[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulation of the nucleic acid-sensing Toll-like receptors

Abstract

Many of the ligands for Toll-like receptors (TLRs) are unique to microorganisms, such that receptor activation unequivocally indicates the presence of something foreign. However, a subset of TLRs recognizes nucleic acids, which are present in both the host and foreign microorganisms. This specificity enables broad recognition by virtue of the ubiquity of nucleic acids but also introduces the possibility of self-recognition and autoinflammatory or autoimmune disease. Defining the regulatory mechanisms required to ensure proper discrimination between foreign and self-nucleic acids by TLRs is an area of intense research. Progress over the past decade has revealed a complex array of regulatory mechanisms that ensure maintenance of this delicate balance. These regulatory mechanisms can be divided into a conceptual framework with four categories: compartmentalization, ligand availability, receptor expression and signal transduction. In this Review, we discuss our current understanding of each of these layers of regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The activation of nucleic acid-sensing Toll-like receptors is finely balanced by a complex array of regulatory mechanisms.
Fig. 2: The four categories of regulatory mechanisms for nucleic acid-sensing Toll-like receptors.

Similar content being viewed by others

References

  1. Fitzgerald, K. A. & Kagan, J. C. Toll-like receptors and the control of immunity. Cell 180, 1044–1066 (2020).

    CAS  PubMed  Google Scholar 

  2. Gavin, A. L. et al. PLD3 and PLD4 are single-stranded acid exonucleases that regulate endosomal nucleic-acid sensing. Nat. Immunol. 19, 942–953 (2018). This paper describes how two lysosomal nucleases are crucial for the removal of self-DNA capable of activating TLR9.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Pisitkun, P. et al. Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science 312, 1669–1672 (2006).

    CAS  PubMed  Google Scholar 

  4. Subramanian, S. et al. A Tlr7 translocation accelerates systemic autoimmunity in murine lupus. Proc. Natl Acad. Sci. USA 103, 9970–9975 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Deane, J. A. et al. Control of Toll-like receptor 7 expression is essential to restrict autoimmunity and dendritic cell proliferation. Immunity 27, 801–810 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Marshak-Rothstein, A. Toll-like receptors in systemic autoimmune disease. Nat. Rev. Immunol. 6, 823–835 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Lande, R. et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449, 564–569 (2007).

    CAS  PubMed  Google Scholar 

  8. Gilliet, M. & Lande, R. Antimicrobial peptides and self-DNA in autoimmune skin inflammation. Curr. Opin. Immunol. 20, 401–407 (2008).

    CAS  PubMed  Google Scholar 

  9. Kariko, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23, 165–175 (2005).

    CAS  PubMed  Google Scholar 

  10. Krieg, A. M. et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374, 546–549 (1995).

    CAS  PubMed  Google Scholar 

  11. Christensen, S. R. et al. Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity 25, 417–428 (2006).

    CAS  PubMed  Google Scholar 

  12. Nickerson, K. M. et al. TLR9 regulates TLR7- and MyD88-dependent autoantibody production and disease in a murine model of lupus. J. Immunol. 184, 1840–1848 (2010).

    CAS  PubMed  Google Scholar 

  13. Santiago-Raber, M.-L. et al. Critical role of TLR7 in the acceleration of systemic lupus erythematosus in TLR9-deficient mice. J. Autoimmun. 34, 339–348 (2010).

    CAS  PubMed  Google Scholar 

  14. Majer, O., Liu, B. & Barton, G. M. Nucleic acid-sensing TLRs: trafficking and regulation. Curr. Opin. Immunol. 44, 26–33 (2017).

    CAS  PubMed  Google Scholar 

  15. Barton, G. M. & Kagan, J. C. A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nat. Rev. Immunol. 9, 535–542 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Leadbetter, E. A. et al. Chromatin–IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416, 603–607 (2002).

    CAS  PubMed  Google Scholar 

  17. Barton, G. M., Kagan, J. C. & Medzhitov, R. Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nat. Immunol. 7, 49–56 (2006).

    CAS  PubMed  Google Scholar 

  18. Mouchess, M. L. et al. Transmembrane mutations in Toll-like receptor 9 bypass the requirement for ectodomain proteolysis and induce fatal inflammation. Immunity 35, 721–732 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Stanbery, A. G., Newman, Z. R. & Barton, G. M. Dysregulation of TLR9 in neonates leads to fatal inflammatory disease driven by IFN-γ. Proc. Natl Acad. Sci. USA 117, 3074–3082 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim, Y. M., Brinkmann, M. M., Paquet, M. E. & Ploegh, H. L. UNC93B1 delivers nucleotide-sensing Toll-like receptors to endolysosomes. Nature 452, 234–238 (2008). This paper provides the first evidence that UNC93B1 is necessary for NA-sensing TLRs to traffic to endosomes.

    CAS  PubMed  Google Scholar 

  21. Lee, B. L. et al. UNC93B1 mediates differential trafficking of endosomal TLRs. eLife 2, e00291 (2013).

    PubMed  PubMed Central  Google Scholar 

  22. Tabeta, K. et al. The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9. Nat. Immunol. 7, 156–164 (2006).

    CAS  PubMed  Google Scholar 

  23. Pelka, K. et al. The chaperone UNC93B1 regulates Toll-like receptor stability independently of endosomal TLR transport. Immunity 48, 911–922.e7 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Majer, O., Liu, B., Kreuk, L. S. M., Krogan, N. & Barton, G. M. UNC93B1 recruits syntenin-1 to dampen TLR7 signalling and prevent autoimmunity. Nature 575, 366–370 (2019). This paper identifies a mechanism by which UNC93B1 specifically dampens TLR7 signalling and prevents responses to endogenous RNA.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Majer, O. et al. Release from UNC93B1 reinforces the compartmentalized activation of select TLRs. Nature 575, 371–374 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Brinkmann, M. M. et al. The interaction between the ER membrane protein UNC93B and TLR3, 7, and 9 is crucial for TLR signaling. J. Cell Biol. 177, 265–275 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Casrouge, A. et al. Herpes simplex virus encephalitis in human UNC-93B deficiency. Science 314, 308–312 (2006).

    CAS  PubMed  Google Scholar 

  28. Fukui, R. et al. Unc93B1 biases Toll-like receptor responses to nucleic acid in dendritic cells toward DNA- but against RNA-sensing. J. Exp. Med. 206, 1339–1350 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Fukui, R. et al. Unc93B1 restricts systemic lethal inflammation by orchestrating Toll-like receptor 7 and 9 trafficking. Immunity 35, 69–81 (2011). This paper reports a mutation in UNC93B1 that favours TLR7 trafficking at the expense of TLR9 trafficking, resulting in TLR7-dependent autoimmunity.

    CAS  PubMed  Google Scholar 

  30. Tsai, S. Y. et al. Regulation of TLR3 activation by S100A9. J. Immunol. 195, 4426–4437 (2015).

    CAS  PubMed  Google Scholar 

  31. Sasai, M., Linehan, M. M. & Iwasaki, A. Bifurcation of Toll-like receptor 9 signaling by adaptor protein 3. Science 329, 1530–1534 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Blasius, A. L. et al. Slc15a4, AP-3, and Hermansky–Pudlak syndrome proteins are required for Toll-like receptor signaling in plasmacytoid dendritic cells. Proc. Natl Acad. Sci. USA 107, 19973–19978 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hayashi, K., Sasai, M. & Iwasaki, A. Toll-like receptor 9 trafficking and signaling for type I interferons requires PIKfyve activity. Int. Immunol. 27, 435–445 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Saitoh, S. I. et al. TLR7 mediated viral recognition results in focal type I interferon secretion by dendritic cells. Nat. Commun. 8, 1592 (2017).

    PubMed  PubMed Central  Google Scholar 

  35. Henault, J. et al. Noncanonical autophagy is required for type I interferon secretion in response to DNA–immune complexes. Immunity 37, 986–997 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ewald, S. E. et al. The ectodomain of Toll-like receptor 9 is cleaved to generate a functional receptor. Nature 456, 658–662 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Park, B. et al. Proteolytic cleavage in an endolysosomal compartment is required for activation of Toll-like receptor 9. Nat. Immunol. 9, 1407–1414 (2008). This paper and Ewald et al. (2008) describe how the ectodomain of TLR9 must undergo proteolytic cleavage, which limits receptor activation to endosomes; similar requirements were later shown for each of the NA-sensing TLRs.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Sepulveda, F. E. et al. Critical role for asparagine endopeptidase in endocytic Toll-like receptor signaling in dendritic cells. Immunity 31, 737–748 (2009).

    CAS  PubMed  Google Scholar 

  39. Ewald, S. E. et al. Nucleic acid recognition by Toll-like receptors is coupled to stepwise processing by cathepsins and asparagine endopeptidase. J. Exp. Med. 208, 643–651 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Garcia-Cattaneo, A. et al. Cleavage of Toll-like receptor 3 by cathepsins B and H is essential for signaling. Proc. Natl Acad. Sci. USA 109, 9053–9058 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ohto, U. et al. Structural basis of CpG and inhibitory DNA recognition by Toll-like receptor 9. Nature 520, 702–705 (2015).

    CAS  PubMed  Google Scholar 

  42. Hipp, M. M. et al. Processing of human Toll-like receptor 7 by furin-like proprotein convertases is required for its accumulation and activity in endosomes. Immunity 39, 711–721 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ishii, N., Funami, K., Tatematsu, M., Seya, T. & Matsumoto, M. Endosomal localization of TLR8 confers distinctive proteolytic processing on human myeloid cells. J. Immunol. 193, 5118–5128 (2014).

    CAS  PubMed  Google Scholar 

  44. Sisirak, V. et al. Digestion of chromatin in apoptotic cell microparticles prevents autoimmunity. Cell 166, 88–101 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Al-Mayouf, S. M. et al. Loss-of-function variant in DNASE1L3 causes a familial form of systemic lupus erythematosus. Nat. Genet. 43, 1186–1188 (2011).

    CAS  PubMed  Google Scholar 

  46. Soni, C. et al. Plasmacytoid dendritic cells and type I interferon promote extrafollicular B cell responses to extracellular self-DNA. Immunity 52, 1022–1038.e7 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Davenne, T., Bridgeman, A., Rigby, R. E. & Rehwinkel, J. Deoxyguanosine is a TLR7 agonist. Eur. J. Immunol. 50, 56–62 (2020).

    CAS  PubMed  Google Scholar 

  48. Desnues, B. et al. TLR8 on dendritic cells and TLR9 on B cells restrain TLR7-mediated spontaneous autoimmunity in C57BL/6 mice. Proc. Natl Acad. Sci. USA 111, 1497–1502 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Yoshida, H., Okabe, Y., Kawane, K., Fukuyama, H. & Nagata, S. Lethal anemia caused by interferon-β produced in mouse embryos carrying undigested DNA. Nat. Immunol. 6, 49–56 (2005).

    CAS  PubMed  Google Scholar 

  50. Kawane, K. et al. Chronic polyarthritis caused by mammalian DNA that escapes from degradation in macrophages. Nature 443, 998–1002 (2006).

    CAS  PubMed  Google Scholar 

  51. Ahn, J., Gutman, D., Saijo, S. & Barber, G. N. STING manifests self DNA-dependent inflammatory disease. Proc. Natl Acad. Sci. USA 109, 19386–19391 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Baum, R. et al. Cutting edge: AIM2 and endosomal TLRs differentially regulate arthritis and autoantibody production in DNase II-deficient mice. J. Immunol. 194, 873–877 (2015).

    CAS  PubMed  Google Scholar 

  53. Pawaria, S. et al. An unexpected role for RNA-sensing Toll-like receptors in a murine model of DNA accrual. Clin. Exp. Rheumatol. 33, S70–S73 (2015).

    PubMed  PubMed Central  Google Scholar 

  54. Pawaria, S. et al. Cutting edge: DNase II deficiency prevents activation of autoreactive B cells by double-stranded DNA endogenous ligands. J. Immunol. 194, 1403–1407 (2015).

    CAS  PubMed  Google Scholar 

  55. Napirei, M. et al. Features of systemic lupus erythematosus in Dnase1-deficient mice. Nat. Genet. 25, 177–181 (2000).

    CAS  PubMed  Google Scholar 

  56. Yasutomo, K. et al. Mutation of DNASE1 in people with systemic lupus erythematosus. Nat. Genet. 28, 313–314 (2001).

    CAS  PubMed  Google Scholar 

  57. Sun, X. et al. Increased ribonuclease expression reduces inflammation and prolongs survival in TLR7 transgenic mice. J. Immunol. 190, 2536–2543 (2013).

    CAS  PubMed  Google Scholar 

  58. Garnett, E. R. et al. Phenotype of ribonuclease 1 deficiency in mice. RNA 25, 921–934 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Lee, H. H., Wang, Y. N. & Hung, M. C. Functional roles of the human ribonuclease A superfamily in RNA metabolism and membrane receptor biology. Mol. Aspects Med. 70, 106–116 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Lau, C. M. et al. RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J. Exp. Med. 202, 1171–1177 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Yasuda, K. et al. Murine dendritic cell type I IFN production induced by human IgG–RNA immune complexes is IFN regulatory factor (IRF)5 and IRF7 dependent and is required for IL-6 production. J. Immunol. 178, 6876–6885 (2007).

    CAS  PubMed  Google Scholar 

  62. Yasuda, K. et al. Requirement for DNA CpG content in TLR9-dependent dendritic cell activation induced by DNA-containing immune complexes. J. Immunol. 183, 3109–3117 (2009).

    CAS  PubMed  Google Scholar 

  63. Bertheloot, D. et al. RAGE enhances TLR responses through binding and internalization of RNA. J. Immunol. 197, 4118–4126 (2016).

    CAS  PubMed  Google Scholar 

  64. Tian, J. et al. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat. Immunol. 8, 487–496 (2007).

    CAS  PubMed  Google Scholar 

  65. Sirois, C. M. et al. RAGE is a nucleic acid receptor that promotes inflammatory responses to DNA. J. Exp. Med. 210, 2447–2463 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Ganguly, D. et al. Self-RNA–antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. J. Exp. Med. 206, 1983–1994 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Lande, R. et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA–peptide complexes in systemic lupus erythematosus. Sci. Transl. Med. 3, 73ra19 (2011).

    PubMed  PubMed Central  Google Scholar 

  68. Gestermann, N. et al. Netting neutrophils activate autoreactive B cells in lupus. J. Immunol. 200, 3364–3371 (2018).

    CAS  PubMed  Google Scholar 

  69. Herster, F. et al. Neutrophil extracellular trap-associated RNA and LL37 enable self-amplifying inflammation in psoriasis. Nat. Commun. 11, 105 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Ivanov, S. et al. A novel role for HMGB1 in TLR9-mediated inflammatory responses to CpG-DNA. Blood 110, 1970–1981 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Greulich, W. et al. TLR8 is a sensor of RNase T2 degradation products. Cell 179, 1264–1275.e13 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Ostendorf, T. et al. Immune sensing of synthetic, bacterial, and protozoan RNA by Toll-like receptor 8 requires coordinated processing by RNase T2 and RNase 2. Immunity 52, 591–605.e6 (2020).

    CAS  PubMed  Google Scholar 

  73. Chan, M. P. et al. DNase II-dependent DNA digestion is required for DNA sensing by TLR9. Nat. Commun. 6, 5853 (2015).

    CAS  PubMed  Google Scholar 

  74. Li, X. D. & Chen, Z. J. Sequence specific detection of bacterial 23 S ribosomal RNA by TLR13. eLife 1, e00102 (2012).

    PubMed  PubMed Central  Google Scholar 

  75. Oldenburg, M. et al. TLR13 recognizes bacterial 23 S rRNA devoid of erythromycin resistance-forming modification. Science 337, 1111–1115 (2012).

    CAS  PubMed  Google Scholar 

  76. Shibata, T. et al. Guanosine and its modified derivatives are endogenous ligands for TLR7. Int. Immunol. 28, 211–222 (2016).

    CAS  PubMed  Google Scholar 

  77. Tanji, H. et al. Toll-like receptor 8 senses degradation products of single-stranded RNA. Nat. Struct. Mol. Biol. 22, 109–115 (2015).

    CAS  PubMed  Google Scholar 

  78. Zhang, Z. et al. Structural analysis reveals that Toll-like receptor 7 is a dual receptor for guanosine and single-stranded RNA. Immunity 45, 737–748 (2016). This paper, Shibata et al. (2016) and Tanji et al. (2015) show that the ligands for TLR7 and TLR8 are short degradation products of RNA and that TLR7 and TLR8 use two distinct binding sites for ligand recognition.

    CAS  PubMed  Google Scholar 

  79. Shibata, T. et al. Nucleosides drive histiocytosis in SLC29A3 disorders by activating TLR7. Preprint at bioRxiv https://doi.org/10.1101/2019.12.16.877357 (2019).

    Article  Google Scholar 

  80. Nair, S. et al. Adult stem cell deficits drive Slc29a3 disorders in mice. Nat. Commun. 10, 2943 (2019).

    PubMed  PubMed Central  Google Scholar 

  81. Molho-Pessach, V. et al. The H syndrome is caused by mutations in the nucleoside transporter hENT3. Am. J. Hum. Genet. 83, 529–534 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Cliffe, S. T. et al. SLC29A3 gene is mutated in pigmented hypertrichosis with insulin-dependent diabetes mellitus syndrome and interacts with the insulin signaling pathway. Hum. Mol. Genet. 18, 2257–2265 (2009).

    CAS  PubMed  Google Scholar 

  83. Morgan, N. V. et al. Mutations in SLC29A3, encoding an equilibrative nucleoside transporter ENT3, cause a familial histiocytosis syndrome (Faisalabad histiocytosis) and familial Rosai–Dorfman disease. PLoS Genet. 6, e1000833 (2010).

    PubMed  PubMed Central  Google Scholar 

  84. Nguyen, T. A. et al. SIDT2 transports extracellular dsRNA into the cytoplasm for innate immune recognition. Immunity 47, 498–509.e6 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Nguyen, T. A. et al. SIDT1 localizes to endolysosomes and mediates double-stranded RNA transport into the cytoplasm. J. Immunol. 202, 3483–3492 (2019).

    CAS  PubMed  Google Scholar 

  86. Zhong, F. et al. Deviation from major codons in the Toll-like receptor genes is associated with low Toll-like receptor expression. Immunology 114, 83–93 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Newman, Z. R., Young, J. M., Ingolia, N. T. & Barton, G. M. Differences in codon bias and GC content contribute to the balanced expression of TLR7 and TLR9. Proc. Natl Acad. Sci. USA 113, E1362–E1371 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Guiducci, C. et al. RNA recognition by human TLR8 can lead to autoimmune inflammation. J. Exp. Med. 210, 2903–2919 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Buechler, M. B., Akilesh, H. M. & Hamerman, J. A. Cutting edge: direct sensing of TLR7 ligands and type I IFN by the common myeloid progenitor promotes mTOR/PI3K-dependent emergency myelopoiesis. J. Immunol. 197, 2577–2582 (2016).

    CAS  PubMed  Google Scholar 

  90. Akilesh, H. M. et al. Chronic TLR7 and TLR9 signaling drives anemia via differentiation of specialized hemophagocytes. Science 363, eaao5213 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Garcia-Ortiz, H. et al. Association of TLR7 copy number variation with susceptibility to childhood-onset systemic lupus erythematosus in Mexican population. Ann. Rheum. Dis. 69, 1861–1865 (2010).

    CAS  PubMed  Google Scholar 

  92. Martin, G. V. et al. Mosaicism of XX and XXY cells accounts for high copy number of Toll like receptor 7 and 8 genes in peripheral blood of men with rheumatoid arthritis. Sci. Rep. 9, 12880 (2019).

    PubMed  PubMed Central  Google Scholar 

  93. Souyris, M. et al. TLR7 escapes X chromosome inactivation in immune cells. Sci. Immunol. 3, eaap8855 (2018). This paper shows biallelic expression of TLR7 in a proportion of immune cells from women, and men with Klinefelter’s syndrome (47,XXY karyotype), leading to enhanced responses to TLR7 agonists.

    PubMed  Google Scholar 

  94. Scofield, R. H. et al. Klinefelter’s syndrome (47,XXY) in male systemic lupus erythematosus patients: support for the notion of a gene-dose effect from the X chromosome. Arthritis Rheum. 58, 2511–2517 (2008).

    PubMed  PubMed Central  Google Scholar 

  95. Liu, K. et al. X chromosome dose and sex bias in autoimmune diseases: increased prevalence of 47,XXX in systemic lupus erythematosus and Sjogren’s syndrome. Arthritis Rheumatol. 68, 1290–1300 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Roberts, A. W. et al. Tissue-resident macrophages are locally programmed for silent clearance of apoptotic cells. Immunity 47, 913–927.e6 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Behrens, E. M. et al. Repeated TLR9 stimulation results in macrophage activation syndrome-like disease in mice. J. Clin. Invest. 121, 2264–2277 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Rowland, S. L. et al. Early, transient depletion of plasmacytoid dendritic cells ameliorates autoimmunity in a lupus model. J. Exp. Med. 211, 1977–1991 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Shi, Z. et al. A novel Toll-like receptor that recognizes vesicular stomatitis virus. J. Biol. Chem. 286, 4517–4524 (2011).

    CAS  PubMed  Google Scholar 

  100. Kruger, A. et al. Human TLR8 senses UR/URR motifs in bacterial and mitochondrial RNA. EMBO Rep. 16, 1656–1663 (2015).

    PubMed  PubMed Central  Google Scholar 

  101. Jurk, M. et al. Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat. Immunol. 3, 499 (2002).

    CAS  PubMed  Google Scholar 

  102. Rehli, M. Of mice and men: species variations of Toll-like receptor expression. Trends Immunol. 23, 375–378 (2002).

    CAS  PubMed  Google Scholar 

  103. Kadowaki, N. et al. Subsets of human dendritic cell precursors express different Toll-like receptors and respond to different microbial antigens. J. Exp. Med. 194, 863–869 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Hornung, V. et al. Quantitative expression of Toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J. Immunol. 168, 4531–4537 (2002).

    CAS  PubMed  Google Scholar 

  105. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    CAS  PubMed  Google Scholar 

  106. Sigurdsson, S. et al. Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus. Am. J. Hum. Genet. 76, 528–537 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Graham, R. R. et al. A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus. Nat. Genet. 38, 550–555 (2006).

    CAS  PubMed  Google Scholar 

  108. Bentham, J. et al. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. Nat. Genet. 47, 1457–1464 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Odhams, C. A. et al. Interferon inducible X-linked gene CXorf21 may contribute to sexual dimorphism in systemic lupus erythematosus. Nat. Commun. 10, 2164 (2019).

    PubMed  PubMed Central  Google Scholar 

  110. Heinz, L. X. et al. TASL is the SLC15A4-associated adaptor for IRF5 activation by TLR7-9. Nature 581, 316–322 (2020). This paper identifies TASL, which is encoded by an SLE-associated gene, as a signalling adaptor specific for TLR7 and TLR9.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Ramirez-Ortiz, Z. G. et al. The receptor TREML4 amplifies TLR7-mediated signaling during antiviral responses and autoimmunity. Nat. Immunol. 16, 495–504 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Khan, N. S. et al. CD82 controls CpG-dependent TLR9 signaling. FASEB J. 33, 12500–12514 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Motshwene, P. G. et al. An oligomeric signaling platform formed by the Toll-like receptor signal transducers MyD88 and IRAK-4. J. Biol. Chem. 284, 25404–25411 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Leeb, T. et al. A missense variant affecting the C-terminal tail of UNC93B1 in dogs with exfoliative cutaneous lupus erythematosus (ECLE). Genes 11, 159 (2020).

    CAS  PubMed Central  Google Scholar 

  115. Ishida, H. et al. Cryo-EM structures of Toll-like receptors in complex with UNC93B1. Nat. Struct. Mol. Biol. 28, 173–180 (2021). This paper reports the first structure of UNC93B1, as well as the first structures of UNC93B1 bound to TLR3 or TLR7.

    CAS  PubMed  Google Scholar 

  116. Bonham, K. S. et al. A promiscuous lipid-binding protein diversifies the subcellular sites of Toll-like receptor signal transduction. Cell 156, 705–716 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. McWhirter, S. M. & Jefferies, C. A. Nucleic acid sensors as therapeutic targets for human disease. Immunity 53, 78–97 (2020).

    CAS  PubMed  Google Scholar 

  118. Campbell, J. D. Development of the CpG adjuvant 1018: a case study. Methods Mol. Biol. 1494, 15–27 (2017).

    CAS  PubMed  Google Scholar 

  119. Colonna, M., Trinchieri, G. & Liu, Y. J. Plasmacytoid dendritic cells in immunity. Nat. Immunol. 5, 1219–1226 (2004).

    CAS  PubMed  Google Scholar 

  120. Honda, K. et al. Spatiotemporal regulation of MyD88–IRF-7 signalling for robust type-I interferon induction. Nature 434, 1035–1040 (2005).

    CAS  PubMed  Google Scholar 

  121. Honda, K. et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434, 772–777 (2005).

    CAS  PubMed  Google Scholar 

  122. Hoshino, K. et al. IκB kinase-α is critical for interferon-α production induced by Toll-like receptors 7 and 9. Nature 440, 949–953 (2006).

    CAS  PubMed  Google Scholar 

  123. Cao, W. et al. Toll-like receptor-mediated induction of type I interferon in plasmacytoid dendritic cells requires the rapamycin-sensitive PI(3)K–mTOR–p70S6K pathway. Nat. Immunol. 9, 1157–1164 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Schmitz, F. et al. Mammalian target of rapamycin (mTOR) orchestrates the defense program of innate immune cells. Eur. J. Immunol. 38, 2981–2992 (2008).

    CAS  PubMed  Google Scholar 

  125. Jabara, H. H. et al. DOCK8 functions as an adaptor that links TLR–MyD88 signaling to B cell activation. Nat. Immunol. 13, 612–620 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Massaad, M. J. et al. DOCK8 and STAT3 dependent inhibition of IgE isotype switching by TLR9 ligation in human B cells. Clin. Immunol. 183, 263–265 (2017).

    CAS  PubMed  Google Scholar 

  127. Phelan, J. D. et al. A multiprotein supercomplex controlling oncogenic signalling in lymphoma. Nature 560, 387–391 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Suzuki, K. et al. Impaired Toll-like receptor 9 expression in alveolar macrophages with no sensitivity to CpG DNA. Am. J. Respir. Crit. Care Med. 171, 707–713 (2005).

    PubMed  Google Scholar 

  129. Price, A. E. et al. A map of Toll-like receptor expression in the intestinal epithelium reveals distinct spatial, cell type-specific, and temporal patterns. Immunity 49, 560–575.e6 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Choe, J., Kelker, M. S. & Wilson, I. A. Crystal structure of human Toll-like receptor 3 (TLR3) ectodomain. Science 309, 581–585 (2005).

    CAS  PubMed  Google Scholar 

  131. Liu, L. et al. Structural basis of Toll-like receptor 3 signaling with double-stranded RNA. Science 320, 379–381 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Zhang, Z. et al. Structural analyses of Toll-like receptor 7 reveal detailed RNA sequence specificity and recognition mechanism of agonistic ligands. Cell Rep. 25, 3371–3381.e5 (2018).

    CAS  PubMed  Google Scholar 

  133. Tanji, H., Ohto, U., Shibata, T., Miyake, K. & Shimizu, T. Structural reorganization of the Toll-like receptor 8 dimer induced by agonistic ligands. Science 339, 1426–1429 (2013).

    CAS  PubMed  Google Scholar 

  134. Bauer, M., Heeg, K., Wagner, H. & Lipford, G. B. DNA activates human immune cells through a CpG sequence-dependent manner. Immunology 97, 699–705 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Bauer, S. et al. Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc. Natl Acad. Sci. USA 98, 9237–9242 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Ohto, U. et al. Toll-like receptor 9 contains two DNA binding sites that function cooperatively to promote receptor dimerization and activation. Immunity 48, 649–658.e4 (2018).

    CAS  PubMed  Google Scholar 

  137. Song, W. et al. Structural basis for specific recognition of single-stranded RNA by Toll-like receptor 13. Nat. Struct. Mol. Biol. 22, 782–787 (2015).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research on nucleic acid sensing by TLRs in the Barton laboratory is supported by funding from the US National Institutes of Health (AI072429). K.P. is a Cancer Research Institute Irvington Fellow supported by the Cancer Research Institute. V.E.R. is supported by the National Science Foundation Graduate Research Fellowship Program under grant no. DGE 1752814.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, contributed substantially to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Gregory M. Barton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Immunology thanks K. Fitzgerald, N. J. Gay, A. Weber and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

CpG motifs

Short single-stranded oligodeoxynucleotides containing unmethylated CpG motifs function as Toll-like receptor 9 (TLR9) agonists. Different classes of CpG oligodeoxynucleotide are given letter designations (for example, CpG-A, CpG-B and CpG-C) based on the distinct responses they elicit.

Systemic lupus erythematosus

(SLE). A chronic autoimmune disease characterized by the production of antinuclear autoantibodies and often associated with production of type I interferon. The pathology of SLE can affect joints, skin, brain, lungs, kidneys and blood vessels.

Psoriasis

A chronic autoimmune disease characterized by inflammation of the skin, leading to raised patches of dry and scaly skin.

Cytosolic sensors of nucleic acids

Innate immune sensors of infection that detect nucleic acids and reside in the cytosol. Examples include the cGAS–STING pathway and AIM2, which detect DNA, and RIG-I and MDA5, which detect RNA.

Apoptotic cell microparticles

Small membrane-coated particles released from apoptotic cells that contain genomic DNA and chromatin, as well as RNA.

cGAS–STING pathway

An innate immune sensing pathway that detects the presence of cytosolic double-stranded DNA and triggers the transcription of type I interferon and other genes involved in the host response.

Neutrophil extracellular traps

Web-like structures of DNA released into the extracellular space by neutrophils. Neutrophil extracellular traps can trap microorganisms and prevent their dissemination, but in some contexts, they can be a source of self-nucleic acids that drive autoimmune diseases, such as systemic lupus erythematosus and psoriasis.

Suboptimal codons

Codons that are used at a lower than expected frequency in a given genome. Such codons often result in less efficient translation, which is thought to be owing, at least in part, to the limited availability of corresponding transfer RNAs.

Myddosome

A multiprotein signalling complex consisting of the adaptor protein MYD88 and members of the IL-1 receptor-associated kinase (IRAK) family that assembles upon activation of all Toll-like receptors (TLRs), except for TLR3.

Syntenin-1

A PDZ domain-containing adaptor protein that has been implicated in the biogenesis of exosomes and that supports intraluminal budding and delivery of cargo into intraluminal vesicles.

Multivesicular bodies

Specialized organelles within the endolysosomal network that are characterized by the presence of vesicles within their lumen. These intraluminal vesicles form by budding from the limiting membrane into the lumen. Sorting of cargo into multivesicular bodies is a common mechanism by which receptor signalling is terminated.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lind, N.A., Rael, V.E., Pestal, K. et al. Regulation of the nucleic acid-sensing Toll-like receptors. Nat Rev Immunol 22, 224–235 (2022). https://doi.org/10.1038/s41577-021-00577-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-021-00577-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing