[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transparent sunlight-activated antifogging metamaterials

Abstract

Counteracting surface fogging to maintain surface transparency is important for a variety of applications including eyewear, windows and displays. Energy-neutral, passive approaches predominantly rely on engineering the surface wettability, but suffer from non-uniformity, contaminant deposition and lack of robustness, all of which substantially degrade durability and performance. Here, guided by nucleation thermodynamics, we design a transparent, sunlight-activated, photothermal coating to inhibit fogging. The metamaterial coating contains a nanoscopically thin percolating gold layer and is most absorptive in the near-infrared range, where half of the sunlight energy resides, thus maintaining visible transparency. The photoinduced heating effect enables sustained and superior fog prevention (4-fold improvement) and removal (3-fold improvement) compared with uncoated samples, and overall impressive performance, indoors and outdoors, even under cloudy conditions. The extreme thinness (~10 nm) of the coating—which can be produced by standard, readily scalable fabrication processes—enables integration beneath other coatings, rendering it durable even on highly compliant substrates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design and optical properties of the metamaterial coating.
Fig. 2: Structure of the metamaterial coating and angular dispersion relation.
Fig. 3: Experimental set-up and photothermal performance.
Fig. 4: Antifogging performance.
Fig. 5: Defogging performance and real-world feasibility.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Information. Figure source data can be found under https://www.research-collection.ethz.ch/handle/20.500.11850/574061 (Iwan Haechler, extended data for ‘Transparent sunlight-activated antifogging metamaterials’, Eidgenössische Technische Hochschule Zurich Research Collection, https://doi.org/10.3929/ethz-b-000574061, 2022).

References

  1. Yoon, J. et al. Wet-style superhydrophobic antifogging coatings for optical sensors. Adv. Mater. 32, e2002710 (2020).

    Article  Google Scholar 

  2. Howarter, J. A. & Youngblood, J. P. Self-cleaning and next generation anti-fog surfaces and coatings. Macromol. Rapid. Comm. 29, 455–466 (2008).

    Article  CAS  Google Scholar 

  3. Durán, I. R. & Laroche, G. Current trends, challenges, and perspectives of anti-fogging technology: surface and material design, fabrication strategies, and beyond. Prog. Mater. Sci. 99, 106–186 (2019).

    Article  Google Scholar 

  4. Leach, R. N., Stevens, F., Langford, S. C. & Dickinson, J. T. Dropwise condensation: experiments and simulations of nucleation and growth of water drops in a cooling system. Langmuir 22, 8864–8872 (2006).

    Article  CAS  Google Scholar 

  5. Lin, S. et al. Stretchable anti‐fogging tapes for diverse transparent materials. Adv. Funct. Mater. 31, 2103551 (2021).

    Article  CAS  Google Scholar 

  6. Cebeci, F. C., Wu, Z., Zhai, L., Cohen, R. E. & Rubner, M. F. Nanoporosity-driven superhydrophilicity: a means to create multifunctional antifogging coatings. Langmuir 22, 2856–2862 (2006).

    Article  CAS  Google Scholar 

  7. Tzianou, M., Thomopoulos, G., Vourdas, N., Ellinas, K. & Gogolides, E. Tailoring wetting properties at extremes states to obtain antifogging functionality. Adv. Funct. Mater. 31, 2006687 (2021).

    Article  CAS  Google Scholar 

  8. Nuraje, N., Asmatulu, R., Cohen, R. E. & Rubner, M. F. Durable antifog films from layer-by-layer molecularly blended hydrophilic polysaccharides. Langmuir 27, 782–791 (2011).

    Article  CAS  Google Scholar 

  9. Mouterde, T. et al. Antifogging abilities of model nanotextures. Nat. Mater. 16, 658–663 (2017).

    Article  CAS  Google Scholar 

  10. Liu, M., Wang, S. & Jiang, L. Nature-inspired superwettability systems. Nat. Rev. Mater. 2, 17036 (2017).

  11. Verho, T. et al. Mechanically durable superhydrophobic surfaces. Adv. Mater. 23, 673–678 (2011).

    Article  CAS  Google Scholar 

  12. Wang, D. et al. Design of robust superhydrophobic surfaces. Nature 582, 55–59 (2020).

    Article  CAS  Google Scholar 

  13. Mitridis, E., Lambley, H., Tröber, S., Schutzius, T. M. & Poulikakos, D. Transparent photothermal metasurfaces amplifying superhydrophobicity by absorbing sunlight. ACS Nano 14, 11712–11721 (2020).

    Article  CAS  Google Scholar 

  14. Cassie, A. B. D. & Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 40, 546–551 (1944).

    Article  CAS  Google Scholar 

  15. Wenzel, R. N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28, 988–994 (1936).

    Article  CAS  Google Scholar 

  16. Papadopoulos, P., Mammen, L., Deng, X., Vollmer, D. & Butt, H.-J. How superhydrophobicity breaks down. Proc. Natl Acad. Sci. USA 110, 3254–3258 (2013).

    Article  CAS  Google Scholar 

  17. Attinger, D., et al Surface engineering for phase change heat transfer: a review. MRS Energy Sustain. 1, E4 (2014).

  18. Fletcher, N. H. The Physics of Rainclouds (Cambridge University Press, 1962).

  19. Fletcher, N. H. The Chemical Physics of Ice (Cambridge Univ. Press, 2010).

  20. Qi, H. et al. Bioinspired multifunctional protein coating for antifogging, self-cleaning, and antimicrobial properties. ACS Appl. Mater. Inter. 11, 24504–24511 (2019).

    Article  CAS  Google Scholar 

  21. Liu, Y. et al. Robust photothermal coating strategy for efficient ice removal. ACS Appl. Mater. Inter. 12, 46981–46990 (2020).

    Article  CAS  Google Scholar 

  22. Xue, C.-H. et al. Fabrication of superhydrophobic photothermal conversion fabric via layer-by-layer assembly of carbon nanotubes. Cellulose 28, 5107–5121 (2021).

    Article  CAS  Google Scholar 

  23. Cai, X. et al. Au nanorod photosensitized La2Ti2O7 nanosteps: successive surface heterojunctions boosting visible to near-infrared photocatalytic H2 evolution. ACS Catal. 8, 122–131 (2018).

    Article  CAS  Google Scholar 

  24. Wang, L., Xu, X., Cheng, Q., Dou, S. X. & Du, Y. Near-infrared-driven photocatalysts: design, construction, and applications. Small 17, e1904107 (2021).

    Article  Google Scholar 

  25. Nishijima, Y., Ueno, K., Yokota, Y., Murakoshi, K. & Misawa, H. Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode. J. Phys. Chem. Lett. 1, 2031–2036 (2010).

    Article  CAS  Google Scholar 

  26. Li, W. et al. Transparent selective photothermal coatings for antifogging applications. Cell Rep. Phys. Sci. 2, 100435 (2021).

    Article  CAS  Google Scholar 

  27. Mitridis, E. et al. Metasurfaces leveraging solar energy for icephobicity. ACS Nano 12, 7009–7017 (2018).

    Article  CAS  Google Scholar 

  28. Walker, C. et al. Transparent metasurfaces counteracting fogging by harnessing sunlight. Nano Lett. 19, 1595–1604 (2019).

    Article  CAS  Google Scholar 

  29. Öktem, G., Balan, A., Baran, D. & Toppare, L. Donor-acceptor type random copolymers for full visible light absorption. Chem. Commun. 47, 3933–3935 (2011).

    Article  Google Scholar 

  30. Wu, D. & Chen, J. Broadening bandwidths of few-layer absorbers by superimposing two high-loss resonators. Nanoscale Res. Lett. 16, 26 (2021).

    Article  CAS  Google Scholar 

  31. Zhang, H. et al. Solar anti-icing surface with enhanced condensate self-removing at extreme environmental conditions. Proc.Natl Acad. Sci. USA 118, e2100978118 (2021).

    Article  CAS  Google Scholar 

  32. Wu, S. et al. Superhydrophobic photothermal icephobic surfaces based on candle soot. Proc. Natl Acad. Sci. USA 117, 11240–11246 (2020).

    Article  CAS  Google Scholar 

  33. Gao, H. et al. Plasmonic broadband perfect absorber for visible light solar cells application. Plasmonics 15, 573–580 (2020).

    Article  CAS  Google Scholar 

  34. Han, M., Kim, B., Lim, H., Jang, H. & Kim, E. Transparent photothermal heaters from a soluble NIR-absorbing diimmonium salt. Adv. Mater. 32, e1905096 (2020).

    Article  Google Scholar 

  35. Li, M., Zhao, Z., Fang, X., Zhang, Z. & Deng, M. Transparent hydrophobic thermal insulation CsxWO3–ZnO–SiO2 coatings: energy saving, anti-dust and anti-fogging performance. Mater. Res. Express 8, 25004 (2021).

    Article  CAS  Google Scholar 

  36. Fan, X., Ding, Y., Liu, Y., Liang, J. & Chen, Y. Plasmonic Ti3C2Tx MXene enables highly efficient photothermal conversion for healable and transparent wearable device. ACS Nano 13, 8124–8134 (2019).

    Article  CAS  Google Scholar 

  37. Jeffers, G., Dubson, M. A. & Duxbury, P. M. Island‐to‐percolation transition during growth of metal films. J. Appl. Phys. 75, 5016–5020 (1994).

    Article  CAS  Google Scholar 

  38. Gaspar, D. et al. Influence of the layer thickness in plasmonic gold nanoparticles produced by thermal evaporation. Sci. Rep. 3, 1469 (2013).

    Article  CAS  Google Scholar 

  39. Zhou, L. et al. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. 2, e1501227 (2016).

    Article  Google Scholar 

  40. Halas, N. Playing with plasmons: tuning the optical resonant properties of metallic nanoshells. MRS Bull. 30, 362–367 (2005).

    Article  CAS  Google Scholar 

  41. Sobhani, A. et al. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nat. Commun. 4, 1643 (2013).

    Article  Google Scholar 

  42. Lafait, J., Berthier, S., Sella, C. & Vien, T. K. Pt–Al2O3 selective absorber coatings for photothermal conversion up to 600 °C. Vacuum 36, 125–127 (1986).

    Article  CAS  Google Scholar 

  43. Brouers, Clerc, Giraud, Laugier & Randriamantany Dielectric and optical properties close to the percolation threshold. II. Phys. Rev. B 47, 666–673 (1993).

    Article  CAS  Google Scholar 

  44. Atay, T., Song, J.-H. & Nurmikko, A. V. Strongly interacting plasmon nanoparticle pairs: from dipole−dipole interaction to conductively coupled regime. Nano Lett. 4, 1627–1631 (2004).

    Article  CAS  Google Scholar 

  45. Dusemund, B., Hoffmann, A., Salzmann, T., Kreibig, U. & Schmid, G. Cluster matter: the transition of optical elastic scattering to regular reflection. Z. Phys. D 20, 305–308 (1991).

    Article  CAS  Google Scholar 

  46. Simon, T. et al. Aluminum Cayley trees as scalable, broadband, multiresonant optical antennas. Proc. Natl Acad. Sci. USA 119, e2116833119 (2022).

  47. Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles (Wiley, 1993).

  48. Kolwas, K. & Derkachova, A. Impact of the interband transitions in gold and silver on the dynamics of propagating and localized surface plasmons. Nanomaterials (Basel) 10, 1411 (2020).

  49. Moran, M. J. Fundamentals of Engineering Thermodynamics 8th edn (Wiley, 2014).

  50. Buck, A. L. New equations for computing vapor pressure and enhancement factor. J. Appl. Meteor. 20, 1527–1532 (1981).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the cleanroom team at IBM research in Rüschlikon Switzerland, namely R. Stutz, U. Drechsler and A. Olziersky. Further, we acknowledge the technical assistance of L. Steinmann, J. Vidic, H. Albers, C. Germann, D. Trottmann and P. Feusi, all from ETH Zurich. We also acknowledge H. Lambley for help with condensation modelling and imaging, D. Kim for assistance with SEM imaging, the Scientific Center for Optical and Electron Microscopy (ScopeM) and P. Zeng for TEM imaging, H. Park for graphical assistance and fruitful discussions regarding experimental design, R. Ghosh for photocatalytic tests (all from ETH Zurich), Rodenstock Schweiz AG for providing the eyewear and MeteoSwiss for providing meteorological data. This work was financially supported by the Swiss National Science Foundation under grant number 179062 (D.P. and T.M.S.).

Author information

Authors and Affiliations

Authors

Contributions

G.S., T.M.S. and D.P. designed the study and provided scientific guidance throughout. I.H., G.S. and E.M. designed the metamaterial coating. I.H. and N.F. designed the experimental devices. I.H. fabricated samples. I.H. and G.S. characterized the materials. N.F. and I.H. conducted experiments. I.H., N.F. and G.S. analysed the data. I.H., G.S. and D.P. wrote the paper. All authors have read and approved the final version of the paper.

Corresponding authors

Correspondence to Gabriel Schnoering, Thomas M. Schutzius or Dimos Poulikakos.

Ethics declarations

Competing interests

A patent has been filed by ETH Zürich and is pending (EP22161807.7: Heating device for preventing or removing a deposition). The inventors are I.H., D.P., G.S., T.M.S. and E.M. The remaining author (N.F.) has no conflict of interest.

Peer review

Peer review information

Nature Nanotechnology thanks Zhiguang Guo, Zuankai Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–10 and Figs. 1–10.

Supplementary Video 1

Outdoor test in Walenstadt, Switzerland (I0 ≈ 339 W m−2, Tamb ≈ 4 °C, RH ≈ 80%).

Supplementary Video 2

Visibility test in Davos, Switzerland (I0 ≈ 212 W m−2, Tamb ≈ 4 °C, RH ≈ 46%).

Supplementary Video 3

Outdoor test in Davos, Switzerland (I0 ≈ 212 W m−2, Tamb ≈ 4 °C, RH ≈ 46%).

Source data

Source Data Fig. 1

Statistical Source Data Fig.1b, c

Source Data Fig. 2

Statistical Source Data Fig.2c

Source Data Fig. 3

Statistical Source Data Fig.3b, c

Source Data Fig. 4

Statistical Source Data Fig.4a, c

Source Data Fig. 5

Statistical Source Data Fig.5b

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haechler, I., Ferru, N., Schnoering, G. et al. Transparent sunlight-activated antifogging metamaterials. Nat. Nanotechnol. 18, 137–144 (2023). https://doi.org/10.1038/s41565-022-01267-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-022-01267-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing