[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Adipokines: masterminds of metabolic inflammation

Abstract

Adipose tissue is an immunologically active organ that controls host physiology, partly through the release of mediators termed adipokines. In obesity, adipocytes and infiltrating leukocytes produce adipokines, which include the hormones adiponectin and leptin and cytokines such as tumour necrosis factor and IL-1β. These adipokines orchestrate immune responses that are collectively referred to as metabolic inflammation. Consequently, metabolic inflammation characterizes metabolic disorders and promotes distinct disease aspects, such as insulin resistance, metabolic dysfunction-associated liver disease and cardiovascular complications. In this unifying concept, adipokines participate in the immunological cross-talk that occurs between metabolically active organs in metabolic diseases, highlighting the fundamental role of adipokines in obesity and their potential for therapeutic intervention. Here, we summarize how adipokines shape metabolic inflammation in mice and humans, focusing on their contribution to metabolic disorders in the setting of obesity and discussing their value as therapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Adiponectin and leptin controlling metabolic and inflammatory diseases.
Fig. 2: Adipokines orchestrate metabolic inflammation.
Fig. 3: Multiple parallel hits drive metabolic inflammation.

Similar content being viewed by others

References

  1. Koliaki, C., Dalamaga, M. & Liatis, S. Update on the obesity epidemic: after the sudden rise, is the upward trajectory beginning to flatten? Curr. Obes. Rep. 12, 514–527 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Heymsfield, S. B. & Wadden, T. A. Mechanisms, pathophysiology, and management of obesity. N. Engl. J. Med. 376, 254–266 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Schleh, M. W. et al. Metaflammation in obesity and its therapeutic targeting. Sci. Transl. Med. 15, eadf9382 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hotamisligil, G. S. Inflammation, metaflammation and immunometabolic disorders. Nature 542, 177–185 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Mantovani, A. & Garlanda, C. Humoral innate immunity and acute-phase proteins. Reply. N. Engl. J. Med. 388, 1725–1726 (2023).

    Article  PubMed  Google Scholar 

  6. Tilg, H. & Moschen, A. R. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat. Rev. Immunol. 6, 772–783 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Wentworth, J. M. et al. Pro-inflammatory CD11c+CD206+ adipose tissue macrophages are associated with insulin resistance in human obesity. Diabetes 59, 1648–1656 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hotamisligil, G. S., Shargill, N. S. & Spiegelman, B. M. Adipose expression of tumor necrosis factor-ɑ: direct role in obesity-linked insulin resistance. Science 259, 87–91 (1993). This work presents the first evidence for a role of TNF in obesity and insulin resistance.

    Article  CAS  PubMed  Google Scholar 

  9. Chavakis, T., Alexaki, V. I. & Ferrante, A. W. Jr Macrophage function in adipose tissue homeostasis and metabolic inflammation. Nat. Immunol. 24, 757–766 (2023).

    Article  CAS  PubMed  Google Scholar 

  10. Maniyadath, B., Zhang, Q., Gupta, R. K. & Mandrup, S. Adipose tissue at single-cell resolution. Cell Metab. 35, 386–413 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gilani, A., Stoll, L., Homan, E. A. & Lo, J. C. Adipose signals regulating distal organ health and disease. Diabetes 73, 169–177 (2024).

    Article  CAS  PubMed  Google Scholar 

  12. Scherer, P. E., Williams, S., Fogliano, M., Baldini, G. & Lodish, H. F. A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem. 270, 26746–26749 (1995). This work presents the first description of adiponectin as a 30 kDa secretory protein named Acrp30.

    Article  CAS  PubMed  Google Scholar 

  13. Hu, E., Liang, P. & Spiegelman, B. M. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J. Biol. Chem. 271, 10697–10703 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Maeda, K. et al. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1). Biochem. Biophys. Res. Commun. 221, 286–289 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Nakano, Y., Tobe, T., Choi-Miura, N. H., Mazda, T. & Tomita, M. Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma. J. Biochem. 120, 803–812 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Arita, Y. et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem. Biophys. Res. Commun. 257, 79–83 (1999). This work presents the first use of the term adiponectin and demonstrates its presence in the plasma of healthy people and decreased levels in obesity.

    Article  CAS  PubMed  Google Scholar 

  17. Straub, L. G. & Scherer, P. E. Metabolic messengers: adiponectin. Nat. Metab. 1, 334–339 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pineiro, R. et al. Adiponectin is synthesized and secreted by human and murine cardiomyocytes. FEBS Lett. 579, 5163–5169 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Delaigle, A. M., Jonas, J. C., Bauche, I. B., Cornu, O. & Brichard, S. M. Induction of adiponectin in skeletal muscle by inflammatory cytokines: in vivo and in vitro studies. Endocrinology 145, 5589–5597 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Wolf, A. M. et al. Up-regulation of the anti-inflammatory adipokine adiponectin in acute liver failure in mice. J. Hepatol. 44, 537–543 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Onodera, T. et al. Endogenous renal adiponectin drives gluconeogenesis through enhancing pyruvate and fatty acid utilization. Nat. Commun. 14, 6531 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shapiro, L. & Scherer, P. E. The crystal structure of a complement-1q family protein suggests an evolutionary link to tumor necrosis factor. Curr. Biol. 8, 335–338 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Ouchi, N. et al. Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation 100, 2473–2476 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Ouchi, N. et al. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-κB signaling through a cAMP-dependent pathway. Circulation 102, 1296–1301 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Yokota, T. et al. Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood 96, 1723–1732 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Berg, A. H., Combs, T. P., Du, X., Brownlee, M. & Scherer, P. E. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat. Med. 7, 947–953 (2001). This work shows that Acrp30 (adiponectin) potently enhances insulin activity and decreases glucose levels.

    Article  CAS  PubMed  Google Scholar 

  27. Maeda, N. et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat. Med. 8, 731–737 (2002). This work shows that adiponectin knockout mice exhibit severe diet-induced insulin resistance and high TNF levels.

    Article  CAS  PubMed  Google Scholar 

  28. Li, Y., Onodera, T. & Scherer, P. E. Adiponectin. Trends Endocrinol. Metab. 35, 674–675 (2024).

    Article  PubMed  Google Scholar 

  29. Xia, J. Y. et al. Acute loss of adipose tissue-derived adiponectin triggers immediate metabolic deterioration in mice. Diabetologia 61, 932–941 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Li, N. et al. Adiponectin preserves metabolic fitness during aging. eLife 10, e65108 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pajvani, U. B. et al. Structure–function studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications fpr metabolic regulation and bioactivity. J. Biol. Chem. 278, 9073–9085 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Wolf, A. M., Wolf, D., Rumpold, H., Enrich, B. & Tilg, H. Adiponectin induces the anti-inflammatory cytokines IL-10 and IL-1RA in human leukocytes. Biochem. Biophys. Res. Commun. 323, 630–635 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Ramos-Ramirez, P., Malmhall, C., Tliba, O., Radinger, M. & Bossios, A. Adiponectin/AdipoR1 axis promotes IL-10 release by human regulatory T cells. Front. Immunol. 12, 677550 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yamauchi, T. et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423, 762–769 (2003). This work clones ADIPOR1, which is mainly expressed in skeletal muscle, and ADIPOR2, mainly expressed in the liver.

    Article  CAS  PubMed  Google Scholar 

  35. Pang, T. T. & Narendran, P. The distribution of adiponectin receptors on human peripheral blood mononuclear cells. Ann. N. Y. Acad. Sci. 1150, 143–145 (2008).

    Article  PubMed  Google Scholar 

  36. Sargolzaei, J., Chamani, E., Kazemi, T., Fallah, S. & Soori, H. The role of adiponectin and adipolin as anti-inflammatory adipokines in the formation of macrophage foam cells and their association with cardiovascular diseases. Clin. Biochem. 54, 1–10 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Hug, C. et al. T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin. Proc. Natl Acad. Sci. USA 101, 10308–10313 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. van Stijn, C. M., Kim, J., Lusis, A. J., Barish, G. D. & Tangirala, R. K. Macrophage polarization phenotype regulates adiponectin receptor expression and adiponectin anti-inflammatory response. FASEB J. 29, 636–649 (2015).

    Article  PubMed  Google Scholar 

  39. Ohashi, K. et al. Adiponectin promotes macrophage polarization toward an anti-inflammatory phenotype. J. Biol. Chem. 285, 6153–6160 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Meacham, C. E. et al. Adiponectin receptors sustain haematopoietic stem cells throughout adulthood by protecting them from inflammation. Nat. Cell Biol. 24, 697–707 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Amarsaikhan, N., Tsoggerel, A., Hug, C. & Templeton, S. P. The metabolic cytokine adiponectin inhibits inflammatory lung pathology in invasive aspergillosis. J. Immunol. 203, 956–963 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. He, K. et al. Adiponectin deficiency accelerates brain aging via mitochondria-associated neuroinflammation. Immun. Ageing 20, 15 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Obeid, S. et al. Adiponectin confers protection from acute colitis and restricts a B cell immune response. J. Biol. Chem. 292, 6569–6582 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Holland, W. L. et al. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat. Med. 17, 55–63 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Shibata, S. et al. Adiponectin regulates psoriasiform skin inflammation by suppressing IL-17 production from γδ-T cells. Nat. Commun. 6, 7687 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Xu, A. et al. The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J. Clin. Invest. 112, 91–100 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kamada, Y. et al. Enhanced carbon tetrachloride-induced liver fibrosis in mice lacking adiponectin. Gastroenterology 125, 1796–1807 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Wilk, S. et al. Adiponectin is a negative regulator of antigen-activated T cells. Eur. J. Immunol. 41, 2323–2332 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Zhang, K. et al. Adiponectin suppresses T helper 17 cell differentiation and limits autoimmune CNS inflammation via the SIRT1/PPARγ/RORγt pathway. Mol. Neurobiol. 54, 4908–4920 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Surendar, J. et al. Adiponectin limits IFN-γ and IL-17 producing CD4 T cells in obesity by restraining cell intrinsic glycolysis. Front. Immunol. 10, 2555 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang, Y. et al. Adiponectin’s globular domain inhibits T cell activation by interacting with LAIR-1. Biochem. Biophys. Res. Commun. 573, 117–124 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Chimen, M. et al. Homeostatic regulation of T cell trafficking by a B cell-derived peptide is impaired in autoimmune and chronic inflammatory disease. Nat. Med. 21, 467–475 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yokota, T. et al. Adiponectin, a fat cell product, influences the earliest lymphocyte precursors in bone marrow cultures by activation of the cyclooxygenase–prostaglandin pathway in stromal cells. J. Immunol. 171, 5091–5099 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Wang, L. et al. Adiponectin restrains ILC2 activation by AMPK-mediated feedback inhibition of IL-33 signaling. J. Exp. Med. 218, e20191054 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Gao, M., Cui, D. & Xie, J. The role of adiponectin for immune cell function in metabolic diseases. Diabetes Obes. Metab. 25, 2427–2438 (2023).

    Article  CAS  PubMed  Google Scholar 

  56. Hotta, K. et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler. Thromb. Vasc. Biol. 20, 1595–1599 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Spranger, J. et al. Adiponectin and protection against type 2 diabetes mellitus. Lancet 361, 226–228 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Pischon, T. et al. Plasma adiponectin levels and risk of myocardial infarction in men. JAMA 291, 1730–1737 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Komatsu, M. et al. Strong inverse correlation between serum adiponectin level and heart rate-corrected QT interval in an apparently healthy population: a suggestion for a direct antiatherogenic effect of adiponectin. Diabetes Care 27, 1237–1238 (2004).

    Article  PubMed  Google Scholar 

  60. Maeda, N. et al. PPARγ ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 50, 2094–2099 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Quattrocelli, M. et al. Intermittent prednisone treatment in mice promotes exercise tolerance in obesity through adiponectin. J. Exp. Med. 219, e20211906 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wu, P. et al. Systematic review and meta-analysis of randomized controlled trials on the effect of SGLT2 inhibitor on blood leptin and adiponectin level in patients with type 2 diabetes. Horm. Metab. Res. 51, 487–494 (2019).

    Article  CAS  PubMed  Google Scholar 

  63. Bray, J. J. H. et al. Glucagon-like peptide-1 receptor agonists improve biomarkers of inflammation and oxidative stress: a systematic review and meta-analysis of randomised controlled trials. Diabetes Obes. Metab. 23, 1806–1822 (2021).

    Article  CAS  PubMed  Google Scholar 

  64. Wueest, S. et al. IL-6 receptor blockade increases circulating adiponectin levels in people with obesity: an explanatory analysis. Metabolites 11, 79 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ballak, D. B. et al. IL-37 protects against obesity-induced inflammation and insulin resistance. Nat. Commun. 5, 4711 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Okada-Iwabu, M. et al. A small-molecule AdipoR agonist for type 2 diabetes and short life in obesity. Nature 503, 493–499 (2013). This work describes an adiponectin receptor agonist (AdipoRon) which improved insulin resistance and glucose intolerance and lifespan of db/db mice on a high-fat diet.

    Article  CAS  PubMed  Google Scholar 

  67. Onodera, T. et al. PEGylated AdipoRon derivatives improve glucose and lipid metabolism under insulinopenic and high-fat diet conditions. J. Lipid Res. 62, 100095 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lindfors, S. et al. Adiponectin receptor agonist AdipoRon ameliorates renal inflammation in diet-induced obese mice and endotoxin-treated human glomeruli ex vivo. Diabetologia 64, 1866–1879 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Asahara, N. et al. A monoclonal antibody activating AdipoR for type 2 diabetes and nonalcoholic steatohepatitis. Sci. Adv. 9, eadg4216 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kim, J. Y. et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J. Clin. Invest. 117, 2621–2637 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ingalls, A. M., Dickie, M. M. & Snell, G. D. Obese, a new mutation in the house mouse. J. Hered. 41, 317–318 (1950).

    Article  CAS  PubMed  Google Scholar 

  72. Hummel, K. P., Dickie, M. M. & Coleman, D. L. Diabetes, a new mutation in the mouse. Science 153, 1127–1128 (1966).

    Article  CAS  PubMed  Google Scholar 

  73. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994). This work clones leptin and demonstrates that a mutation of ob results in profound obesity and type 2 diabetes.

    Article  CAS  PubMed  Google Scholar 

  74. Tartaglia, L. A. et al. Identification and expression cloning of a leptin receptor, OB-R. Cell 83, 1263–1271 (1995). This study discovers the LEPR as a single membrane-spanning receptor related to gp130 being expressed in various tissues.

    Article  CAS  PubMed  Google Scholar 

  75. de Candia, P. et al. The pleiotropic roles of leptin in metabolism, immunity, and cancer. J. Exp. Med. 218, e20191593 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Scherer, P. E. The multifaceted roles of adipose tissue-therapeutic targets for diabetes and beyond: the 2015 banting lecture. Diabetes 65, 1452–1461 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nishi, Y. et al. Enhanced production of leptin in gastric fundic mucosa with Helicobacter pylori infection. World J. Gastroenterol. 11, 695–699 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hassink, S. G. et al. Placental leptin: an important new growth factor in intrauterine and neonatal development? Pediatrics 100, E1 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. Le Beyec, J. et al. Overexpression of gastric leptin precedes adipocyte leptin during high-fat diet and is linked to 5HT-containing enterochromaffin cells. Int. J. Obes. 38, 1357–1364 (2014).

    Article  Google Scholar 

  80. Burguera, B. et al. The long form of the leptin receptor (OB-Rb) is widely expressed in the human brain. Neuroendocrinology 71, 187–195 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Zhao, S. et al. Hyperleptinemia contributes to antipsychotic drug-associated obesity and metabolic disorders. Sci. Transl. Med. 15, eade8460 (2023).

    Article  CAS  PubMed  Google Scholar 

  82. Considine, R. V. et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 334, 292–295 (1996). This work demonstrates that serum leptin concentrations correlate with the degree of body fat, proposing a phenomenon of leptin resistance.

    Article  CAS  PubMed  Google Scholar 

  83. Halaas, J. L. et al. Physiological response to long-term peripheral and central leptin infusion in lean and obese mice. Proc. Natl Acad. Sci. USA 94, 8878–8883 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mori, H. et al. Socs3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet-induced obesity. Nat. Med. 10, 739–743 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Fernandes, G., Handwerger, B. S., Yunis, E. J. & Brown, D. M. Immune response in the mutant diabetic C57BL/Ks-dt+ mouse. Discrepancies between in vitro and in vivo immunological assays. J. Clin. Invest. 61, 243–250 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Flores Gomez, D. et al. The effect of leptin on trained innate immunity and on systemic inflammation in subjects with obesity. J. Leukoc. Biol. 115, 374–384 (2024).

    Article  PubMed  Google Scholar 

  87. Monteiro, L. B. et al. Leptin signaling suppression in macrophages improves immunometabolic outcomes in obesity. Diabetes 71, 1546–1561 (2022).

    Article  PubMed  Google Scholar 

  88. Palhinha, L. et al. Leptin induces proadipogenic and proinflammatory signaling in adipocytes. Front. Endocrinol. 10, 841 (2019).

    Article  Google Scholar 

  89. Gainsford, T. et al. Leptin can induce proliferation, differentiation, and functional activation of hemopoietic cells. Proc. Natl Acad. Sci. USA 93, 14564–14568 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Loffreda, S. et al. Leptin regulates proinflammatory immune responses. FASEB J. 12, 57–65 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Matarese, G. et al. Requirement for leptin in the induction and progression of autoimmune encephalomyelitis. J. Immunol. 166, 5909–5916 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Siegmund, B., Lehr, H. A. & Fantuzzi, G. Leptin: a pivotal mediator of intestinal inflammation in mice. Gastroenterology 122, 2011–2025 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Matarese, G. et al. Leptin accelerates autoimmune diabetes in female NOD mice. Diabetes 51, 1356–1361 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Zarkesh-Esfahani, H. et al. Leptin indirectly activates human neutrophils via induction of TNF-ɑ. J. Immunol. 172, 1809–1814 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Yu, Y. et al. Leptin promotes monosodium urate crystal-induced inflammation in human and murine models of gout. J. Immunol. 202, 2728–2736 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Ihrie, M. D. et al. Exogenous leptin enhances markers of airway fibrosis in a mouse model of chronic allergic airways disease. Respir. Res. 23, 131 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Petrescu, A. D. et al. Leptin enhances hepatic fibrosis and inflammation in a mouse model of cholestasis. Am. J. Pathol. 192, 484–502 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhang, Q., Wang, J., Huang, F., Yao, Y. & Xu, L. Leptin induces NAFLD progression through infiltrated CD8+ T lymphocytes mediating pyroptotic-like cell death of hepatocytes and macrophages. Dig. Liver Dis. 53, 598–605 (2021).

    Article  CAS  PubMed  Google Scholar 

  99. Wang, Y., Wan, R. & Hu, C. Leptin/obR signaling exacerbates obesity-related neutrophilic airway inflammation through inflammatory M1 macrophages. Mol. Med. 29, 100 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lord, G. M. et al. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 394, 897–901 (1998). This work demonstrates that leptin links nutritional status with obesity and immunity, especially T cell functions.

    Article  CAS  PubMed  Google Scholar 

  101. Ozata, M., Ozdemir, I. C. & Licinio, J. Human leptin deficiency caused by a missense mutation: multiple endocrine defects, decreased sympathetic tone, and immune system dysfunction indicate new targets for leptin action, greater central than peripheral resistance to the effects of leptin, and spontaneous correction of leptin-mediated defects. J. Clin. Endocrinol. Metab. 84, 3686–3695 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Lord, G. M., Matarese, G., Howard, J. K., Bloom, S. R. & Lechler, R. I. Leptin inhibits the anti-CD3-driven proliferation of peripheral blood T cells but enhances the production of proinflammatory cytokines. J. Leukoc. Biol. 72, 330–338 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Wang, X. et al. Leptin levels in patients with systemic lupus erythematosus inversely correlate with regulatory T cell frequency. Lupus 26, 1401–1406 (2017).

    Article  CAS  PubMed  Google Scholar 

  104. Liu, T. et al. Deficient leptin receptor signaling in T cells of human SLE. Front. Immunol. 14, 1157731 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Reis, B. S. et al. Leptin receptor signaling in T cells is required for TH17 differentiation. J. Immunol. 194, 5253–5260 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. Wu, M. et al. Leptin deficiency in CD8+ T cells ameliorates non-segmental vitiligo by reducing interferon-γ and Granzyme B. Front. Immunol. 14, 1158883 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wang, W. et al. Leptin receptor antagonist attenuates experimental autoimmune thyroiditis in mice by regulating Treg/TH17 cell differentiation. Front. Endocrinol. 13, 1042511 (2022).

    Article  Google Scholar 

  108. Zeng, Q., Luo, X., Tang, Y., Liu, W. & Luo, R. Leptin regulated ILC2 cell through the PI3K/AKT pathway in allergic rhinitis. Mediators Inflamm. 2020, 4176082 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Frasca, D., Diaz, A., Romero, M. & Blomberg, B. B. Leptin induces immunosenescence in human B cells. Cell Immunol. 348, 103994 (2020).

    Article  CAS  PubMed  Google Scholar 

  110. Chen, H. et al. Leptin accelerates B cell dysfunctions via activating JAK/STAT3/5 and ERK1/2 pathways in patients with systemic lupus erythematosus. Clin. Exp. Rheumatol. 40, 2125–2132 (2022).

    PubMed  Google Scholar 

  111. Karmiris, K. et al. Circulating levels of leptin, adiponectin, resistin, and ghrelin in inflammatory bowel disease. Inflamm. Bowel Dis. 12, 100–105 (2006).

    Article  PubMed  Google Scholar 

  112. Welsh, P. et al. Leptin predicts diabetes but not cardiovascular disease: results from a large prospective study in an elderly population. Diabetes Care 32, 308–310 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Wang, C. et al. Leptin and risk factors for atherosclerosis: a review. Medicine 102, e36076 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhao, S., Kusminski, C. M. & Scherer, P. E. Adiponectin, leptin and cardiovascular disorders. Circ. Res. 128, 136–149 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhou, B. et al. (EX-4)2-Fc, an effective long-acting GLP-1 receptor agonist, reduces obesity-related inflammation by inhibiting leptin expression. Biochem. Biophys. Res. Commun. 529, 562–568 (2020).

    Article  CAS  PubMed  Google Scholar 

  116. Zhao, S. et al. Leptin reduction as a required component for weight loss. Diabetes 73, 197–210 (2024).

    Article  CAS  PubMed  Google Scholar 

  117. Funcke, J. B. & Scherer, P. E. Beyond adiponectin and leptin: adipose tissue-derived mediators of inter-organ communication. J. Lipid Res. 60, 1648–1684 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Xu, Y., Huang, L., Zhuang, Y. & Huang, H. Modulation of adipose tissue metabolism by exosomes in obesity. Am. J. Physiol. Endocrinol. Metab. 326, E709–E722 (2024).

    Article  CAS  PubMed  Google Scholar 

  119. Samal, B. et al. Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor. Mol. Cell Biol. 14, 1431–1437 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Fukuhara, A. et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science 307, 426–430 (2005).

    Article  CAS  PubMed  Google Scholar 

  121. Moschen, A. R. et al. Visfatin, an adipocytokine with proinflammatory and immunomodulating properties. J. Immunol. 178, 1748–1758 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Gerner, R. R. et al. NAD metabolism fuels human and mouse intestinal inflammation. Gut 67, 1813–1823 (2018).

    Article  CAS  PubMed  Google Scholar 

  123. Moschen, A. R. et al. A key role for pre-B cell colony-enhancing factor in experimental hepatitis. Hepatology 54, 675–686 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Semerena, E., Nencioni, A. & Masternak, K. Extracellular nicotinamide phosphoribosyltransferase: role in disease pathophysiology and as a biomarker. Front. Immunol. 14, 1268756 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Moschen, A. R. et al. Effects of weight loss induced by bariatric surgery on hepatic adipocytokine expression. J. Hepatol. 51, 765–777 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Tatemoto, K. et al. Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem. Biophys. Res. Commun. 251, 471–476 (1998).

    Article  CAS  PubMed  Google Scholar 

  127. Hu, S. et al. Apelin receptor dimer: classification, future prospects, and pathophysiological perspectives. Biochim. Biophys. Acta Mol. Basis Dis. 1870, 167257 (2024).

    Article  CAS  PubMed  Google Scholar 

  128. Boucher, J. et al. Apelin, a newly identified adipokine up-regulated by insulin and obesity. Endocrinology 146, 1764–1771 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. He, Q. et al. Apelin-36 protects against lipopolysaccharide-induced acute lung injury by inhibiting the ASK1/MAPK signaling pathway. Mol. Med Rep. 23, 6 (2021).

    CAS  PubMed  Google Scholar 

  130. Lian, S. et al. Protective effect of apelin-13 on ventilator-induced acute lung injury. Mol. Biol. Rep. 51, 74 (2024).

    Article  CAS  PubMed  Google Scholar 

  131. Shen, J. et al. Apelin prevents and alleviates crystalline silica-induced pulmonary fibrosis via inhibiting transforming growth factor β1-triggered fibroblast activation. Int. J. Biol. Sci. 19, 4004–4019 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Celik, F. S., Gunes, C. E., Yavuz, E. & Kurar, E. Apelin triggers macrophage polarization to M2 type in head and neck cancer. Immunobiology 228, 152353 (2023).

    Article  CAS  PubMed  Google Scholar 

  133. Yamada, D. et al. Apelin expression is downregulated in T cells in a murine model of chronic colitis. Biochem. Biophys. Res. Commun. 647, 72–79 (2023).

    Article  CAS  PubMed  Google Scholar 

  134. Arani Hessari, F. et al. Apelin-13 attenuates cerebral ischemia/reperfusion injury through regulating inflammation and targeting the JAK2/STAT3 signaling pathway. J. Chem. Neuroanat. 126, 102171 (2022).

    Article  CAS  PubMed  Google Scholar 

  135. BonDurant, L. D. & Potthoff, M. J. Fibroblast growth factor 21: a versatile regulator of metabolic homeostasis. Annu. Rev. Nutr. 38, 173–196 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Flippo, K. H. & Potthoff, M. J. Metabolic messengers: FGF21. Nat. Metab. 3, 309–317 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Holland, W. L. et al. An FGF21–adiponectin–ceramide axis controls energy expenditure and insulin action in mice. Cell Metab. 17, 790–797 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Yu, Y. et al. Fibroblast growth factor 21 (FGF21) ameliorates collagen-induced arthritis through modulating oxidative stress and suppressing nuclear factor-κ B pathway. Int. Immunopharmacol. 25, 74–82 (2015).

    Article  CAS  PubMed  Google Scholar 

  139. Zou, Y. et al. Fibroblast growth factor 21 mitigates lupus nephritis progression via the FGF21/Irgm 1/NLRP3 inflammasome pathway. Int. Immunopharmacol. 131, 111875 (2024).

    Article  CAS  PubMed  Google Scholar 

  140. Meng, F. et al. FGF21 ameliorates hepatic fibrosis by multiple mechanisms. Mol. Biol. Rep. 48, 7153–7163 (2021).

    Article  CAS  PubMed  Google Scholar 

  141. Hu, C. et al. Tumor-secreted FGF21 acts as an immune suppressor by rewiring cholesterol metabolism of CD8+T cells. Cell Metab. 36, 1168 (2024).

    Article  CAS  PubMed  Google Scholar 

  142. Harrison, S. A. et al. Efruxifermin in non-alcoholic steatohepatitis: a randomized, double-blind, placebo-controlled, phase 2a trial. Nat. Med. 27, 1262–1271 (2021).

    Article  CAS  PubMed  Google Scholar 

  143. Sethi, J. K. & Hotamisligil, G. S. Metabolic messengers: tumour necrosis factor. Nat. Metab. 3, 1302–1312 (2021).

    Article  CAS  PubMed  Google Scholar 

  144. Tack, C. J., Stienstra, R., Joosten, L. A. & Netea, M. G. Inflammation links excess fat to insulin resistance: the role of the interleukin-1 family. Immunol. Rev. 249, 239–252 (2012).

    Article  CAS  PubMed  Google Scholar 

  145. Pennica, D. et al. Human tumour necrosis factor: precursor structure, expression and homology to lymphotoxin. Nature 312, 724–729 (1984).

    Article  CAS  PubMed  Google Scholar 

  146. Kern, P. A. et al. The expression of tumor necrosis factor in human adipose tissue. Regulation by obesity, weight loss, and relationship to lipoprotein lipase. J. Clin. Invest. 95, 2111–2119 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Liu, C. et al. Adiponectin, TNF-ɑ and inflammatory cytokines and risk of type 2 diabetes: a systematic review and meta-analysis. Cytokine 86, 100–109 (2016).

    Article  CAS  PubMed  Google Scholar 

  148. Moschen, A. R. et al. Anti-inflammatory effects of excessive weight loss: potent suppression of adipose interleukin 6 and tumour necrosis factor ɑ expression. Gut 59, 1259–1264 (2010).

    Article  CAS  PubMed  Google Scholar 

  149. Uysal, K. T., Wiesbrock, S. M., Marino, M. W. & Hotamisligil, G. S. Protection from obesity-induced insulin resistance in mice lacking TNF-ɑ function. Nature 389, 610–614 (1997). This work shows that TNF is a key mediator of insulin resistance in preclinical disease models of obesity.

    Article  CAS  PubMed  Google Scholar 

  150. Van der Poll, T. et al. Tumor necrosis factor mimics the metabolic response to acute infection in healthy humans. Am. J. Physiol. 261, E457–E465 (1991).

    PubMed  Google Scholar 

  151. Ohta, H. et al. Disruption of tumor necrosis factor-ɑ gene diminishes the development of atherosclerosis in ApoE-deficient mice. Atherosclerosis 180, 11–17 (2005).

    Article  CAS  PubMed  Google Scholar 

  152. Sethi, J. K. et al. Characterisation of receptor-specific TNFɑ functions in adipocyte cell lines lacking type 1 and 2 TNF receptors. FEBS Lett. 469, 77–82 (2000).

    Article  CAS  PubMed  Google Scholar 

  153. Dinarello, C. A. Introduction to the interleukin-1 family of cytokines and receptors: drivers of innate inflammation and acquired immunity. Immunol. Rev. 281, 5–7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Mantovani, A., Dinarello, C. A., Molgora, M. & Garlanda, C. Interleukin-1 and related cytokines in the regulation of inflammation and immunity. Immunity 50, 778–795 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Rohm, T. V., Meier, D. T., Olefsky, J. M. & Donath, M. Y. Inflammation in obesity, diabetes, and related disorders. Immunity 55, 31–55 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Tilg, H., Moschen, A. R. & Szabo, G. Interleukin-1 and inflammasomes in alcoholic liver disease/acute alcoholic hepatitis and nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Hepatology 64, 955–965 (2016).

    Article  CAS  PubMed  Google Scholar 

  157. Moschen, A. R. et al. Adipose and liver expression of interleukin (IL)-1 family members in morbid obesity and effects of weight loss. Mol. Med. 17, 840–845 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Stienstra, R. et al. The inflammasome-mediated caspase-1 activation controls adipocyte differentiation and insulin sensitivity. Cell Metab. 12, 593–605 (2010). This work demonstrates that the inflammasome reflects an important regulator of adipocyte functions and insulin sensitivity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Jager, J., Gremeaux, T., Cormont, M., Le Marchand-Brustel, Y. & Tanti, J. F. Interleukin-1β-induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression. Endocrinology 148, 241–251 (2007).

    Article  CAS  PubMed  Google Scholar 

  160. Almog, T. et al. Interleukin-1ɑ deficiency reduces adiposity, glucose intolerance and hepatic de-novo lipogenesis in diet-induced obese mice. BMJ Open. Diabetes Res. Care 7, e000650 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Lee, J. H. et al. Interleukin-1β gene polymorphism and traditional constitution in obese women. Int. J. Neurosci. 118, 793–805 (2008).

    Article  CAS  PubMed  Google Scholar 

  162. Gonzalez-Muniesa, P., Bing, C. & Trayhurn, P. Upregulation of the expression of inflammatory and angiogenic markers in human adipocytes by a synthetic cannabinoid, JTE-907. Horm. Metab. Res. 42, 710–717 (2010).

    Article  CAS  PubMed  Google Scholar 

  163. Yokota, S. et al. Efficacy and safety of tocilizumab in patients with systemic-onset juvenile idiopathic arthritis: a randomised, double-blind, placebo-controlled, withdrawal phase III trial. Lancet 371, 998–1006 (2008).

    Article  CAS  PubMed  Google Scholar 

  164. Fontana, L., Eagon, J. C., Trujillo, M. E., Scherer, P. E. & Klein, S. Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes 56, 1010–1013 (2007). This work shows that human visceral fat is an important site of IL-6 production correlating with systemic inflammation.

    Article  CAS  PubMed  Google Scholar 

  165. Mohamed-Ali, V. et al. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-ɑ, in vivo. J. Clin. Endocrinol. Metab. 82, 4196–4200 (1997).

    CAS  PubMed  Google Scholar 

  166. Sabio, G. et al. A stress signaling pathway in adipose tissue regulates hepatic insulin resistance. Science 322, 1539–1543 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Tilg, H., Dinarello, C. A. & Mier, J. W. IL-6 and APPs: anti-inflammatory and immunosuppressive mediators. Immunol. Today 18, 428–432 (1997).

    Article  CAS  PubMed  Google Scholar 

  168. Ridker, P. M. & Rane, M. Interleukin-6 signaling and anti-interleukin-6 therapeutics in cardiovascular disease. Circ. Res. 128, 1728–1746 (2021).

    Article  CAS  PubMed  Google Scholar 

  169. Findeisen, M. et al. Treatment of type 2 diabetes with the designer cytokine IC7Fc. Nature 574, 63–68 (2019).

    Article  CAS  PubMed  Google Scholar 

  170. Ridker, P. M. et al. IL-6 inhibition with ziltivekimab in patients at high atherosclerotic risk (RESCUE): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet 397, 2060–2069 (2021).

    Article  CAS  PubMed  Google Scholar 

  171. Pergola, P. E. et al. Effect of ziltivekimab on determinants of hemoglobin in patients with CKD stage 3–5: an analysis of a randomized trial (RESCUE). J. Am. Soc. Nephrol. 35, 74–84 (2024).

    Article  PubMed  Google Scholar 

  172. Carey, A. L. et al. Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes 55, 2688–2697 (2006).

    Article  CAS  PubMed  Google Scholar 

  173. Franckhauser, S. et al. Overexpression of IL6 leads to hyperinsulinaemia, liver inflammation and reduced body weight in mice. Diabetologia 51, 1306–1316 (2008).

    Article  CAS  PubMed  Google Scholar 

  174. Olejniczak-Staruch, I. et al. AntiTNF-ɑ therapy normalizes levels of lipids and adipokines in psoriatic patients in the real-life settings. Sci. Rep. 11, 9289 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017). This work shows that IL-1β neutralizing antibodies decrease recurrent cardiovascular events, proving a key role for IL-1β in atherosclerosis.

    Article  CAS  PubMed  Google Scholar 

  176. Ridker, P. M. et al. Inflammation and cholesterol as predictors of cardiovascular events among patients receiving statin therapy: a collaborative analysis of three randomised trials. Lancet 401, 1293–1301 (2023). This work shows that inflammation is a major player besides lipids in atherosclerosis and related cardiovascular events.

    Article  CAS  PubMed  Google Scholar 

  177. Everett, B. M. et al. Anti-inflammatory therapy with canakinumab for the prevention of hospitalization for heart failure. Circulation 139, 1289–1299 (2019).

    Article  CAS  PubMed  Google Scholar 

  178. Everett, B. M. et al. Anti-inflammatory therapy with canakinumab for the prevention and management of diabetes. J. Am. Coll. Cardiol. 71, 2392–2401 (2018).

    Article  CAS  PubMed  Google Scholar 

  179. Rissanen, A., Howard, C. P., Botha, J., Thuren, T. & Global, I. Effect of anti-IL-1β antibody (canakinumab) on insulin secretion rates in impaired glucose tolerance or type 2 diabetes: results of a randomized, placebo-controlled trial. Diabetes Obes. Metab. 14, 1088–1096 (2012).

    Article  CAS  PubMed  Google Scholar 

  180. Larsen, C. M. et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N. Engl. J. Med. 356, 1517–1526 (2007).

    Article  CAS  PubMed  Google Scholar 

  181. Renehan, A. G., Zwahlen, M. & Egger, M. Adiposity and cancer risk: new mechanistic insights from epidemiology. Nat. Rev. Cancer 15, 484–498 (2015).

    Article  CAS  PubMed  Google Scholar 

  182. Lauby-Secretan, B. et al. Body fatness and cancer—viewpoint of the IARC Working Group. N. Engl. J. Med. 375, 794–798 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Mantovani, A., Allavena, P., Sica, A. & Balkwill, F. Cancer-related inflammation. Nature 454, 436–444 (2008).

    Article  CAS  PubMed  Google Scholar 

  184. Kant, P. & Hull, M. A. Excess body weight and obesity—the link with gastrointestinal and hepatobiliary cancer. Nat. Rev. Gastroenterol. Hepatol. 8, 224–238 (2011).

    Article  CAS  PubMed  Google Scholar 

  185. Singal, A. G., Kanwal, F. & Llovet, J. M. Global trends in hepatocellular carcinoma epidemiology: implications for screening, prevention and therapy. Nat. Rev. Clin. Oncol. 20, 864–884 (2023).

    Article  PubMed  Google Scholar 

  186. Gallagher, E. J. & LeRoith, D. Hyperinsulinaemia in cancer. Nat. Rev. Cancer 20, 629–644 (2020).

    Article  CAS  PubMed  Google Scholar 

  187. Singh, A., Mayengbam, S. S., Yaduvanshi, H., Wani, M. R. & Bhat, M. K. Obesity programs macrophages to support cancer progression. Cancer Res. 82, 4303–4312 (2022).

    Article  CAS  PubMed  Google Scholar 

  188. Brown, K. A. & Scherer, P. E. Update on adipose tissue and cancer. Endocr. Rev. 44, 961–974 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Sugiyama, M. et al. Adiponectin inhibits colorectal cancer cell growth through the AMPK/mTOR pathway. Int. J. Oncol. 34, 339–344 (2009).

    CAS  PubMed  Google Scholar 

  190. Saxena, A. et al. Adiponectin deficiency: role in chronic inflammation induced colon cancer. Biochim. Biophys. Acta 1822, 527–536 (2012).

    Article  CAS  PubMed  Google Scholar 

  191. Mutoh, M. et al. Loss of adiponectin promotes intestinal carcinogenesis in Min and wild-type mice. Gastroenterology 140, 2000–2008.e1–e2 (2011). This work demonstrates that adiponectin knockout mice have a higher rate of intestinal tumours, suggesting a chemopreventive function for adiponectin.

    Article  CAS  PubMed  Google Scholar 

  192. Manieri, E. et al. Adiponectin accounts for gender differences in hepatocellular carcinoma incidence. J. Exp. Med. 216, 1108–1119 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Nguyen, M. L. T. et al. Adiponectin receptor agonist effectively suppresses hepatocellular carcinoma growth. Cell Biochem. Biophys. 82, 687–697 (2024).

    Article  CAS  PubMed  Google Scholar 

  194. Bui, K. C. et al. Novel adiponectin receptor agonist inhibits cholangiocarcinoma via adenosine monophosphate-activated protein kinase. Curr. Med Chem. 31, 4534–4548 (2024).

    Article  PubMed  Google Scholar 

  195. Zhang, Z. et al. Adiponectin suppresses tumor growth of nasopharyngeal carcinoma through activating AMPK signaling pathway. J. Transl. Med. 20, 89 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Bocian-Jastrzebska, A., Malczewska-Herman, A. & Kos-Kudla, B. Role of leptin and adiponectin in carcinogenesis. Cancers 15, 4250 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Hu, X., Juneja, S. C., Maihle, N. J. & Cleary, M. P. Leptin—a growth factor in normal and malignant breast cells and for normal mammary gland development. J. Natl Cancer Inst. 94, 1704–1711 (2002).

    Article  CAS  PubMed  Google Scholar 

  198. Okumura, M. et al. Leptin and high glucose stimulate cell proliferation in MCF-7 human breast cancer cells: reciprocal involvement of PKC-ɑ and PPAR expression. Biochim. Biophys. Acta 1592, 107–116 (2002).

    Article  CAS  PubMed  Google Scholar 

  199. Sanchez-Jimenez, F., Perez-Perez, A., de la Cruz-Merino, L. & Sanchez-Margalet, V. Obesity and breast cancer: role of leptin. Front. Oncol. 9, 596 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Bhardwaj, P. et al. Obesity promotes breast epithelium DNA damage in women carrying a germline mutation in BRCA1 or BRCA2. Sci. Transl. Med. 15, eade1857 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Rivadeneira, D. B. et al. Oncolytic viruses engineered to enforce leptin expression reprogram tumor-infiltrating T cell metabolism and promote tumor clearance. Immunity 51, 548–560.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Park, E. J. et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 140, 197–208 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Garlanda, C. & Mantovani, A. Interleukin-1 in tumor progression, therapy, and prevention. Cancer Cell 39, 1023–1027 (2021).

    Article  CAS  PubMed  Google Scholar 

  204. Apte, R. N. et al. The involvement of IL-1 in tumorigenesis, tumor invasiveness, metastasis and tumor–host interactions. Cancer Metastasis Rev. 25, 387–408 (2006).

    Article  CAS  PubMed  Google Scholar 

  205. Aggen, D. H. et al. Blocking IL1β promotes tumor regression and remodeling of the myeloid compartment in a renal cell carcinoma model: multidimensional analyses. Clin. Cancer Res. 27, 608–621 (2021).

    Article  CAS  PubMed  Google Scholar 

  206. Xia, J. et al. IL1R2 blockade alleviates immunosuppression and potentiates anti-PD-1 efficacy in triple-negative breast cancer. Cancer Res. 84, 2282–2296 (2024).

    Article  CAS  PubMed  Google Scholar 

  207. Ridker, P. M. et al. Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet 390, 1833–1842 (2017). This landmark study proves that blocking pro-inflammatory IL-1β reduces incident lung cancer and lung cancer mortality.

    Article  CAS  PubMed  Google Scholar 

  208. Tilg, H. & Moschen, A. R. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 52, 1836–1846 (2010).

    Article  CAS  PubMed  Google Scholar 

  209. Sonnenburg, J. L. & Sonnenburg, E. D. Vulnerability of the industrialized microbiota. Science 366, eaaw9255 (2019).

    Article  CAS  PubMed  Google Scholar 

  210. Tilg, H., Zmora, N., Adolph, T. E. & Elinav, E. The intestinal microbiota fuelling metabolic inflammation. Nat. Rev. Immunol. 20, 40–54 (2020).

    Article  CAS  PubMed  Google Scholar 

  211. Tilg, H. & Moschen, A. R. Food, immunity, and the microbiome. Gastroenterology 148, 1107–1119 (2015).

    Article  PubMed  Google Scholar 

  212. Hou, K. et al. Microbiota in health and diseases. Signal. Transduct. Target. Ther. 7, 135 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Carlsson, L. M. S. et al. Life expectancy after bariatric surgery in the Swedish obese subjects study. N. Engl. J. Med. 383, 1535–1543 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Sinnathamby, T., Yun, J., Clavet-Lanthier, M. E., Cheong, C. & Sirois, M. G. VEGF and angiopoietins promote inflammatory cell recruitment and mature blood vessel formation in murine sponge/Matrigel model. J. Cell Biochem. 116, 45–57 (2015).

    Article  CAS  PubMed  Google Scholar 

  215. Ou, X. et al. Angiopoietin-1 aggravates atherosclerosis by inhibiting cholesterol efflux and promoting inflammatory response. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1865, 158535 (2020).

    Article  CAS  PubMed  Google Scholar 

  216. Fu, X., Chen, H. & Han, S. C16 peptide and angiopoietin-1 protect against LPS-induced BV-2 microglial cell inflammation. Life Sci. 256, 117894 (2020).

    Article  CAS  PubMed  Google Scholar 

  217. Krausz, S. et al. Angiopoietin-2 promotes inflammatory activation of human macrophages and is essential for murine experimental arthritis. Ann. Rheum. Dis. 71, 1402–1410 (2012).

    Article  CAS  PubMed  Google Scholar 

  218. Carvalheiro, T. et al. Angiopoietin-2 promotes inflammatory activation in monocytes of systemic sclerosis patients. Int. J. Mol. Sci. 21, 9544 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Fiedler, U. et al. Angiopoietin-2 sensitizes endothelial cells to TNF-ɑ and has a crucial role in the induction of inflammation. Nat. Med. 12, 235–239 (2006).

    Article  CAS  PubMed  Google Scholar 

  220. Coffelt, S. B. et al. Angiopoietin 2 stimulates TIE2-expressing monocytes to suppress T cell activation and to promote regulatory T cell expansion. J. Immunol. 186, 4183–4190 (2011).

    Article  CAS  PubMed  Google Scholar 

  221. Tabata, M. et al. Angiopoietin-like protein 2 promotes chronic adipose tissue inflammation and obesity-related systemic insulin resistance. Cell Metab. 10, 178–188 (2009).

    Article  CAS  PubMed  Google Scholar 

  222. Horio, E. et al. Role of endothelial cell-derived angptl2 in vascular inflammation leading to endothelial dysfunction and atherosclerosis progression. Arterioscler. Thromb. Vasc. Biol. 34, 790–800 (2014).

    Article  CAS  PubMed  Google Scholar 

  223. Tazume, H. et al. Macrophage-derived angiopoietin-like protein 2 accelerates development of abdominal aortic aneurysm. Arterioscler. Thromb. Vasc. Biol. 32, 1400–1409 (2012).

    Article  CAS  PubMed  Google Scholar 

  224. Weigert, J. et al. The adiponectin paralog CORS-26 has anti-inflammatory properties and is produced by human monocytic cells. FEBS Lett. 579, 5565–5570 (2005).

    Article  CAS  PubMed  Google Scholar 

  225. Kopp, A. et al. C1q/TNF-related protein-3 represents a novel and endogenous lipopolysaccharide antagonist of the adipose tissue. Endocrinology 151, 5267–5278 (2010).

    Article  CAS  PubMed  Google Scholar 

  226. Ma, Z. G. et al. CTRP3 attenuates cardiac dysfunction, inflammation, oxidative stress and cell death in diabetic cardiomyopathy in rats. Diabetologia 60, 1126–1137 (2017).

    Article  CAS  PubMed  Google Scholar 

  227. Ji, J. et al. Chemerin attracts neutrophil reverse migration by interacting with C–C motif chemokine receptor-like 2. Cell Death Dis. 15, 425 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Lu, Z. et al. Chemerin promotes invasion of oral squamous cell carcinoma by stimulating IL-6 and TNF-ɑ production via STAT3 activation. Mol. Biol. Rep. 51, 436 (2024).

    Article  CAS  PubMed  Google Scholar 

  229. Gonzalvo-Feo, S. et al. Endothelial cell-derived chemerin promotes dendritic cell transmigration. J. Immunol. 192, 2366–2373 (2014).

    Article  CAS  PubMed  Google Scholar 

  230. Liu, H. et al. Adipokine chemerin stimulates progression of atherosclerosis in ApoE–/– mice. Biomed. Res. Int. 2019, 7157865 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Lin, Y. et al. Chemerin aggravates DSS-induced colitis by suppressing M2 macrophage polarization. Cell Mol. Immunol. 11, 355–366 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Wu, Y. & Ma, Y. CCL2–CCR2 signaling axis in obesity and metabolic diseases. J. Cell Physiol. 239, e31192 (2024).

    Article  CAS  PubMed  Google Scholar 

  233. Kanda, H. et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J. Clin. Invest. 116, 1494–1505 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Weisberg, S. P. et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J. Clin. Invest. 116, 115–124 (2006).

    Article  CAS  PubMed  Google Scholar 

  235. Boring, L., Gosling, J., Cleary, M. & Charo, I. F. Decreased lesion formation in CCR2–/– mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 394, 894–897 (1998).

    Article  CAS  PubMed  Google Scholar 

  236. Zhong, J. et al. A potential role for dendritic cell/macrophage-expressing DPP4 in obesity-induced visceral inflammation. Diabetes 62, 149–157 (2013).

    Article  CAS  PubMed  Google Scholar 

  237. Zhuge, F. et al. DPP-4 inhibition by linagliptin attenuates obesity-related inflammation and insulin resistance by regulating M1/M2 macrophage polarization. Diabetes 65, 2966–2979 (2016).

    Article  CAS  PubMed  Google Scholar 

  238. Klemann, C., Wagner, L., Stephan, M. & von Horsten, S. Cut to the chase: a review of CD26/dipeptidyl peptidase-4’s (DPP4) entanglement in the immune system. Clin. Exp. Immunol. 185, 1–21 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Shao, S., Xu, Q., Yu, X., Pan, R. & Chen, Y. Dipeptidyl peptidase 4 inhibitors and their potential immune modulatory functions. Pharmacol. Ther. 209, 107503 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Makowski, L. et al. Lack of macrophage fatty-acid-binding protein aP2 protects mice deficient in apolipoprotein E against atherosclerosis. Nat. Med. 7, 699–705 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Furuhashi, M. et al. Adipocyte/macrophage fatty acid-binding proteins contribute to metabolic deterioration through actions in both macrophages and adipocytes in mice. J. Clin. Invest. 118, 2640–2650 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Hotamisligil, G. S. & Bernlohr, D. A. Metabolic functions of FABPs—mechanisms and therapeutic implications. Nat. Rev. Endocrinol. 11, 592–605 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Liang, X. et al. Macrophage FABP4 is required for neutrophil recruitment and bacterial clearance in Pseudomonas aeruginosa pneumonia. FASEB J. 33, 3562–3574 (2019).

    Article  CAS  PubMed  Google Scholar 

  244. Moschen, A. R., Adolph, T. E., Gerner, R. R., Wieser, V. & Tilg, H. Lipocalin-2: a master mediator of intestinal and metabolic inflammation. Trends Endocrinol. Metab. 28, 388–397 (2017).

    Article  CAS  PubMed  Google Scholar 

  245. Zhang, J. et al. The role of lipocalin 2 in the regulation of inflammation in adipocytes and macrophages. Mol. Endocrinol. 22, 1416–1426 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Yan, Q. W. et al. The adipokine lipocalin 2 is regulated by obesity and promotes insulin resistance. Diabetes 56, 2533–2540 (2007).

    Article  CAS  PubMed  Google Scholar 

  247. Moschen, A. R. et al. Lipocalin 2 protects from inflammation and tumorigenesis associated with gut microbiota alterations. Cell Host Microbe 19, 455–469 (2016).

    Article  CAS  PubMed  Google Scholar 

  248. Czech, M. et al. Lipocalin-2 expression identifies an intestinal regulatory neutrophil population during acute graft-versus-host disease. Sci. Transl. Med. 16, eadi1501 (2024).

    Article  CAS  PubMed  Google Scholar 

  249. Steppan, C. M. et al. The hormone resistin links obesity to diabetes. Nature 409, 307–312 (2001).

    Article  CAS  PubMed  Google Scholar 

  250. Kaser, S. et al. Resistin messenger-RNA expression is increased by proinflammatory cytokines in vitro. Biochem. Biophys. Res. Commun. 309, 286–290 (2003).

    Article  CAS  PubMed  Google Scholar 

  251. Kusminski, C. M. et al. The in vitro effects of resistin on the innate immune signaling pathway in isolated human subcutaneous adipocytes. J. Clin. Endocrinol. Metab. 92, 270–276 (2007).

    Article  CAS  PubMed  Google Scholar 

  252. Son, Y. M. et al. Resistin enhances the expansion of regulatory T cells through modulation of dendritic cells. BMC Immunol. 11, 33 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  253. Osborne, L. C. et al. Resistin-like molecule ɑ promotes pathogenic TH17 cell responses and bacterial-induced intestinal inflammation. J. Immunol. 190, 2292–2300 (2013).

    Article  CAS  PubMed  Google Scholar 

  254. Satoh, H. et al. Adenovirus-mediated chronic “hyper-resistinemia” leads to in vivo insulin resistance in normal rats. J. Clin. Invest. 114, 224–231 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Yang, Q. et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 436, 356–362 (2005).

    Article  CAS  PubMed  Google Scholar 

  256. Norseen, J. et al. Retinol-binding protein 4 inhibits insulin signaling in adipocytes by inducing proinflammatory cytokines in macrophages through a c-Jun N-terminal kinase- and Toll-like receptor 4-dependent and retinol-independent mechanism. Mol. Cell Biol. 32, 2010–2019 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Moraes-Vieira, P. M. et al. RBP4 activates antigen-presenting cells, leading to adipose tissue inflammation and systemic insulin resistance. Cell Metab. 19, 512–526 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Lee, S. A., Yuen, J. J., Jiang, H., Kahn, B. B. & Blaner, W. S. Adipocyte-specific overexpression of retinol-binding protein 4 causes hepatic steatosis in mice. Hepatology 64, 1534–1546 (2016).

    Article  CAS  PubMed  Google Scholar 

  259. Moraes-Vieira, P. M. et al. Antigen presentation and T-cell activation are critical for RBP4-induced insulin resistance. Diabetes 65, 1317–1327 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Di Bartolo, B. A. et al. TNF-related apoptosis-inducing ligand (TRAIL) protects against diabetes and atherosclerosis in Apoe–/– mice. Diabetologia 54, 3157–3167 (2011).

    Article  CAS  PubMed  Google Scholar 

  261. Bernardi, S. et al. TNF-related apoptosis-inducing ligand significantly attenuates metabolic abnormalities in high-fat-fed mice reducing adiposity and systemic inflammation. Clin. Sci. 123, 547–555 (2012).

    Article  CAS  Google Scholar 

  262. Chyuan, I. T., Tsai, H. F., Liao, H. J., Wu, C. S. & Hsu, P. N. An apoptosis-independent role of TRAIL in suppressing joint inflammation and inhibiting T-cell activation in inflammatory arthritis. Cell Mol. Immunol. 15, 846–857 (2018).

    Article  CAS  PubMed  Google Scholar 

  263. Lee, M. J. Transforming growth factor β superfamily regulation of adipose tissue biology in obesity. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 1160–1171 (2018).

    Article  CAS  PubMed  Google Scholar 

  264. Yadav, H. et al. Protection from obesity and diabetes by blockade of TGF-β/Smad3 signaling. Cell Metab. 14, 67–79 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Hida, K. et al. Visceral adipose tissue-derived serine protease inhibitor: a unique insulin-sensitizing adipocytokine in obesity. Proc. Natl Acad. Sci. USA 102, 10610–10615 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Nakatsuka, A. et al. Vaspin is an adipokine ameliorating ER stress in obesity as a ligand for cell-surface GRP78/MTJ-1 complex. Diabetes 61, 2823–2832 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Lin, Y. et al. Vaspin attenuates the progression of atherosclerosis by inhibiting ER stress-induced macrophage apoptosis in apoE–/– mice. Mol. Med. Rep. 13, 1509–1516 (2016).

    Article  CAS  PubMed  Google Scholar 

  268. Zieger, K. et al. Vaspin suppresses cytokine-induced inflammation in 3T3-L1 adipocytes via inhibition of NFκB pathway. Mol. Cell Endocrinol. 460, 181–188 (2018).

    Article  CAS  PubMed  Google Scholar 

  269. Libby, P. Inflammation in atherosclerosis. Nature 420, 868–874 (2002).

    Article  CAS  PubMed  Google Scholar 

  270. Shoelson, S. E., Lee, J. & Goldfine, A. B. Inflammation and insulin resistance. J. Clin. Invest. 116, 1793–1801 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772 (2007).

    Article  CAS  PubMed  Google Scholar 

  272. Cani, P. D. et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 1470–1481 (2008).

    Article  CAS  PubMed  Google Scholar 

  273. Stefan, N., Schick, F., Birkenfeld, A. L., Haring, H. U. & White, M. F. The role of hepatokines in NAFLD. Cell Metab. 35, 236–252 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Gadaleta, R. M. & Moschetta, A. Metabolic messengers: fibroblast growth factor 15/19. Nat. Metab. 1, 588–594 (2019).

    Article  PubMed  Google Scholar 

  275. Harrison, S. A. et al. Aldafermin in patients with non-alcoholic steatohepatitis (ALPINE 2/3): a randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Gastroenterol. Hepatol. 7, 603–616 (2022).

    Article  CAS  PubMed  Google Scholar 

  276. Rinella, M. E. et al. A randomized, double-blind, placebo-controlled trial of aldafermin in patients with NASH and compensated cirrhosis. Hepatology 79, 674–689 (2024).

    Article  PubMed  Google Scholar 

  277. Bostrom, P. et al. A PGC1-ɑ-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481, 463–468 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  278. Altarejos, J. Y. et al. Preclinical, randomized phase 1, and compassionate use evaluation of REGN4461, a leptin receptor agonist antibody for leptin deficiency. Sci. Transl. Med. 15, eadd4897 (2023).

    Article  CAS  PubMed  Google Scholar 

  279. Cook, K. et al. Effect of leptin therapy on survival in generalized and partial lipodystrophy: a matched cohort analysis. J. Clin. Endocrinol. Metab. 106, e2953–e2967 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  280. Ziegler, J. F. et al. Leptin induces TNFɑ-dependent inflammation in acquired generalized lipodystrophy and combined Crohn’s disease. Nat. Commun. 10, 5629 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Ter Horst, R. et al. Sex-specific regulation of inflammation and metabolic syndrome in obesity. Arterioscler. Thromb. Vasc. Biol. 40, 1787–1800 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  282. Mauvais-Jarvis, F. Sex differences in metabolic homeostasis, diabetes, and obesity. Biol. Sex. Differ. 6, 14 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  283. Ohman-Hanson, R. A. et al. Ethnic and sex differences in adiponectin: from childhood to adulthood. J. Clin. Endocrinol. Metab. 101, 4808–4815 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Consitt, L. A., Saxena, G. & Schaefer, M. Sex-dependent reductions in high molecular weight adiponectin during acute hyperinsulinemia are prevented with endurance training in older females. Clin. Endocrinol. 88, 673–682 (2018).

    Article  CAS  Google Scholar 

  285. Christen, T. et al. Sex differences in body fat distribution are related to sex differences in serum leptin and adiponectin. Peptides 107, 25–31 (2018).

    Article  CAS  PubMed  Google Scholar 

  286. Medrikova, D. et al. Sex differences during the course of diet-induced obesity in mice: adipose tissue expandability and glycemic control. Int. J. Obes. 36, 262–272 (2012).

    Article  CAS  Google Scholar 

  287. Becerril, S. et al. Sex- and age-dependent changes in the adiponectin/leptin ratio in experimental diet-induced obesity in mice. Nutrients 15, 73 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

T.E.A. received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant 101039320), the Austrian Science Fund (FWF P33070 and FG15) and the MYCOS consortium of the Medical University of Innsbruck. Views and opinions expressed are, however, those of the authors only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Herbert Tilg or Timon E. Adolph.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks Peter Libby and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

CANTOS trial

A landmark randomized, double-blind clinical trial in which 10,061 participants with previous myocardial infarction and a high-sensitivity C-reactive protein (hsCRP) level ≥2 mg l–1 received canakinumab, a therapeutic monoclonal antibody neutralizing IL-1β, over 48 months. Primary efficacy end-points were non-fatal myocardial infarction, non-fatal stroke or cardiovascular death.

Ciliary neurotrophic factor

(CNTF). A polypeptide hormone and neurotrophic factor and member of the IL-6 cytokine family that is able to interact with the IL-6 receptor (IL-6R).

gp130 receptor

A common receptor subunit of the IL-6 cytokine family.

HbA1c levels

Glycated haemoglobin levels chemically linked to a sugar (glucose) and reflecting circulating (serum) glucose levels within the past 3 months, therefore being an excellent indicator of euglycaemia/dysglycaemia.

High-sensitivity C-reactive protein (hsCRP) test

A test assessing in a very sensitive manner minimal/moderate elevated levels of CRP, which is one of the most important human acute -phase proteins reflecting systemic activity of pro-inflammatory cytokines such as tumour necrosis factor (TNF), IL-1β or IL-6.

Leukaemia inhibitory factor

(LIF). An IL-6 cytokine member which has main functions in the regulation of cell growth and differentiation.

M2-like macrophage phenotype

Macrophages are either classified as M1, a more pro-inflammatory phenotype, or M2, a phenotype dominated by the synthesis of more anti-inflammatory cytokines such as IL-10 to block T helper 1 cell (TH1 cell)-type immunity.

Metabolic dysfunction-associated steatotic liver disease

(MASLD). Previously called non-alcoholic fatty liver disease (NAFLD), one of the most common metabolic disorders in the world affecting almost a third of the world’s population.

Monosodium urate crystals

Crystals reflecting potent pro-inflammatory agents causing potent upregulation of various inflammasomes (including NLR family pyrin containing domain 3 (NLRP3)) and pro-inflammatory cytokines such as IL-1β.

Pathobionts

Members of the gut microbiota (mainly bacteria) which over time/life, especially in the context of various diseases – for example, chronic liver disease or colorectal cancer – develop the potential to become pathogenic and induce various diseases.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tilg, H., Ianiro, G., Gasbarrini, A. et al. Adipokines: masterminds of metabolic inflammation. Nat Rev Immunol (2024). https://doi.org/10.1038/s41577-024-01103-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41577-024-01103-8

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research