    Article  CAS  PubMed  Google Scholar 

  51. Bi, D., Yang, X., Marchetti, M. C. & Manning, M. L. Motility-driven glass and jamming transitions in biological tissues. Phys. Rev. X 6, 021011 (2016).

    PubMed  PubMed Central  Google Scholar 

  52. Park, J. A., Atia, L., Mitchel, J. A., Fredberg, J. J. & Butler, J. P. Collective migration and cell jamming in asthma, cancer and development. J. Cell Sci. 129, 3375–3383 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Petridou, N. I., Grigolon, S., Salbreux, G., Hannezo, E. & Heisenberg, C. P. Fluidization-mediated tissue spreading by mitotic cell rounding and non-canonical Wnt signalling. Nat. Cell Biol. 21, 169–178 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Mongera, A. et al. A fluid-to-solid jamming transition underlies vertebrate body axis elongation. Nature 561, 401–405 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Miroshnikova, Y. A. et al. Adhesion forces and cortical tension couple cell proliferation and differentiation to drive epidermal stratification. Nat. Cell Biol. 20, 69–80 (2018). Further evidence that mechanical forces are involved in differentiation and delamination in response to basal overcrowding of the epidermis.

    Article  CAS  PubMed  Google Scholar 

  56. Park, J. A. et al. Unjamming and cell shape in the asthmatic airway epithelium. Nat. Mater. 14, 1040–1048 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Topfer, U. Basement membrane dynamics and mechanics in tissue morphogenesis. Biol. Open 12, bio059980 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cavey, M. & Lecuit, T. Molecular bases of cell-cell junctions stability and dynamics. Cold Spring Harb. Perspect. Biol. 1, a002998 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Irvine, K. D. & Wieschaus, E. Cell intercalation during Drosophila germband extension and its regulation by pair-rule segmentation genes. Development 120, 827–841 (1994).

    Article  CAS  PubMed  Google Scholar 

  60. Walck-Shannon, E. & Hardin, J. Cell intercalation from top to bottom. Nat. Rev. Mol. Cell Biol. 15, 34–48 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Krajnc, M. Solid-fluid transition and cell sorting in epithelia with junctional tension fluctuations. Soft Matter 16, 3209–3215 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. Herrera-Perez, R. M. & Kasza, K. E. Biophysical control of the cell rearrangements and cell shape changes that build epithelial tissues. Curr. Opin. Genet. Dev. 51, 88–95 (2018).

    Article  CAS  PubMed  Google Scholar 

  63. Villeneuve, C. et al. Mechanical forces across compartments coordinate cell shape and fate transitions to generate tissue architecture. Nat. Cell Biol. 26, 207–218 (2024). This recent study reveals how molecular and mechanical cues cooperate to establish tissue architecture.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Messal, H. A. et al. Tissue curvature and apicobasal mechanical tension imbalance instruct cancer morphogenesis. Nature 566, 126–130 (2019). Reveals how epithelial geometry dictates incipient tumour architecture, with consequences in cancer progression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mei, L. et al. Structural mechanism for bidirectional actin cross-linking by T-plastin. Proc. Natl Acad. Sci. USA 119, e2205370119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Weber, M. S. et al. Structural heterogeneity of cellular K5/K14 filaments as revealed by cryo-electron microscopy. eLife 10, e70307 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fuchs, E. & Weber, K. Intermediate filaments: structure, dynamics, function, and disease. Annu. Rev. Biochem. 63, 345–382 (1994).

    Article  CAS  PubMed  Google Scholar 

  68. Ingber, D. E., Wang, N. & Stamenovic, D. Tensegrity, cellular biophysics, and the mechanics of living systems. Rep. Prog. Phys. 77, 046603 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Heidemann, S. R., Lamoureaux, P. & Buxbaum, R. E. Opposing views on tensegrity as a structural framework for understanding cell mechanics. J. Appl. Physiol. 89, 1670–1678 (2000).

    CAS  PubMed  Google Scholar 

  70. Maniotis, A. J., Chen, C. S. & Ingber, D. E. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc. Natl Acad. Sci. USA 94, 849–854 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ingber, D. E. From tensegrity to human organs-on-chips: implications for mechanobiology and mechanotherapeutics. Biochem. J. 480, 243–257 (2023).

    Article  CAS  PubMed  Google Scholar 

  72. Deng, L. et al. Fast and slow dynamics of the cytoskeleton. Nat. Mater. 5, 636–640 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Fletcher, D. A. & Mullins, R. D. Cell mechanics and the cytoskeleton. Nature 463, 485–492 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bausch, A. R., Ziemann, F., Boulbitch, A. A., Jacobson, K. & Sackmann, E. Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. Biophys. J. 75, 2038–2049 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kodama, A., Karakesisoglou, I., Wong, E., Vaezi, A. & Fuchs, E. ACF7: an essential integrator of microtubule dynamics. Cell 115, 343–354 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Wu, X., Kodama, A. & Fuchs, E. ACF7 regulates cytoskeletal-focal adhesion dynamics and migration and has ATPase activity. Cell 135, 137–148 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wu, X. et al. Skin stem cells orchestrate directional migration by regulating microtubule-ACF7 connections through GSK3beta. Cell 144, 341–352 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Coulombe, P. A. The molecular revolution in cutaneous biology: keratin genes and their associated disease: diversity, opportunities, and challenges. J. Invest. Dermatol. 137, e67–e71 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Di Russo, J., Magin, T. M. & Leube, R. E. A keratin code defines the textile nature of epithelial tissue architecture. Curr. Opin. Cell Biol. 85, 102236 (2023).

    Article  PubMed  Google Scholar 

  80. Quiroz, F. G. et al. Liquid-liquid phase separation drives skin barrier formation. Science 367, eaax9554 (2020). This study demonstrates how conformational changes involving liquid–liquid phase separation dynamics in keratinocytes drive differentiation by integrating chemical cues into mechanical forces to reorganize the cytoplasm.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Oses, C. et al. From the membrane to the nucleus: mechanical signals and transcription regulation. Biophys. Rev. 15, 671–683 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Totaro, A., Panciera, T. & Piccolo, S. YAP/TAZ upstream signals and downstream responses. Nat. Cell Biol. 20, 888–899 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Esnault, C. et al. Rho-actin signaling to the MRTF coactivators dominates the immediate transcriptional response to serum in fibroblasts. Genes Dev. 28, 943–958 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Elosegui-Artola, A. et al. Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell 171, 1397–1410 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. Vartiainen, M. K., Guettler, S., Larijani, B. & Treisman, R. Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL. Science 316, 1749–1752 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Mouilleron, S., Langer, C. A., Guettler, S., McDonald, N. Q. & Treisman, R. Structure of a pentavalent G-actin*MRTF-A complex reveals how G-actin controls nucleocytoplasmic shuttling of a transcriptional coactivator. Sci. Signal. 4, ra40 (2011).

    Article  PubMed  Google Scholar 

  88. Broussard, J. A., Koetsier, J. L., Hegazy, M. & Green, K. J. Desmosomes polarize and integrate chemical and mechanical signaling to govern epidermal tissue form and function. Curr. Biol. 31, 3275–3291 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Schlegelmilch, K. et al. Yap1 acts downstream of alpha-catenin to control epidermal proliferation. Cell 144, 782–795 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Maller, O., DuFort, C. C. & Weaver, V. M. YAP forces fibroblasts to feel the tension. Nat. Cell Biol. 15, 570–572 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. McGinn, J. et al. A biomechanical switch regulates the transition towards homeostasis in oesophageal epithelium. Nat. Cell Biol. 23, 511–525 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Johnson, J. L., Najor, N. A. & Green, K. J. Desmosomes: regulators of cellular signaling and adhesion in epidermal health and disease. Cold Spring Harb. Perspect. Med. 4, a015297 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Kruglikov, I. L. & Scherer, P. E. Skin aging as a mechanical phenomenon: the main weak links. Nutr. Healthy Aging 4, 291–307 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ichijo, R. et al. Vasculature atrophy causes a stiffened microenvironment that augments epidermal stem cell differentiation in aged skin. Nat. Aging 2, 592–600 (2022).

    Article  CAS  PubMed  Google Scholar 

  95. Lynch, B. et al. A mechanistic view on the aging human skin through ex vivo layer-by-layer analysis of mechanics and microstructure of facial and mammary dermis. Sci. Rep. 12, 849 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Koester, J. et al. Niche stiffening compromises hair follicle stem cell potential during ageing by reducing bivalent promoter accessibility. Nat. Cell Biol. 23, 771–781 (2021).

    Article  CAS  PubMed  Google Scholar 

  97. Walma, D. A. C. & Yamada, K. M. The extracellular matrix in development. Development 147, dev175596 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Jayadev, R. et al. A basement membrane discovery pipeline uncovers network complexity, regulators, and human disease associations. Sci. Adv. 8, eabn2265 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Tsutsui, K. et al. Mapping the molecular and structural specialization of the skin basement membrane for inter-tissue interactions. Nat. Commun. 12, 2577 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Crest, J., Diz-Munoz, A., Chen, D. Y., Fletcher, D. A. & Bilder, D. Organ sculpting by patterned extracellular matrix stiffness. eLife 6, e24958 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Bonche, R. et al. Regulation of the collagen IV network by the basement membrane protein perlecan is crucial for squamous epithelial cell morphogenesis and organ architecture. Matrix Biol. 114, 35–66 (2022).

    Article  CAS  PubMed  Google Scholar 

  102. Harunaga, J. S., Doyle, A. D. & Yamada, K. M. Local and global dynamics of the basement membrane during branching morphogenesis require protease activity and actomyosin contractility. Dev. Biol. 394, 197–205 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Nerger, B. A. et al. Local accumulation of extracellular matrix regulates global morphogenetic patterning in the developing mammary gland. Curr. Biol. 31, 1903–1917 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wiseman, B. S. et al. Site-specific inductive and inhibitory activities of MMP-2 and MMP-3 orchestrate mammary gland branching morphogenesis. J. Cell Biol. 162, 1123–1133 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Marinkovich, M. P., Keene, D. R., Rimberg, C. S. & Burgeson, R. E. Cellular origin of the dermal-epidermal basement membrane. Dev. Dyn. 197, 255–267 (1993).

    Article  CAS  PubMed  Google Scholar 

  106. Lan, L. et al. GREM1 is required to maintain cellular heterogeneity in pancreatic cancer. Nature 607, 163–168 (2022).

    Article  CAS  PubMed  Google Scholar 

  107. Reuten, R. et al. Basement membrane stiffness determines metastases formation. Nat. Mater. 20, 892–903 (2021). Further evidence that the stiffness of the stem cell-secreted basement membrane impacts cancer cell invasion upon carcinogenesis.

    Article  CAS  PubMed  Google Scholar 

  108. Bansaccal, N. et al. The extracellular matrix dictates regional competence for tumour initiation. Nature 623, 828–835 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yuan, S. et al. Ras drives malignancy through stem cell crosstalk with the microenvironment. Nature 612, 552–563 (2022).

    Article  Google Scholar 

  110. Schepers, A. G. et al. Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science 337, 730–735 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Blaas, L. et al. Lgr6 labels a rare population of mammary gland progenitor cells that are able to originate luminal mammary tumours. Nat. Cell Biol. 18, 1346–1356 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Almagro, J., Messal, H. A., Elosegui-Artola, A., van Rheenen, J. & Behrens, A. Tissue architecture in tumor initiation and progression. Trends Cancer 8, 494–505 (2022).

    Article  CAS  PubMed  Google Scholar 

  113. Kessenbrock, K., Plaks, V. & Werb, Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141, 52–67 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Botta, G. P., Reginato, M. J., Reichert, M., Rustgi, A. K. & Lelkes, P. I. Constitutive K-RasG12D activation of ERK2 specifically regulates 3D invasion of human pancreatic cancer cells via MMP-1. Mol. Cancer Res. 10, 183–196 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Sokol, E. S. et al. SMARCE1 is required for the invasive progression of in situ cancers. Proc. Natl Acad. Sci. USA 114, 4153–4158 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Tervonen, T. A. et al. Oncogenic ras disrupts epithelial integrity by activating the transmembrane serine protease hepsin. Cancer Res. 81, 1513–1527 (2021).

    Article  CAS  PubMed  Google Scholar 

  117. Dornier, E. et al. Glutaminolysis drives membrane trafficking to promote invasiveness of breast cancer cells. Nat. Commun. 8, 2255 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Lee, J., Cabrera, A. J. H., Nguyen, C. M. T. & Kwon, Y. V. Dissemination of RasV12-transformed cells requires the mechanosensitive channel Piezo. Nat. Commun. 11, 3568 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Chang, T. T., Thakar, D. & Weaver, V. M. Force-dependent breaching of the basement membrane. Matrix Biol. 57-58, 178–189 (2017).

    Article  CAS  PubMed  Google Scholar 

  120. Kelley, L. C. et al. Live-cell confocal microscopy and quantitative 4D image analysis of anchor-cell invasion through the basement membrane in Caenorhabditis elegans. Nat. Protoc. 12, 2081–2096 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Naegeli, K. M. et al. Cell invasion in vivo via rapid exocytosis of a transient lysosome-derived membrane domain. Dev. Cell 43, 403–417 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kelley, L. C. et al. Adaptive F-actin polymerization and localized ATP production drive basement membrane invasion in the absence of MMPs. Dev. Cell 48, 313–328 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Garde, A. et al. Localized glucose import, glycolytic processing, and mitochondria generate a focused ATP burst to power basement-membrane invasion. Dev. Cell 57, 732–749 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Caceres, R. et al. Forces drive basement membrane invasion in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 115, 11537–11542 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lammermann, T. & Sixt, M. Mechanical modes of ‘amoeboid’ cell migration. Curr. Opin. Cell Biol. 21, 636–644 (2009).

    Article  PubMed  Google Scholar 

  126. Monteiro, P. et al. A mechanosensitive caveolae-invadosome interplay drives matrix remodelling for cancer cell invasion. Nat. Cell Biol. 25, 1787–1803 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Chang, J. et al. Cell volume expansion and local contractility drive collective invasion of the basement membrane in breast cancer. Nat. Mater. 23, 711–722 (2023). Demonstrates how metastasis-initiating cells cooperate mechanically to invade beyond the basement membrane.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Jain, S. et al. The role of single cell mechanical behavior and polarity in driving collective cell migration. Nat. Phys. 16, 802–809 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Eschenbruch, J. et al. From microspikes to stress fibers: actin remodeling in breast acini drives myosin II-mediated basement membrane invasion. Cells 10, 1979 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Gaiko-Shcherbak, A. et al. Cell force-driven basement membrane disruption fuels EGF- and stiffness-induced invasive cell dissemination from benign breast gland acini. Int. J. Mol. Sci. 22, e22083962 (2021).

    Article  Google Scholar 

  131. Nia, H. T. et al. In vivo compression and imaging in mouse brain to measure the effects of solid stress. Nat. Protoc. 15, 2321–2340 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Chaudhuri, O., Cooper-White, J., Janmey, P. A., Mooney, D. J. & Shenoy, V. B. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature 584, 535–546 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Fatherree, J. P., Guarin, J. R., McGinn, R. A., Naber, S. P. & Oudin, M. J. Chemotherapy-induced collagen IV drives cancer cell motility through activation of src and focal adhesion kinase. Cancer Res. 82, 2031–2044 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Cortes, E. et al. GPER is a mechanoregulator of pancreatic stellate cells and the tumor microenvironment. EMBO Rep. 20, e46556 (2019).

    Article  PubMed  Google Scholar 

  135. Chronopoulos, A. et al. ATRA mechanically reprograms pancreatic stellate cells to suppress matrix remodelling and inhibit cancer cell invasion. Nat. Commun. 7, 12630 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Tierney, M. T. et al. Vitamin A resolves lineage plasticity to orchestrate stem cell lineage choices. Science 383, eadi7342 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Cho, S. et al. Mechanosensing by the lamina protects against nuclear rupture, DNA damage, and cell-cycle arrest. Dev. Cell 49, 920–935 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Umbreit, N. T. et al. Mechanisms generating cancer genome complexity from a single cell division error. Science 368, eaba0712 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

J.A. is a MacMillan Family Foundation Awardee of the Life Sciences Research Foundation. E.F. is a Howard Hughes Medical Investigator and is supported by grants from the NIH (R01-AR050452, R01-AR31737 and R37-AR27883), the Starr Foundation and the Stavros Niarchos Foundation.

Author information

Authors and Affiliations

Authors

Contributions

V.F.F. and J.A. performed literature research for the article. All authors discussed the content and wrote the manuscript.

Corresponding authors

Correspondence to Vincent F. Fiore or Elaine Fuchs.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Carl Heisenberg and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Anchor cell

A specialized cell involved in the development of the reproductive system in nematodes such as Caenorhabditis elegans.

Anthracycline

A type of chemotherapeutic agent that targets topoisomerase and causes DNA damage.

Basement membrane

A thin layer of specialized extracellular matrix that sustains epithelia and endothelia, demarcating epithelial–stromal boundaries; it constitutes an anchoring surface for basal epithelial cells to divide.

Caveolae

Organized, complex invaginations of the plasma membrane.

Convergent extension

The narrowing and elongation of certain tissues during embryonic development.

Desmosomes

Cell–cell junctions formed of keratins, cadherins, desmoplakins and plakoglobins.

D. melanogaster wing disc

An appendage of epidermal stem cell precursors of the wing.

Dorsal mesentery

A thin mesenchymal tissue that connects the intestines to the abdominal wall.

Epiboly

In developmental biology, the spreading of the ectoderm simultaneous to the positioning of endoderm and mesoderm inside the embryo.

Germband

Primary layer of cells during embryonic development.

Hemidesmosomes

Cell–basement membrane junctions formed by keratins, integrins, plectins, laminins and collagen.

HRAS G12V

A MAPK pathway hyperactivating oncogenic mutation frequent in skin carcinoma.

KRAS G12D

A MAPK pathway hyperactivating oncogenic mutation frequent in pancreatic and lung cancers.

Mechanotransduction

Integration of mechanical input into intracellular signalling.

Mesenchyme

Embryonic connective tissue formed mostly by mesodermal cells and extracellular matrix.

Mesothelium

Epithelium that surrounds the chest, abdominal and pelvic cavities.

Multipotent progenitor cells

Cells capable of differentiating into different cells of a particular lineage.

Oncogenic transformation

Genetic alteration that gives rise to a cancer cell.

Placode

A pancake-shaped thickening of the ectoderm layer in the formation of glands and hair follicles.

PyMT

Polyomavirus middle-T oncogene used in mouse genetics to induce mammary tumours.

Smoothened

Frizzled G protein-coupled receptor required for activation of the embryonic Hedgehog pathway.

Stroma

Cells and molecules in the connective tissue of an organ.

Suprabasal cells

Of the skin, differentiated keratinocytes over the basal (stem) layer.

Taxane

A type of chemotherapeutic agent that inhibits tubulin polymerization.

Tight junctions

Cell–cell junctions formed by claudins and occludins.

Tricellular junctions

Specialized cell–cell junctions at the apical side of three epithelial or endothelial cells.

Young’s modulus

Mechanical property of solid materials that measures stiffness when a force is applied lengthwise.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiore, V.F., Almagro, J. & Fuchs, E. Shaping epithelial tissues by stem cell mechanics in development and cancer. Nat Rev Mol Cell Biol (2025). https://doi.org/10.1038/s41580-024-00821-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41580-024-00821-0

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer