[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Long-term outcomes following CAR T cell therapy: what we know so far

Abstract

Chimeric antigen receptors (CAR) are engineered fusion proteins designed to target T cells to antigens expressed on cancer cells. CAR T cells are now an established treatment for patients with relapsed and/or refractory B cell lymphomas, B cell acute lymphoblastic leukaemia and multiple myeloma. At the time of this writing, over a decade of follow-up data are available from the initial patients who received CD19-targeted CAR T cells for B cell malignancies. Data on the outcomes of patients who received B cell maturation antigen (BCMA)-targeted CAR T cells for multiple myeloma are more limited owing to the more recent development of these constructs. In this Review, we summarize long-term follow-up data on efficacy and toxicities from patients treated with CAR T cells targeting CD19 or BCMA. Overall, the data demonstrate that CD19-targeted CAR T cells can induce prolonged remissions in patients with B cell malignancies, often with minimal long-term toxicities, and are probably curative for a subset of patients. By contrast, remissions induced by BCMA-targeted CAR T cells are typically more short-lived but also generally have only limited long-term toxicities. We discuss factors associated with long-term remissions, including the depth of initial response, malignancy characteristics predictive of response, peak circulating CAR levels and the role of lymphodepleting chemotherapy. We also discuss ongoing investigational strategies designed to improve the length of remission following CAR T cell therapy.

Key points

  • Among haematological malignancies, the indications for use of chimeric antigen receptor (CAR) T cells are rapidly expanding. CD19-targeted CAR T cells are now approved for relapsed and/or refractory B cell lymphoma and B cell acute lymphoblastic leukaemia, and B cell maturation antigen-targeted CAR T cells are approved for relapsed and/or refractory multiple myeloma.

  • Long-term follow-up data indicate that CD19-targeted CAR T cells are likely to be curative for a subset of patients with B cell lymphomas. These CAR T cells might need to be combined with consolidative allogeneic haematopoietic stem cell transplantation to enable long-term remissions for patients with B cell acute lymphoblastic leukaemia.

  • B cell maturation antigen-targeted CAR T cells can induce prolonged remissions in patients with relapsed and/or refractory multiple myeloma, although whether any of these responses are curative remains unclear.

  • Factors associated with durable remission after CAR T cell therapy include a deep initial response, lower baseline tumour volume, an absence of extramedullary disease, higher peak circulating CAR T cell levels and receipt of lymphodepleting chemotherapy.

  • The most prominent long-term toxicities after CAR T cell therapy include cytopenias and hypogammaglobulinaemia. The incidence of severe infections >1 month after CAR T cell therapy is low compared to infections seen in the acute period immediately after cell infusion.

  • Ongoing research efforts are attempting to improve the durability of responses after CAR T cell therapy, for example, through improved patient selection, novel CAR designs, including those targeting multiple antigens, and modifications to the manufacturing process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: FDA-approved CAR T cell therapies.
Fig. 2: Investigational strategies designed to improve remission duration following CAR T cell therapy.

Similar content being viewed by others

References

  1. Sadelain, M., Riviere, I. & Riddell, S. Therapeutic T cell engineering. Nature 545, 423–431 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kochenderfer, J. N. & Rosenberg, S. A. Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors. Nat. Rev. Clin. Oncol. 10, 267–276 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. June, C. H. & Sadelain, M. Chimeric antigen receptor therapy. N. Engl. J. Med. 379, 64–73 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kochenderfer, J. N. et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 119, 2709–2720 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kochenderfer, J. N. et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 116, 4099–4102 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brentjens, R. J. et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 118, 4817–4828 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kalos, M. et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci. Transl. Med. 3, 95ra73 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Porter, D. L., Levine, B. L., Kalos, M., Bagg, A. & June, C. H. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 365, 725–733 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Neelapu, S. S. et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 377, 2531–2544 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Abramson, J. S. et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet 396, 839–852 (2020).

    Article  PubMed  Google Scholar 

  11. Schuster, S. J. et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N. Engl. J. Med. 380, 45–56 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Wang, M. et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N. Engl. J. Med. 382, 1331–1342 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fowler, N. H. et al. Tisagenlecleucel in adult relapsed or refractory follicular lymphoma: the phase 2 ELARA trial. Nat. Med. 28, 325–332 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Jacobson, C. A. et al. Axicabtagene ciloleucel in relapsed or refractory indolent non-Hodgkin lymphoma (ZUMA-5): a single-arm, multicentre, phase 2 trial. Lancet Oncol. 23, 91–103 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Crump, M. et al. Outcomes in refractory diffuse large B-cell lymphoma: results from the international SCHOLAR-1 study. Blood 130, 1800–1808 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cappell, K. M. et al. Long-term follow-up of anti-CD19 chimeric antigen receptor T-cell therapy. J. Clin. Oncol. 38, 3805–3815 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Maude, S. L. et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378, 439–448 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shah, B. D. et al. KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukaemia: phase 2 results of the single-arm, open-label, multicentre ZUMA-3 study. Lancet 398, 491–502 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Qayed, M., Bleakley, M. & Shah, N. N. Role of chimeric antigen receptor T-cell therapy: bridge to transplantation or stand-alone therapy in pediatric acute lymphoblastic leukemia. Curr. Opin. Hematol. 28, 373–379 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Raje, N. et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N. Engl. J. Med. 380, 1726–1737 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Martin, T. et al. Ciltacabtagene autoleucel, an anti-B-cell maturation antigen chimeric antigen receptor T-cell therapy, for relapsed/refractory multiple myeloma: CARTITUDE-1 2-year follow-up. J. Clin. Oncol. 41, 1265–1274 (2023).

    Article  CAS  PubMed  Google Scholar 

  22. Munshi, N. C. et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N. Engl. J. Med. 384, 705–716 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Locke, F. L. et al. Axicabtagene ciloleucel as second-line therapy for large B-cell lymphoma. N. Engl. J. Med. 386, 640–654 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Kamdar, M. et al. Lisocabtagene maraleucel versus standard of care with salvage chemotherapy followed by autologous stem cell transplantation as second-line treatment in patients with relapsed or refractory large B-cell lymphoma (TRANSFORM): results from an interim analysis of an open-label, randomised, phase 3 trial. Lancet 399, 2294–2308 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Cappell, K. M. & Kochenderfer, J. N. A comparison of chimeric antigen receptors containing CD28 versus 4-1BB costimulatory domains. Nat. Rev. Clin. Oncol. 18, 715–727 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Brudno, J. N. & Kochenderfer, J. N. Chimeric antigen receptor T-cell therapies for lymphoma. Nat. Rev. Clin. Oncol. 15, 31–46 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Mikkilineni, L. & Kochenderfer, J. N. CAR T cell therapies for patients with multiple myeloma. Nat. Rev. Clin. Oncol. 18, 71–84 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Amini, L. et al. Preparing for CAR T cell therapy: patient selection, bridging therapies and lymphodepletion. Nat. Rev. Clin. Oncol. 19, 342–355 (2022).

    Article  PubMed  Google Scholar 

  29. Brudno, J. N. & Kochenderfer, J. N. Recent advances in CAR T-cell toxicity: mechanisms, manifestations and management. Blood Rev. 34, 45–55 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Lin, J. K. et al. Cost effectiveness of chimeric antigen receptor T-cell therapy in multiply relapsed or refractory adult large B-cell lymphoma. J. Clin. Oncol. 37, 2105–2119 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Chong, E. A., Ruella, M. & Schuster, S. J., Lymphoma Program Investigators at the University of Pennsylvania. Five-year outcomes for refractory B-cell lymphomas with CAR T-cell therapy. N. Engl. J. Med. 384, 673–674 (2021).

    Article  PubMed  Google Scholar 

  32. Jacobson, C. et al. Long-term (≥4 year and ≥5 year) overall survival (OS) by 12- and 24-month event-free survival (EFS): an updated analysis of ZUMA-1, the pivotal study of axicabtagene ciloleucel (axi-cel) in patients (pts) with refractory large B-cell lymphoma (LBCL). Blood 138 (Suppl. 1), 1764 (2021).

    Article  Google Scholar 

  33. Schuster, S. J. et al. Long-term clinical outcomes of tisagenlecleucel in patients with relapsed or refractory aggressive B-cell lymphomas (JULIET): a multicentre, open-label, single-arm, phase 2 study. Lancet Oncol. 22, 1403–1415 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Hirayama, A. V. et al. High rate of durable complete remission in follicular lymphoma after CD19 CAR-T cell immunotherapy. Blood 134, 636–640 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, M. et al. Three-year follow-up of KTE-X19 in patients with relapsed/refractory mantle cell lymphoma, including high-risk subgroups, in the ZUMA-2 study. J. Clin. Oncol. 41, 555–567 (2023).

    Article  CAS  PubMed  Google Scholar 

  36. Frey, N. V. et al. Long-term outcomes from a randomized dose optimization study of chimeric antigen receptor modified T cells in relapsed chronic lymphocytic leukemia. J. Clin. Oncol. 38, 2862–2871 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Abramson JS, P. M. et al. Two-year follow-up of transcend NHL 001, a multicenter phase 1 study of lisocabtagene maraleucel (liso-cel) in relapsed or refractory (R/R) large B-cell lymphomas (LBCL). Blood 138 (Suppl. 1), 2840 (2021).

    Article  Google Scholar 

  38. Siddiqi, T. et al. Phase 1 TRANSCEND CLL 004 study of lisocabtagene maraleucel in patients with relapsed/refractory CLL or SLL. Blood 139, 1794–1806 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Sarkozy, C. & Sehn, L. H. Management of relapsed/refractory DLBCL. Best Pract. Res. Clin. Haematol. 31, 209–216 (2018).

    Article  PubMed  Google Scholar 

  40. Gisselbrecht, C. et al. Salvage regimens with autologous transplantation for relapsed large B-cell lymphoma in the rituximab era. J. Clin. Oncol. 28, 4184–4190 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Martin, A. et al. R-ESHAP as salvage therapy for patients with relapsed or refractory diffuse large B-cell lymphoma: the influence of prior exposure to rituximab on outcome. A GEL/TAMO study. Haematologica 93, 1829–1836 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Shah, N. N. et al. Long-term follow-up of CD19-CAR T-cell therapy in children and young adults with B-ALL. J. Clin. Oncol. 39, 1650–1659 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hay, K. A. et al. Factors associated with durable EFS in adult B-cell ALL patients achieving MRD-negative CR after CD19 CAR T-cell therapy. Blood 133, 1652–1663 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Park, J. H. et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N. Engl. J. Med. 378, 449–459 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shah, B. D. et al. KTE-X19 anti-CD19 CAR T-cell therapy in adult relapsed/refractory acute lymphoblastic leukemia: ZUMA-3 phase 1 results. Blood 138, 11–22 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Roddie, C. et al. Durable responses and low toxicity after fast off-rate CD19 chimeric antigen receptor-T therapy in adults with relapsed or refractory B-cell acute lymphoblastic leukemia. J. Clin. Oncol. 39, 3352–3363 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang, S. et al. Humanized CD19-targeted chimeric antigen receptor T (CAR-T) cells for relapsed/refractory pediatric acute lymphoblastic leukemia. Am. J. Hematol. 96, E162–E165 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Frey, N. V. et al. Optimizing chimeric antigen receptor T-cell therapy for adults with acute lymphoblastic leukemia. J. Clin. Oncol. 38, 415–422 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. An, F. et al. Influence of patient characteristics on chimeric antigen receptor T cell therapy in B-cell acute lymphoblastic leukemia. Nat. Commun. 11, 5928 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jacoby, E. et al. Parameters of long-term response with CD28-based CD19 chimaeric antigen receptor-modified T cells in children and young adults with B-acute lymphoblastic leukaemia. Br. J. Haematol. 197, 475–481 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. Laetsch, T. W. et al. Three-year update of tisagenlecleucel in pediatric and young adult patients with relapsed/refractory acute lymphoblastic leukemia in the ELIANA trial. J. Clin. Oncol. 41, 1664–1669 (2023).

    Article  CAS  PubMed  Google Scholar 

  52. Wayne, A. S. et al. Three-year results from phase 1 of ZUMA-4: KTE-X19 in pediatric relapsed/refractory acute lymphoblastic leukemia. Haematologica https://doi.org/10.3324/haematol.2022.280678 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Grupp, S. A. et al. Updated analysis of the efficacy and safety of tisagenlecleucel in pediatric and young adult patients with relapsed/refractory (r/r) acute lymphoblastic leukemia. Blood 132, 895–895 (2018).

    Article  Google Scholar 

  54. Myers, R. M. et al. Blinatumomab nonresponse and high-disease burden are associated with inferior outcomes after CD19-CAR for B-ALL. J. Clin. Oncol. 40, 932–944 (2022).

    Article  CAS  PubMed  Google Scholar 

  55. Dourthe, M. E. et al. Determinants of CD19-positive vs CD19-negative relapse after tisagenlecleucel for B-cell acute lymphoblastic leukemia. Leukemia 35, 3383–3393 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Gauthier, J. in The EBMT/EHA CAR-T Cell Handbook (eds N. Kroger et al.) 165–168 (Springer, 2022).

  57. Ali, S. A. et al. T cells expressing an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma. Blood 128, 1688–1700 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Brudno, J. N. et al. T cells genetically modified to express an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of poor-prognosis relapsed multiple myeloma. J. Clin. Oncol. 36, 2267–2280 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhao, W. H. et al. Four-year follow-up of LCAR-B38M in relapsed or refractory multiple myeloma: a phase 1, single-arm, open-label, multicenter study in China (LEGEND-2). J. Hematol. Oncol. 15, 86 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang, D. et al. A phase 1 study of a novel fully human BCMA-targeting CAR (CT103A) in patients with relapsed/refractory multiple myeloma. Blood 137, 2890–2901 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Li, C. et al. A phase I study of anti-BCMA CAR T cell therapy in relapsed/refractory multiple myeloma and plasma cell leukemia. Clin. Transl. Med. 11, e346 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mikkilineni, L. et al. Treatment of patients with T cells expressing a fully-human anti-BCMA CAR with a heavy-chain antigen-recognition domain caused high rates of sustained complete responses and relatively mild toxicity. Blood 138, 3837–3837 (2021).

    Article  Google Scholar 

  63. Lonial, S. et al. Belantamab mafodotin for relapsed or refractory multiple myeloma (DREAMM-2): a two-arm, randomised, open-label, phase 2 study. Lancet Oncol. 21, 207–221 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Moreau, P. et al. Teclistamab in relapsed or refractory multiple myeloma. N. Engl. J. Med. 387, 495–505 (2022).

    Article  CAS  PubMed  Google Scholar 

  65. Neelapu, S. S. et al. Axicabtagene ciloleucel as first-line therapy in high-risk large B-cell lymphoma: the phase 2 ZUMA-12 trial. Nat. Med. 28, 735–742 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Maude, S. L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Locke, F. L. et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1-2 trial. Lancet Oncol. 20, 31–42 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Pulsipher, M. A. et al. Next-generation sequencing of minimal residual disease for predicting relapse after tisagenlecleucel in children and young adults with acute lymphoblastic leukemia. Blood Cancer Discov. 3, 66–81 (2022).

    Article  CAS  PubMed  Google Scholar 

  69. Frank, M. J. et al. Monitoring of circulating tumor DNA improves early relapse detection after axicabtagene ciloleucel infusion in large B-cell lymphoma: results of a prospective multi-institutional trial. J. Clin. Oncol. 39, 3034–3043 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Vercellino, L. et al. Predictive factors of early progression after CAR T-cell therapy in relapsed/refractory diffuse large B-cell lymphoma. Blood Adv. 4, 5607–5615 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Iacoboni, G. et al. Prognostic impact of total metabolic tumor volume in large B-cell lymphoma patients receiving CAR T-cell therapy. Ann. Hematol. 100, 2303–2310 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Cherng, H. J. et al. Risk assessment with low-pass whole-genome sequencing of cell-free DNA before CD19 CAR T-cell therapy for large B-cell lymphoma. Blood 140, 504–515 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Xu, J. et al. Exploratory trial of a biepitopic CAR T-targeting B cell maturation antigen in relapsed/refractory multiple myeloma. Proc. Natl Acad. Sci. USA 116, 9543–9551 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kochenderfer, J. N. et al. Lymphoma remissions caused by anti-CD19 chimeric antigen receptor T cells are associated with high serum interleukin-15 Levels. J. Clin. Oncol. 35, 1803–1813 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Turtle, C. J. et al. Immunotherapy of non-Hodgkin’s lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells. Sci. Transl. Med. 8, 355ra116 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Gauthier, J. et al. Factors associated with outcomes after a second CD19-targeted CAR T-cell infusion for refractory B-cell malignancies. Blood 137, 323–335 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hirayama, A. V. et al. The response to lymphodepletion impacts PFS in patients with aggressive non-Hodgkin lymphoma treated with CD19 CAR T cells. Blood 133, 1876–1887 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gardner, R. A. et al. Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood 129, 3322–3331 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Turtle, C. J. et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J. Clin. Invest. 126, 2123–2138 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Gattinoni, L. et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J. Exp. Med. 202, 907–912 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wrzesinski, C. et al. Increased intensity lymphodepletion enhances tumor treatment efficacy of adoptively transferred tumor-specific T cells. J. Immunother. 33, 1–7 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Brudno, J. N. et al. Allogeneic T cells that express an anti-CD19 chimeric antigen receptor induce remissions of B-cell malignancies that progress after allogeneic hematopoietic stem-cell transplantation without causing graft-versus-host disease. J. Clin. Oncol. 34, 1112–1121 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Schuster, S. J. et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N. Engl. J. Med. 377, 2545–2554 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Porter, D. L. et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci. Transl. Med. 7, 303ra139 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Lee, D. W. et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385, 517–528 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Melenhorst, J. J. et al. Decade-long leukaemia remissions with persistence of CD4+ CAR T cells. Nature 602, 503–509 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kochenderfer, J. N. et al. Long-duration complete remissions of diffuse large B cell lymphoma after anti-CD19 chimeric antigen receptor T cell therapy. Mol. Ther. 25, 2245–2253 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Brudno, J. N. & Kochenderfer, J. N. Toxicities of chimeric antigen receptor T cells: recognition and management. Blood 127, 3321–3330 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cordeiro, A. et al. Late events after treatment with CD19-targeted chimeric antigen receptor modified T cells. Biol. Blood Marrow Transpl. 26, 26–33 (2020).

    Article  CAS  Google Scholar 

  90. Hill, J. A., Giralt, S., Torgerson, T. R. & Lazarus, H. M. CAR-T — and a side order of IgG, to go? — Immunoglobulin replacement in patients receiving CAR-T cell therapy. Blood Rev. 38, 100596 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hill, J. A. & Seo, S. K. How I prevent infections in patients receiving CD19-targeted chimeric antigen receptor T cells for B-cell malignancies. Blood 136, 925–935 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Atanackovic, D. et al. Vaccine-induced T-cell responses against SARS-CoV-2 and its Omicron variant in patients with B cell-depleted lymphoma after CART therapy. Blood 140, 152–156 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sesques, P. et al. Immune response to three doses of mRNA SARS-CoV-2 vaccines in CD19-targeted chimeric antigen receptor T cell immunotherapy recipients. Cancer Cell 40, 236–237 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Logue, J. M. et al. Immune reconstitution and associated infections following axicabtagene ciloleucel in relapsed or refractory large B-cell lymphoma. Haematologica 106, 978–986 (2021).

    Article  CAS  PubMed  Google Scholar 

  95. Brudno, J. N. et al. Acute and delayed cytopenias following CAR T-cell therapy: an investigation of risk factors and mechanisms. Leuk. Lymphoma 63, 1849–1860 (2022).

    Article  CAS  PubMed  Google Scholar 

  96. Fried, S. et al. Early and late hematologic toxicity following CD19 CAR-T cells. Bone Marrow Transpl. 54, 1643–1650 (2019).

    Article  CAS  Google Scholar 

  97. Little, J. S. et al. Low incidence of invasive fungal disease following CD19 chimeric antigen receptor T-cell therapy for non-Hodgkin lymphoma. Blood Adv. 6, 4821–4830 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gudiol, C., Lewis, R. E., Strati, P. & Kontoyiannis, D. P. Chimeric antigen receptor T-cell therapy for the treatment of lymphoid malignancies: is there an excess risk for infection? Lancet Haematol. 8, e216–e228 (2021).

    Article  CAS  PubMed  Google Scholar 

  99. Shree, T. et al. Impaired immune health in survivors of diffuse large B-cell lymphoma. J. Clin. Oncol. 38, 1664–1675 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cheok, K. P. L. et al. Severe presentations and high mortality from SARS-CoV-2 in patients undergoing chimeric antigen receptor (CAR-T) therapy: a UK NCCP analysis. Leuk. Lymphoma 63, 1980–1984 (2022).

    Article  CAS  PubMed  Google Scholar 

  101. Spanjaart, A. M. et al. Poor outcome of patients with COVID-19 after CAR T-cell therapy for B-cell malignancies: results of a multicenter study on behalf of the European Society for Blood and Marrow Transplantation (EBMT) Infectious Diseases Working Party and the European Hematology Association (EHA) Lymphoma Group. Leukemia 35, 3585–3588 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Busca, A. et al. COVID-19 and CAR T cells: a report on current challenges and future directions from the EPICOVIDEHA survey by EHA-IDWP. Blood Adv. 6, 2427–2433 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kohn, D. B., Sadelain, M. & Glorioso, J. C. Occurrence of leukaemia following gene therapy of X-linked SCID. Nat. Rev. Cancer 3, 477–488 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Steffin, D. H. M. et al. Long-term follow-up for the development of subsequent malignancies in patients treated with genetically modified IECs. Blood 140, 16–24 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Travis, L. B. et al. Second cancers among long-term survivors of non-Hodgkin’s lymphoma. J. Natl Cancer Inst. 85, 1932–1937 (1993).

    Article  CAS  PubMed  Google Scholar 

  106. Tward, J. D., Wendland, M. M., Shrieve, D. C., Szabo, A. & Gaffney, D. K. The risk of secondary malignancies over 30 years after the treatment of non-Hodgkin lymphoma. Cancer 107, 108–115 (2006).

    Article  PubMed  Google Scholar 

  107. Majzner, R. G. & Mackall, C. L. Tumor antigen escape from CAR T-cell therapy. Cancer Discov. 8, 1219–1226 (2018).

    Article  CAS  PubMed  Google Scholar 

  108. Plaks, V. et al. CD19 target evasion as a mechanism of relapse in large B-cell lymphoma treated with axicabtagene ciloleucel. Blood 138, 1081–1085 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Da Via, M. C. et al. Homozygous BCMA gene deletion in response to anti-BCMA CAR T cells in a patient with multiple myeloma. Nat. Med. 27, 616–619 (2021).

    Article  PubMed  Google Scholar 

  110. Samur, M. K. et al. Biallelic loss of BCMA as a resistance mechanism to CAR T cell therapy in a patient with multiple myeloma. Nat. Commun. 12, 868 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zurko, J. C. et al. Long-term outcomes and predictors of early response, late relapse, and survival for patients treated with bispecific LV20.19 CAR T-cells. Am. J. Hematol. https://doi.org/10.1002/ajh.26718 (2022).

    Article  PubMed  Google Scholar 

  112. Zhang, Y. et al. Long-term activity of tandem CD19/CD20 CAR therapy in refractory/relapsed B-cell lymphoma: a single-arm, phase 1-2 trial. Leukemia 36, 189–196 (2022).

    Article  CAS  PubMed  Google Scholar 

  113. Cordoba, S. et al. CAR T cells with dual targeting of CD19 and CD22 in pediatric and young adult patients with relapsed or refractory B cell acute lymphoblastic leukemia: a phase 1 trial. Nat. Med. 27, 1797–1805 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Shalabi, H. et al. CD19/22 CAR T cells in children and young adults with B-ALL: phase 1 results and development of a novel bicistronic CAR. Blood 140, 451–463 (2022).

    Article  CAS  PubMed  Google Scholar 

  115. Spiegel, J. Y. et al. CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: a phase 1 trial. Nat. Med. 27, 1419–1431 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Friedman, K. M. et al. Effective targeting of multiple B-cell maturation antigen-expressing hematological malignances by anti-B-cell maturation antigen chimeric antigen receptor T cells. Hum. Gene Ther. 29, 585–601 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhao, W. H. et al. A phase 1, open-label study of LCAR-B38M, a chimeric antigen receptor T cell therapy directed against B cell maturation antigen, in patients with relapsed or refractory multiple myeloma. J. Hematol. Oncol. 11, 141 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Brudno, J. N. et al. Safety and feasibility of anti-CD19 CAR T cells with fully human binding domains in patients with B-cell lymphoma. Nat. Med. 26, 270–280 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Mikkilineni, L. et al. Deep and durable remissions of relapsed multiple myeloma on a first-in-humans clinical trial of T cells expressing an anti-B-cell maturation antigen (BCMA) chimeric antigen receptor (CAR) with a fully-human heavy-chain-only antigen recognition domain. Blood 136, 50–51 (2020).

    Article  Google Scholar 

  120. Cohen, A. D. et al. B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma. J. Clin. Invest. 129, 2210–2221 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Hamers-Casterman, C. et al. Naturally occurring antibodies devoid of light chains. Nature 363, 446–448 (1993).

    Article  CAS  PubMed  Google Scholar 

  122. Asaadi, Y., Jouneghani, F. F., Janani, S. & Rahbarizadeh, F. A comprehensive comparison between camelid nanobodies and single chain variable fragments. Biomark. Res. 9, 87 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Lam, N. et al. Anti-BCMA chimeric antigen receptors with fully human heavy-chain-only antigen recognition domains. Nat. Commun. 11, 283 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Qayed, M. et al. Leukapheresis guidance and best practices for optimal chimeric antigen receptor T-cell manufacturing. Cytotherapy 24, 869–878 (2022).

    Article  CAS  PubMed  Google Scholar 

  125. Neelapu, S. S. et al. Primary analysis of ZUMA-12: a phase 2 study of axicabtagene ciloleucel (axi-cel) as first-line therapy in patients with high-risk large B-cell lymphoma (LBCL). Blood 138, 739–739 (2021).

    Article  Google Scholar 

  126. Liebers, N. et al. Polatuzumab vedotin as a salvage and bridging treatment in relapsed or refractory large B-cell lymphomas. Blood Adv. 5, 2707–2716 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Pinnix, C. C. et al. Bridging therapy prior to axicabtagene ciloleucel for relapsed/refractory large B-cell lymphoma. Blood Adv. 4, 2871–2883 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Nastoupil, L. J. et al. Standard-of-care axicabtagene ciloleucel for relapsed or refractory large B-cell lymphoma: results from the US lymphoma CAR T consortium. J. Clin. Oncol. 38, 3119–3128 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Lutfi, F. et al. The impact of bridging therapy prior to CD19-directed chimeric antigen receptor T-cell therapy in patients with large B-cell lymphoma. Br. J. Haematol. 195, 405–412 (2021).

    Article  CAS  PubMed  Google Scholar 

  130. Jain, T. et al. Use of chimeric antigen receptor T cell therapy in clinical practice for relapsed/refractory aggressive B cell non-Hodgkin lymphoma: an expert panel opinion from the American Society for Transplantation and Cellular Therapy. Biol. Blood Marrow Transpl. 25, 2305–2321 (2019).

    Article  CAS  Google Scholar 

  131. Pont, M. J. et al. γ-Secretase inhibition increases efficacy of BCMA-specific chimeric antigen receptor T cells in multiple myeloma. Blood 134, 1585–1597 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Gauthier, J. et al. Feasibility and efficacy of CD19-targeted CAR T cells with concurrent ibrutinib for CLL after ibrutinib failure. Blood 135, 1650–1660 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Geyer, M. B. et al. Safety and tolerability of conditioning chemotherapy followed by CD19-targeted CAR T cells for relapsed/refractory CLL. JCI Insight https://doi.org/10.1172/jci.insight.122627 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Chong, E. A. et al. Pembrolizumab for B-cell lymphomas relapsing after or refractory to CD19-directed CAR T-cell therapy. Blood 139, 1026–1038 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Watanabe, N., Mo, F. & McKenna, M. K. Impact of manufacturing procedures on CAR T cell functionality. Front. Immunol. 13, 876339 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Seder, R. A., Darrah, P. A. & Roederer, M. T-cell quality in memory and protection: implications for vaccine design. Nat. Rev. Immunol. 8, 247–258 (2008).

    Article  CAS  PubMed  Google Scholar 

  137. Gattinoni, L., Klebanoff, C. A. & Restifo, N. P. Paths to stemness: building the ultimate antitumour T cell. Nat. Rev. Cancer 12, 671–684 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Rossi, J. et al. Preinfusion polyfunctional anti-CD19 chimeric antigen receptor T cells are associated with clinical outcomes in NHL. Blood 132, 804–814 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Deng, Q. et al. Characteristics of anti-CD19 CAR T cell infusion products associated with efficacy and toxicity in patients with large B cell lymphomas. Nat. Med. 26, 1878–1887 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Fraietta, J. A. et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat. Med. 24, 563–571 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Sommermeyer, D. et al. Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia 30, 492–500 (2016).

    Article  CAS  PubMed  Google Scholar 

  142. Gattinoni, L. et al. Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J. Clin. Invest. 115, 1616–1626 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Klebanoff, C. A. et al. Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells. Proc. Natl Acad. Sci. USA 102, 9571–9576 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Xu, Y. et al. Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15. Blood 123, 3750–3759 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Hinrichs, C. S. et al. IL-2 and IL-21 confer opposing differentiation programs to CD8+ T cells for adoptive immunotherapy. Blood 111, 5326–5333 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Sabatino, M. et al. Generation of clinical-grade CD19-specific CAR-modified CD8+ memory stem cells for the treatment of human B-cell malignancies. Blood 128, 519–528 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. van der Waart, A. B. et al. Inhibition of Akt signaling promotes the generation of superior tumor-reactive T cells for adoptive immunotherapy. Blood 124, 3490–3500 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Gattinoni, L. et al. Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat. Med. 15, 808–813 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ghassemi, S. et al. Reducing ex vivo culture improves the antileukemic activity of chimeric antigen receptor (CAR) T cells. Cancer Immunol. Res. 6, 1100–1109 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Lu, T. L. et al. A rapid cell expansion process for production of engineered autologous CAR-T cell therapies. Hum. Gene Ther. Methods 27, 209–218 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ghassemi, S. et al. Rapid manufacturing of non-activated potent CAR T cells. Nat. Biomed. Eng. 6, 118–128 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Mailankody, S. et al. Allogeneic BCMA-targeting CAR T cells in relapsed/refractory multiple myeloma: phase 1 UNIVERSAL trial interim results. Nat. Med. 29, 422–429 (2023).

    Article  CAS  PubMed  Google Scholar 

  153. Kochenderfer, J. N. et al. Construction and preclinical evaluation of an anti-CD19 chimeric antigen receptor. J. Immunother. 32, 689–702 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Hollyman, D. et al. Manufacturing validation of biologically functional T cells targeted to CD19 antigen for autologous adoptive cell therapy. J. Immunother. 32, 169–180 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work of the authors is supported by National Cancer Institute intramural funding. K.M.C. thanks the staff at INOVA Schar Cancer Institute for support and S.D. Cappell for critically reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Both authors made a substantial contribution to all aspects of the preparation of this manuscript.

Corresponding author

Correspondence to James N. Kochenderfer.

Ethics declarations

Competing interests

J.N.K. has received research funding from Bristol Myers Squibb and Kite and receives royalties relating to patents from Kite and Kyverna Therapeutics. K.M.C. declares no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks E. Jacoby and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cappell, K.M., Kochenderfer, J.N. Long-term outcomes following CAR T cell therapy: what we know so far. Nat Rev Clin Oncol 20, 359–371 (2023). https://doi.org/10.1038/s41571-023-00754-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-023-00754-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing