[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neutrophil chemoattractant receptors in health and disease: double-edged swords

Abstract

Neutrophils are frontline cells of the innate immune system. These effector leukocytes are equipped with intriguing antimicrobial machinery and consequently display high cytotoxic potential. Accurate neutrophil recruitment is essential to combat microbes and to restore homeostasis, for inflammation modulation and resolution, wound healing and tissue repair. After fulfilling the appropriate effector functions, however, dampening neutrophil activation and infiltration is crucial to prevent damage to the host. In humans, chemoattractant molecules can be categorized into four biochemical families, i.e., chemotactic lipids, formyl peptides, complement anaphylatoxins and chemokines. They are critically involved in the tight regulation of neutrophil bone marrow storage and egress and in spatial and temporal neutrophil trafficking between organs. Chemoattractants function by activating dedicated heptahelical G protein-coupled receptors (GPCRs). In addition, emerging evidence suggests an important role for atypical chemoattractant receptors (ACKRs) that do not couple to G proteins in fine-tuning neutrophil migratory and functional responses. The expression levels of chemoattractant receptors are dependent on the level of neutrophil maturation and state of activation, with a pivotal modulatory role for the (inflammatory) environment. Here, we provide an overview of chemoattractant receptors expressed by neutrophils in health and disease. Depending on the (patho)physiological context, specific chemoattractant receptors may be up- or downregulated on distinct neutrophil subsets with beneficial or detrimental consequences, thus opening new windows for the identification of disease biomarkers and potential drug targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hidalgo, A., Chilvers, E. R., Summers, C. & Koenderman, L. The neutrophil life cycle. Trends Immunol. 40, 584–597 (2019).

    CAS  PubMed  Google Scholar 

  2. Silvestre-Roig, C., Hidalgo, A. & Soehnlein, O. Neutrophil heterogeneity: implications for homeostasis and pathogenesis. Blood 127, 2173–2181 (2016).

    CAS  PubMed  Google Scholar 

  3. Liew, P. X. & Kubes, P. The neutrophil’s role during health and disease. Physiol. Rev. 99, 1223–1248 (2019).

    CAS  PubMed  Google Scholar 

  4. Headland, S. E. & Norling, L. V. The resolution of inflammation: principles and challenges. Semin. Immunol. 27, 149–160 (2015).

    CAS  PubMed  Google Scholar 

  5. Nguyen, G. T., Green, E. R. & Mecsas, J. Neutrophils to the ROScue: mechanisms of NADPH oxidase activation and bacterial resistance. Front Cell Infect. Microbiol. 7, 373 (2017).

    PubMed  PubMed Central  Google Scholar 

  6. Yin, C. & Heit, B. Armed for destruction: formation, function and trafficking of neutrophil granules. Cell Tissue Res. 371, 455–471 (2018).

    CAS  PubMed  Google Scholar 

  7. Ortmann, W. & Kolaczkowska, E. Age is the work of art? Impact of neutrophil and organism age on neutrophil extracellular trap formation. Cell Tissue Res. 371, 473–488 (2018).

    CAS  PubMed  Google Scholar 

  8. Ley, K., Laudanna, C., Cybulsky, M. I. & Nourshargh, S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat. Rev. Immunol. 7, 678–689 (2007).

    CAS  PubMed  Google Scholar 

  9. Filippi, M.-D. Neutrophil transendothelial migration: updates and new perspectives. Blood 133, 2149–2158 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Sadik, C. D. & Luster, A. D. Lipid-cytokine-chemokine cascades orchestrate leukocyte recruitment in inflammation. J. Leukoc. Biol. 91, 207–215 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Petri, B. & Sanz, M.-J. Neutrophil chemotaxis. Cell Tissue Res. 371, 425–436 (2018).

    CAS  PubMed  Google Scholar 

  12. McDonald, B. et al. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science 330, 362–366 (2010).

    CAS  PubMed  Google Scholar 

  13. Marques, P. E. et al. Chemokines and mitochondrial products activate neutrophils to amplify organ injury during mouse acute liver failure. Hepatology 56, 1971–1982 (2012).

    CAS  PubMed  Google Scholar 

  14. Girbl, T. et al. Distinct compartmentalization of the chemokines CXCL1 and CXCL2 and the atypical receptor ACKR1 determine discrete stages of neutrophil diapedesis. Immunity 49, 1062–1076.e6 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Vogt, K. L., Summers, C., Chilvers, E. R. & Condliffe, A. M. Priming and de-priming of neutrophil responses in vitro and in vivo. Eur. J. Clin. Invest. 48(Suppl 2), e12967 (2018).

    PubMed  Google Scholar 

  16. Subramanian, B. C., Majumdar, R. & Parent, C. A. The role of the LTB4-BLT1 axis in chemotactic gradient sensing and directed leukocyte migration. Semin. Immunol. 33, 16–29 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Shindo, K., Koide, K. & Fukumura, M. Enhancement of leukotriene B4 release in stimulated asthmatic neutrophils by platelet activating factor. Thorax 52, 1024–1029 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Reznichenko, A. & Korstanje, R. The role of platelet-activating factor in mesangial pathophysiology. Am. J. Pathol. 185, 888–896 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Klos, A., Wende, E., Wareham, K. J. & Monk, P. N. International union of basic and clinical pharmacology. [corrected]. LXXXVII. Complement peptide C5a, C4a, and C3a receptors. Pharm. Rev. 65, 500–543 (2013).

    PubMed  Google Scholar 

  20. Chen, K. et al. Regulation of inflammation by members of the formyl-peptide receptor family. J. Autoimmun. 85, 64–77 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Dahlgren, C., Gabl, M., Holdfeldt, A., Winther, M. & Forsman, H. Basic characteristics of the neutrophil receptors that recognize formylated peptides, a danger-associated molecular pattern generated by bacteria and mitochondria. Biochem. Pharmacol. 114, 22–39 (2016).

    CAS  PubMed  Google Scholar 

  22. Ye, R. D. et al. International union of basic and clinical pharmacology. LXXIII. Nomenclature for the formyl peptide receptor (FPR) family. Pharm. Rev. 61, 119–161 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hughes, C. E. & Nibbs, R. J. B. A guide to chemokines and their receptors. FEBS J. 285, 2944–2971 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Russo, R. C., Garcia, C. C., Teixeira, M. M. & Amaral, F. A. The CXCL8/IL-8 chemokine family and its receptors in inflammatory diseases. Expert Rev. Clin. Immunol. 10, 593–619 (2014).

    CAS  PubMed  Google Scholar 

  25. Mortier, A., Van Damme, J. & Proost, P. Overview of the mechanisms regulating chemokine activity and availability. Immunol. Lett. 145, 2–9 (2012).

    CAS  PubMed  Google Scholar 

  26. Janssens, R., Struyf, S. & Proost, P. The unique structural and functional features of CXCL12. Cell Mol. Immunol. 15, 299–311 (2018).

    CAS  PubMed  Google Scholar 

  27. Vanheule, V., Metzemaekers, M., Janssens, R., Struyf, S. & Proost, P. How post-translational modifications influence the biological activity of chemokines. Cytokine 109, 29–51 (2018).

    CAS  PubMed  Google Scholar 

  28. Brown, S. L. et al. Activation and regulation of platelet-activating factor receptor: role of G(i) and G(q) in receptor-mediated chemotactic, cytotoxic, and cross-regulatory signals. J. Immunol. 177, 3242–3249 (2006).

    CAS  PubMed  Google Scholar 

  29. Futosi, K., Fodor, S. & Mocsai, A. Reprint of neutrophil cell surface receptors and their intracellular signal transduction pathways. Int. Immunopharmacol. 17, 1185–1197 (2013).

    CAS  PubMed  Google Scholar 

  30. Mocsai, A. et al. Differential effects of tyrosine kinase inhibitors and an inhibitor of the mitogen-activated protein kinase cascade on degranulation and superoxide production of human neutrophil granulocytes. Biochem. Pharmacol. 54, 781–789 (1997).

    CAS  PubMed  Google Scholar 

  31. Mocsai, A. et al. Kinase pathways in chemoattractant-induced degranulation of neutrophils: the role of p38 mitogen-activated protein kinase activated by Src family kinases. J. Immunol. 164, 4321–4331 (2000).

    CAS  PubMed  Google Scholar 

  32. Seifert, R. & Wenzel-Seifert, K. Unmasking different constitutive activity of four chemoattractant receptors using Na+ as universal stabilizer of the inactive (R) state. Receptors Channels 7, 357–369 (2001).

    CAS  PubMed  Google Scholar 

  33. Gurevich, V. V. & Gurevich, E. V. GPCR signaling regulation: the role of GRKs and arrestins. Front Pharm. 10, 125 (2019).

    CAS  Google Scholar 

  34. Borroni, E. M., Mantovani, A., Locati, M. & Bonecchi, R. Chemokine receptors intracellular trafficking. Pharm. Ther. 127, 1–8 (2010).

    CAS  Google Scholar 

  35. Blackwood, R. A., Hartiala, K. T., Kwoh, E. E., Transue, A. T. & Brower, R. C. Unidirectional heterologous receptor desensitization between both the fMLP and C5a receptor and the IL-8 receptor. J. Leukoc. Biol. 60, 88–93 (1996).

    CAS  PubMed  Google Scholar 

  36. Kitayama, J., Carr, M. W., Roth, S. J., Buccola, J. & Springer, T. A. Contrasting responses to multiple chemotactic stimuli in transendothelial migration: heterologous desensitization in neutrophils and augmentation of migration in eosinophils. J. Immunol. 158, 2340–2349 (1997).

    CAS  PubMed  Google Scholar 

  37. Sogawa, Y., Ohyama, T., Maeda, H. & Hirahara, K. Inhibition of neutrophil migration in mice by mouse formyl peptide receptors 1 and 2 dual agonist: indication of cross-desensitization in vivo. Immunology 132, 441–450 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Forsman, H. et al. Reactivation of desensitized formyl peptide receptors by platelet activating factor: a novel receptor cross talk mechanism regulating neutrophil superoxide anion production. PLoS ONE 8, e60169 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Holdfeldt, A. et al. Reactivation of Galphai-coupled formyl peptide receptors is inhibited by Galphaq-selective inhibitors when induced by signals generated by the platelet-activating factor receptor. J. Leukoc. Biol. 102, 871–880 (2017).

    CAS  PubMed  Google Scholar 

  40. Back, M. et al. Update on leukotriene, lipoxin and oxoeicosanoid receptors: IUPHAR Review 7. Br. J. Pharm. 171, 3551–3574 (2014).

    Google Scholar 

  41. El Kebir, D., Gjorstrup, P. & Filep, J. G. Resolvin E1 promotes phagocytosis-induced neutrophil apoptosis and accelerates resolution of pulmonary inflammation. Proc. Natl. Acad. Sci. USA 109, 14983–14988 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Tarlowe, M. H. et al. Inflammatory chemoreceptor cross-talk suppresses leukotriene B4 receptor 1-mediated neutrophil calcium mobilization and chemotaxis after trauma. J. Immunol. 171, 2066–2073 (2003).

    CAS  PubMed  Google Scholar 

  43. Sumida, H. et al. Interplay between CXCR2 and BLT1 facilitates neutrophil infiltration and resultant keratinocyte activation in a murine model of imiquimod-induced psoriasis. J. Immunol. 192, 4361–4369 (2014).

    CAS  PubMed  Google Scholar 

  44. Subramanian, B. C., Moissoglu, K. & Parent, C. A. The LTB4-BLT1 axis regulates the polarized trafficking of chemoattractant GPCRs during neutrophil chemotaxis. J. Cell Sci. 131, jcs217422 (2018).

    PubMed  PubMed Central  Google Scholar 

  45. Lv, J. et al. Leukotriene B(4)-leukotriene B(4) receptor axis promotes oxazolone-induced contact dermatitis by directing skin homing of neutrophils and CD8(+) T cells. Immunology 146, 50–58 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Oyoshi, M. K. et al. Leukotriene B4-driven neutrophil recruitment to the skin is essential for allergic skin inflammation. Immunity 37, 747–758 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim, N. D., Chou, R. C., Seung, E., Tager, A. M. & Luster, A. D. A unique requirement for the leukotriene B4 receptor BLT1 for neutrophil recruitment in inflammatory arthritis. J. Exp. Med. 203, 829–835 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Deng, B. et al. The leukotriene B4-leukotriene B4 receptor axis promotes cisplatin-induced acute kidney injury by modulating neutrophil recruitment. Kidney Int. 92, 89–100 (2017).

    CAS  PubMed  Google Scholar 

  49. Kojo, K. et al. BLT1 signalling protects the liver against acetaminophen hepatotoxicity by preventing excessive accumulation of hepatic neutrophils. Sci. Rep. 6, 29650 (2016).

    PubMed  PubMed Central  Google Scholar 

  50. Li, X. et al. Dual role of leukotriene B4 receptor type 1 in experimental sepsis. J. Surg. Res. 193, 902–908 (2015).

    CAS  PubMed  Google Scholar 

  51. Saeki, K. & Yokomizo, T. Identification, signaling, and functions of LTB4 receptors. Semin. Immunol. 33, 30–36 (2017).

    CAS  PubMed  Google Scholar 

  52. Melnikova, V. & Bar-Eli, M. Inflammation and melanoma growth and metastasis: the role of platelet-activating factor (PAF) and its receptor. Cancer Metastasis Rev. 26, 359–371 (2007).

    CAS  PubMed  Google Scholar 

  53. Doi, K. et al. Attenuation of folic acid-induced renal inflammatory injury in platelet-activating factor receptor-deficient mice. Am. J. Pathol. 168, 1413–1424 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ferreira, M. A. N. D. et al. Sponge-induced angiogenesis and inflammation in PAF receptor-deficient mice (PAFR-KO). Br. J. Pharm. 141, 1185–1192 (2004).

    CAS  Google Scholar 

  55. Souza, D. G. et al. Role of PAF receptors during intestinal ischemia and reperfusion injury. A comparative study between PAF receptor-deficient mice and PAF receptor antagonist treatment. Br. J. Pharm. 139, 733–740 (2003).

    CAS  Google Scholar 

  56. Garcia, C. C. et al. Platelet-activating factor receptor plays a role in lung injury and death caused by Influenza A in mice. PLoS Pathog. 6, e1001171 (2010).

    PubMed  PubMed Central  Google Scholar 

  57. Guerrero, A. T. et al. The role of PAF/PAFR signaling in zymosan-induced articular inflammatory hyperalgesia. Naunyn Schmiedebergs Arch. Pharmacol. 386, 51–59 (2013).

    CAS  PubMed  Google Scholar 

  58. Bachi, A. L. L., Dos Santos, L. C., Nonogaki, S., Jancar, S. & Jasiulionis, M. G. Apoptotic cells contribute to melanoma progression and this effect is partially mediated by the platelet-activating factor receptor. Mediators Inflamm. 2012, 610371 (2012).

    PubMed  PubMed Central  Google Scholar 

  59. Soares, A. C. et al. Role of the platelet-activating factor (PAF) receptor during pulmonary infection with gram negative bacteria. Br. J. Pharm. 137, 621–628 (2002).

    CAS  Google Scholar 

  60. van Zoelen, M. A. D. et al. Platelet-activating factor receptor contributes to host defense against Pseudomonas aeruginosa pneumonia but is not essential for the accompanying inflammatory and procoagulant response. J. Immunol. 180, 3357–3365 (2008).

    PubMed  Google Scholar 

  61. Guglietta, S. et al. Coagulation induced by C3aR-dependent NETosis drives protumorigenic neutrophils during small intestinal tumorigenesis. Nat. Commun. 7, 11037 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Settmacher, B. et al. Modulation of C3a activity: internalization of the human C3a receptor and its inhibition by C5a. J. Immunol. 162, 7409–7416 (1999).

    CAS  PubMed  Google Scholar 

  63. Coulthard, L. G. & Woodruff, T. M. Is the complement activation product C3a a proinflammatory molecule? Re-evaluating the evidence and the myth. J. Immunol. 194, 3542–3548 (2015).

    CAS  PubMed  Google Scholar 

  64. Daffern, P. J., Pfeifer, P. H., Ember, J. A. & Hugli, T. E. C3a is a chemotaxin for human eosinophils but not for neutrophils. I. C3a stimulation of neutrophils is secondary to eosinophil activation. J. Exp. Med. 181, 2119–2127 (1995).

    CAS  PubMed  Google Scholar 

  65. Brennan, F. H. et al. Complement receptor C3aR1 controls neutrophil mobilization following spinal cord injury through physiological antagonism of CXCR2. JCI Insight 4, 98254 (2019).

    PubMed  Google Scholar 

  66. Li, X. X., Lee, J. D., Kemper, C. & Woodruff, T. M. The complement receptor C5aR2: a powerful modulator of innate and adaptive immunity. J. Immunol. 202, 3339–3348 (2019).

    CAS  PubMed  Google Scholar 

  67. Miyabe, Y., Miyabe, C., Mani, V., Mempel, T. R. & Luster, A. D. Atypical complement receptor C5aR2 transports C5a to initiate neutrophil adhesion and inflammation. Sci. Immunol. 4, eaav5951 (2019).

    CAS  PubMed  Google Scholar 

  68. Spilberg, I., Mehta, J., Muniain, M. A., Simchowitz, L. & Atkinson, J. Receptor blockade as a mechanism of deactivation of human neutrophils by pepstatin and formyl-Met-Leu-Phe. Inflammation 8, 73–86 (1984).

    CAS  PubMed  Google Scholar 

  69. Binder, R., Kress, A. & Kirschfink, M. Modulation of C5a-mediated effector functions of human polymorphonuclear leukocytes by tumor necrosis factor alpha and granulocyte macrophage colony-stimulating factor. Exp. Clin. Immunogenet. 16, 212–225 (1999).

    CAS  PubMed  Google Scholar 

  70. Guo, R.-F., Riedemann, N. C. & Ward, P. A. Role of C5a-C5aR interaction in sepsis. Shock 21, 1–7 (2004).

    PubMed  Google Scholar 

  71. Guo, R.-F. et al. Neutrophil C5a receptor and the outcome in a rat model of sepsis. FASEB J. 17, 1889–1891 (2003).

    CAS  PubMed  Google Scholar 

  72. Amara, U. et al. Early expression changes of complement regulatory proteins and C5A receptor (CD88) on leukocytes after multiple injury in humans. Shock 33, 568–575 (2010).

    CAS  PubMed  Google Scholar 

  73. Meddows-Taylor, S., Pendle, S. & Tiemessen, C. T. Altered expression of CD88 and associated impairment of complement 5a-induced neutrophil responses in human immunodeficiency virus type 1-infected patients with and without pulmonary tuberculosis. J. Infect. Dis. 183, 662–665 (2001).

    CAS  PubMed  Google Scholar 

  74. Fortunati, E., Kazemier, K. M., Grutters, J. C., Koenderman, L. & Van den Bosch van, J. M. M. Human neutrophils switch to an activated phenotype after homing to the lung irrespective of inflammatory disease. Clin. Exp. Immunol. 155, 559–566 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Lewis, S. L., Van Epps, D. E. & Chenoweth, D. E. C5a receptor modulation on neutrophils and monocytes from chronic hemodialysis and peritoneal dialysis patients. Clin. Nephrol. 26, 37–44 (1986).

    CAS  PubMed  Google Scholar 

  76. Seely, A. J. E. et al. Alteration of chemoattractant receptor expression regulates human neutrophil chemotaxis in vivo. Ann. Surg. 235, 550–559 (2002).

    PubMed  PubMed Central  Google Scholar 

  77. Monach, P. A. et al. Neutrophils in a mouse model of autoantibody-mediated arthritis: critical producers of Fc receptor gamma, the receptor for C5a, and lymphocyte function-associated antigen 1. Arthritis Rheum. 62, 753–764 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Banda, N. K. et al. Role of C3a receptors, C5a receptors, and complement protein C6 deficiency in collagen antibody-induced arthritis in mice. J. Immunol. 188, 1469–1478 (2012).

    CAS  PubMed  Google Scholar 

  79. Atkinson, S. M. et al. Treatment with anti-C5aR mAb leads to early-onset clinical and mechanistic effects in the murine delayed-type hypersensitivity arthritis model. Autoimmunity 48, 460–470 (2015).

    PubMed  Google Scholar 

  80. Hornum, L. et al. C5a and C5aR are elevated in joints of rheumatoid and psoriatic arthritis patients, and C5aR blockade attenuates leukocyte migration to synovial fluid. PLoS ONE 12, e0189017 (2017).

    PubMed  PubMed Central  Google Scholar 

  81. Arumugam, T. V. et al. Protective effect of a human C5a receptor antagonist against hepatic ischaemia-reperfusion injury in rats. J. Hepatol. 40, 934–941 (2004).

    CAS  PubMed  Google Scholar 

  82. Schreiber, A. et al. C5a receptor mediates neutrophil activation and ANCA-induced glomerulonephritis. J. Am. Soc. Nephrol. 20, 289–298 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Bao, L. et al. C5a promotes development of experimental lupus nephritis which can be blocked with a specific receptor antagonist. Eur. J. Immunol. 35, 2496–2506 (2005).

    CAS  PubMed  Google Scholar 

  84. Dick, J. et al. C5a receptor 1 promotes autoimmunity, neutrophil dysfunction and injury in experimental anti-myeloperoxidase glomerulonephritis. Kidney Int. 93, 615–625 (2018).

    CAS  PubMed  Google Scholar 

  85. Baelder, R. et al. Pharmacological targeting of anaphylatoxin receptors during the effector phase of allergic asthma suppresses airway hyperresponsiveness and airway inflammation. J. Immunol. 174, 783–789 (2005).

    CAS  PubMed  Google Scholar 

  86. Staab, E. B., Sanderson, S. D., Wells, S. M. & Poole, J. A. Treatment with the C5a receptor/CD88 antagonist PMX205 reduces inflammation in a murine model of allergic asthma. Int. Immunopharmacol. 21, 293–300 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Osaka, M. et al. Critical role of the C5a-activated neutrophils in high-fat diet-induced vascular inflammation. Sci. Rep. 6, 21391 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Onnheim, K. et al. A novel receptor cross-talk between the ATP receptor P2Y2 and formyl peptide receptors reactivates desensitized neutrophils to produce superoxide. Exp. Cell Res. 323, 209–217 (2014).

    PubMed  Google Scholar 

  89. Wang, X., Qin, W., Zhang, Y., Zhang, H. & Sun, B. Endotoxin promotes neutrophil hierarchical chemotaxis via the p38-membrane receptor pathway. Oncotarget 7, 74247–74258 (2016).

    PubMed  PubMed Central  Google Scholar 

  90. Ye, D. et al. Lipocalin-2 mediates non-alcoholic steatohepatitis by promoting neutrophil-macrophage crosstalk via the induction of CXCR2. J. Hepatol. 65, 988–997 (2016).

    CAS  PubMed  Google Scholar 

  91. Dai, Y., Major, J., Novotny, M. & Hamilton, T. A. IL-4 inhibits expression of the formyl peptide receptor gene in mouse peritoneal macrophages. J. Interferon Cytokine Res. 25, 11–19 (2005).

    PubMed  Google Scholar 

  92. Li, S.-Q. et al. The expression of formyl peptide receptor 1 is correlated with tumor invasion of human colorectal cancer. Sci. Rep. 7, 5918 (2017).

    PubMed  PubMed Central  Google Scholar 

  93. Loor, F., Tiberghien, F., Wenandy, T., Didier, A. & Traber, R. Cyclosporins: structure-activity relationships for the inhibition of the human FPR1 formylpeptide receptor. J. Med. Chem. 45, 4613–4628 (2002).

    CAS  PubMed  Google Scholar 

  94. Stenfeldt, A.-L. et al. The non-steroidal anti-inflammatory drug piroxicam blocks ligand binding to the formyl peptide receptor but not the formyl peptide receptor like 1. Biochem. Pharmacol. 74, 1050–1056 (2007).

    CAS  PubMed  Google Scholar 

  95. Yang, S.-C. et al. Propofol inhibits superoxide production, elastase release, and chemotaxis in formyl peptide-activated human neutrophils by blocking formyl peptide receptor 1. J. Immunol. 190, 6511–6519 (2013).

    CAS  PubMed  Google Scholar 

  96. Rajeeve, K., Das, S., Prusty, B. K. & Rudel, T. Chlamydia trachomatis paralyses neutrophils to evade the host innate immune response. Nat. Microbiol. 3, 824–835 (2018).

    CAS  PubMed  Google Scholar 

  97. Kaczmarek, E. et al. A subset of five human mitochondrial formyl peptides mimics bacterial peptides and functionally deactivates human neutrophils. J. Trauma Acute Care Surg. 85, 936–943 (2018).

    CAS  PubMed  Google Scholar 

  98. Raoof, M., Zhang, Q., Itagaki, K. & Hauser, C. J. Mitochondrial peptides are potent immune activators that activate human neutrophils via FPR-1. J. Trauma 68, 1324–1328 (2010).

    Google Scholar 

  99. Dorward, D. A. et al. Novel role for endogenous mitochondrial formylated peptide-driven formyl peptide receptor 1 signalling in acute respiratory distress syndrome. Thorax 72, 928–936 (2017).

    PubMed  Google Scholar 

  100. Scozzi, D. et al. Mitochondrial damage-associated molecular patterns released by lung transplants are associated with primary graft dysfunction. Am. J. Transplant. 19, 1464–1477 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhang, H.-W. et al. RvD1 ameliorates LPS-induced acute lung injury via the suppression of neutrophil infiltration by reducing CXCL2 expression and release from resident alveolar macrophages. Int. Immunopharmacol. 76, 105877 (2019).

    CAS  PubMed  Google Scholar 

  102. Bjorkman, L. et al. The proinflammatory activity of recombinant serum amyloid A is not shared by the endogenous protein in the circulation. Arthritis Rheum. 62, 1660–1665 (2010).

    PubMed  Google Scholar 

  103. De Buck, M. et al. COOH-terminal SAA1 peptides fail to induce chemokines but synergize with CXCL8 and CCL3 to recruit leukocytes via FPR2. Blood 131, 439–449 (2018).

    PubMed  Google Scholar 

  104. Walther, A., Riehemann, K. & Gerke, V. A novel ligand of the formyl peptide receptor: annexin I regulates neutrophil extravasation by interacting with the FPR. Mol. Cell 5, 831–840 (2000).

    CAS  PubMed  Google Scholar 

  105. Machado, I. D. et al. Annexin A1 is a physiological modulator of neutrophil maturation and recirculation acting on the CXCR4/CXCL12 Pathway. J. Cell Physiol. 231, 2418–2427 (2016).

    CAS  PubMed  Google Scholar 

  106. Liu, M. et al. Formylpeptide receptors are critical for rapid neutrophil mobilization in host defense against Listeria monocytogenes. Sci. Rep. 2, 786 (2012).

    PubMed  PubMed Central  Google Scholar 

  107. Oldekamp, S. et al. Lack of formyl peptide receptor 1 and 2 leads to more severe inflammation and higher mortality in mice with of pneumococcal meningitis. Immunology 143, 447–461 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Lefrancais, E., Mallavia, B., Zhuo, H., Calfee, C. S. & Looney, M. R. Maladaptive role of neutrophil extracellular traps in pathogen-induced lung injury. JCI Insight 3, 98178 (2018).

    PubMed  Google Scholar 

  109. Liu, M. et al. Formylpeptide receptors mediate rapid neutrophil mobilization to accelerate wound healing. PLoS ONE 9, e90613 (2014).

    PubMed  PubMed Central  Google Scholar 

  110. Honda, M. et al. Intravital imaging of neutrophil recruitment reveals the efficacy of FPR1 blockade in hepatic ischemia-reperfusion injury. J. Immunol. 198, 1718–1728 (2017).

    CAS  PubMed  Google Scholar 

  111. Grommes, J., Drechsler, M. & Soehnlein, O. CCR5 and FPR1 mediate neutrophil recruitment in endotoxin-induced lung injury. J. Innate Immun. 6, 111–116 (2014).

    CAS  PubMed  Google Scholar 

  112. Cardini, S. et al. Genetic ablation of the fpr1 gene confers protection from smoking-induced lung emphysema in mice. Am. J. Respir. Cell Mol. Biol. 47, 332–339 (2012).

    CAS  PubMed  Google Scholar 

  113. Di Paola, R. et al. Formyl peptide receptor 1 signalling promotes experimental colitis in mice. Pharmacol. Res 141, 591–601 (2019).

    PubMed  Google Scholar 

  114. Fusco, R. et al. Absence of formyl peptide receptor 1 causes endometriotic lesion regression in a mouse model of surgically-induced endometriosis. Oncotarget 9, 31355–31366 (2018).

    PubMed  PubMed Central  Google Scholar 

  115. Wang, X., Qin, W., Song, M., Zhang, Y. & Sun, B. Exogenous carbon monoxide inhibits neutrophil infiltration in LPS-induced sepsis by interfering with FPR1 via p38 MAPK but not GRK2. Oncotarget 7, 34250–34265 (2016).

    PubMed  PubMed Central  Google Scholar 

  116. Bachelerie, F. et al. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharm. Rev. 66, 1–79 (2014).

    PubMed  PubMed Central  Google Scholar 

  117. Ahuja, S. K. & Murphy, P. M. The CXC chemokines growth-regulated oncogene (GRO) alpha, GRObeta, GROgamma, neutrophil-activating peptide-2, and epithelial cell-derived neutrophil-activating peptide-78 are potent agonists for the type B, but not the type A, human interleukin-8 receptor. J. Biol. Chem. 271, 20545–20550 (1996).

    CAS  PubMed  Google Scholar 

  118. Reyes-Robles, T. et al. Staphylococcus aureus leukotoxin ED targets the chemokine receptors CXCR1 and CXCR2 to kill leukocytes and promote infection. Cell Host Microbe 14, 453–459 (2013).

    CAS  PubMed  Google Scholar 

  119. Doroshenko, T. et al. Phagocytosing neutrophils down-regulate the expression of chemokine receptors CXCR1 and CXCR2. Blood 100, 2668–2671 (2002).

    CAS  PubMed  Google Scholar 

  120. de Oliveira, S., Rosowski, E. E. & Huttenlocher, A. Neutrophil migration in infection and wound repair: going forward in reverse. Nat. Rev. Immunol. 16, 378–391 (2016).

    PubMed  PubMed Central  Google Scholar 

  121. Khandaker, M. H. et al. Metalloproteinases are involved in lipopolysaccharide- and tumor necrosis factor-alpha-mediated regulation of CXCR1 and CXCR2 chemokine receptor expression. Blood 93, 2173–2185 (1999).

    CAS  PubMed  Google Scholar 

  122. Bakele, M. et al. An interactive network of elastase, secretases, and PAR-2 protein regulates CXCR1 receptor surface expression on neutrophils. J. Biol. Chem. 289, 20516–20525 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Sabroe, I., Jones, E. C., Whyte, M. K. B. & Dower, S. K. Regulation of human neutrophil chemokine receptor expression and function by activation of Toll-like receptors 2 and 4. Immunology 115, 90–98 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Schmausser, B. et al. Downregulation of CXCR1 and CXCR2 expression on human neutrophils by Helicobacter pylori: a new pathomechanism in H. pylori infection? Infect. Immun. 72, 6773–6779 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Grutkoski, P. S., Graeber, C. T., D’Amico, R., Keeping, H. & Simms, H. H. Regulation of IL-8RA (CXCR1) expression in polymorphonuclear leukocytes by hypoxia/reoxygenation. J. Leukoc. Biol. 65, 171–178 (1999).

    CAS  PubMed  Google Scholar 

  126. Stadlbauer, V. et al. Role of Toll-like receptors 2, 4, and 9 in mediating neutrophil dysfunction in alcoholic hepatitis. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G15–G22 (2009).

    CAS  PubMed  Google Scholar 

  127. Impellizzieri, D. et al. IL-4 receptor engagement in human neutrophils impairs their migration and extracellular trap formation. J. Allergy Clin. Immunol. 144, 267–279.e4 (2019).

    CAS  PubMed  Google Scholar 

  128. Pillay, J. et al. Functional heterogeneity and differential priming of circulating neutrophils in human experimental endotoxemia. J. Leukoc. Biol. 88, 211–220 (2010).

    CAS  PubMed  Google Scholar 

  129. Pignatti, P. et al. Downmodulation of CXCL8/IL-8 receptors on neutrophils after recruitment in the airways. J. Allergy Clin. Immunol. 115, 88–94 (2005).

    CAS  PubMed  Google Scholar 

  130. Hartl, D. et al. Cleavage of CXCR1 on neutrophils disables bacterial killing in cystic fibrosis lung disease. Nat. Med. 13, 1423–1430 (2007).

    CAS  PubMed  Google Scholar 

  131. Godaly, G. et al. Neutrophil recruitment, chemokine receptors, and resistance to mucosal infection. J. Leukoc. Biol. 69, 899–906 (2001).

    CAS  PubMed  Google Scholar 

  132. Sherry, B., Dai, W. W., Lesser, M. L. & Trachtman, H. Dysregulated chemokine receptor expression and chemokine-mediated cell trafficking in pediatric patients with ESRD. Clin. J. Am. Soc. Nephrol. 3, 397–406 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Xu, R. et al. Low expression of CXCR1/2 on neutrophils predicts poor survival in patients with hepatitis B virus-related acute-on-chronic liver failure. Sci. Rep. 6, 38714 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Pereira, R. et al. Neutrophil and monocyte activation in chronic kidney disease patients under hemodialysis and its relationship with resistance to recombinant human erythropoietin and to the hemodialysis procedure. Hemodial. Int. 14, 295–301 (2010).

    PubMed  Google Scholar 

  135. Swamydas, M. et al. CXCR1-mediated neutrophil degranulation and fungal killing promote Candida clearance and host survival. Sci. Transl. Med. 8, 322ra10 (2016).

    PubMed  PubMed Central  Google Scholar 

  136. Hauser, C. J. et al. CXCR2 stimulation primes CXCR1 [Ca2+]i responses to IL-8 in human neutrophils. Shock 12, 428–437 (1999).

    CAS  PubMed  Google Scholar 

  137. Eash, K. J., Greenbaum, A. M., Gopalan, P. K. & Link, D. C. CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow. J. Clin. Invest. 120, 2423–2431 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Laarman, A. J. et al. Staphylococcus aureus Staphopain A inhibits CXCR2-dependent neutrophil activation and chemotaxis. EMBO J. 31, 3607–3619 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Rios-Santos, F. et al. Down-regulation of CXCR2 on neutrophils in severe sepsis is mediated by inducible nitric oxide synthase-derived nitric oxide. Am. J. Respir. Crit. Care Med. 175, 490–497 (2007).

    CAS  PubMed  Google Scholar 

  140. Deng, M. et al. Toll-like receptor 4 signaling on dendritic cells suppresses polymorphonuclear leukocyte CXCR2 expression and trafficking via interleukin 10 during intra-abdominal sepsis. J. Infect. Dis. 213, 1280–1288 (2016).

    CAS  PubMed  Google Scholar 

  141. Rose, J. J., Foley, J. F., Murphy, P. M. & Venkatesan, S. On the mechanism and significance of ligand-induced internalization of human neutrophil chemokine receptors CXCR1 and CXCR2. J. Biol. Chem. 279, 24372–24386 (2004).

    CAS  PubMed  Google Scholar 

  142. Qiao, H. et al. CXCR2 Expression on neutrophils is upregulated during the relapsing phase of ocular Behcet disease. Curr. Eye Res. 30, 195–203 (2005).

    CAS  PubMed  Google Scholar 

  143. Bajrami, B. et al. G-CSF maintains controlled neutrophil mobilization during acute inflammation by negatively regulating CXCR2 signaling. J. Exp. Med. 213, 1999–2018 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Hsieh, S.-C. et al. Abnormal in vitro CXCR2 modulation and defective cationic ion transporter expression on polymorphonuclear neutrophils responsible for hyporesponsiveness to IL-8 stimulation in patients with active systemic lupus erythematosus. Rheumatology 47, 150–157 (2008).

    CAS  PubMed  Google Scholar 

  145. Cummings, C. J. et al. Expression and function of the chemokine receptors CXCR1 and CXCR2 in sepsis. J. Immunol. 162, 2341–2346 (1999).

    CAS  PubMed  Google Scholar 

  146. Chishti, A. D., Shenton, B. K., Kirby, J. A. & Baudouin, S. V. Neutrophil chemotaxis and receptor expression in clinical septic shock. Intensive Care Med. 30, 605–611 (2004).

    PubMed  Google Scholar 

  147. Lee, S. K. et al. Phospholipase D2 drives mortality in sepsis by inhibiting neutrophil extracellular trap formation and down-regulating CXCR2. J. Exp. Med. 212, 1381–1390 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Cockx, M. et al. Neutrophils from patients with primary ciliary dyskinesia display reduced chemotaxis to CXCR2 ligands. Front Immunol. 8, 1126 (2017).

    PubMed  PubMed Central  Google Scholar 

  149. Sue, R. D. et al. CXCR2 is critical to hyperoxia-induced lung injury. J. Immunol. 172, 3860–3868 (2004).

    CAS  PubMed  Google Scholar 

  150. Farooq, S. M. et al. Therapeutic effect of blocking CXCR2 on neutrophil recruitment and dextran sodium sulfate-induced colitis. J. Pharm. Exp. Ther. 329, 123–129 (2009).

    CAS  Google Scholar 

  151. Ajuebor, M. N., Zagorski, J., Kunkel, S. L., Strieter, R. M. & Hogaboam, C. M. Contrasting roles for CXCR2 during experimental colitis. Exp. Mol. Pathol. 76, 1–8 (2004).

    CAS  PubMed  Google Scholar 

  152. Buanne, P. et al. Crucial pathophysiological role of CXCR2 in experimental ulcerative colitis in mice. J. Leukoc. Biol. 82, 1239–1246 (2007).

    CAS  PubMed  Google Scholar 

  153. Londhe, V. A. et al. CXCR2 is critical for dsRNA-induced lung injury: relevance to viral lung infection. J. Inflamm. 2, 4 (2005).

    Google Scholar 

  154. Belperio, J. A. et al. CXCR2/CXCR2 ligand biology during lung transplant ischemia-reperfusion injury. J. Immunol. 175, 6931–6939 (2005).

    CAS  PubMed  Google Scholar 

  155. Belperio, J. A. et al. Role of CXCR2/CXCR2 ligands in vascular remodeling during bronchiolitis obliterans syndrome. J. Clin. Invest. 115, 1150–1162 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Hall, L. R., Diaconu, E., Patel, R. & Pearlman, E. CXC chemokine receptor 2 but not C-C chemokine receptor 1 expression is essential for neutrophil recruitment to the cornea in helminth-mediated keratitis (river blindness). J. Immunol. 166, 4035–4041 (2001).

    CAS  PubMed  Google Scholar 

  157. Nair, P. et al. Safety and efficacy of a CXCR2 antagonist in patients with severe asthma and sputum neutrophils: a randomized, placebo-controlled clinical trial. Clin. Exp. Allergy 42, 1097–1103 (2012).

    CAS  PubMed  Google Scholar 

  158. Leaker, B. R., Barnes, P. J. & O’Connor, B. Inhibition of LPS-induced airway neutrophilic inflammation in healthy volunteers with an oral CXCR2 antagonist. Respir. Res. 14, 137 (2013).

    PubMed  PubMed Central  Google Scholar 

  159. O’Byrne, P. M. et al. Efficacy and safety of a CXCR2 antagonist, AZD5069, in patients with uncontrolled persistent asthma: a randomised, double-blind, placebo-controlled trial. Lancet Respir. Med. 4, 797–806 (2016).

    PubMed  Google Scholar 

  160. Tsai, W. C. et al. CXC chemokine receptor CXCR2 is essential for protective innate host response in murine Pseudomonas aeruginosa pneumonia. Infect. Immun. 68, 4289–4296 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Kielian, T., Barry, B. & Hickey, W. F. CXC chemokine receptor-2 ligands are required for neutrophil-mediated host defense in experimental brain abscesses. J. Immunol. 166, 4634–4643 (2001).

    CAS  PubMed  Google Scholar 

  162. Svensson, M., Irjala, H., Svanborg, C. & Godaly, G. Effects of epithelial and neutrophil CXCR2 on innate immunity and resistance to kidney infection. Kidney Int. 74, 81–90 (2008).

    CAS  PubMed  Google Scholar 

  163. Tateda, K. et al. Chemokine-dependent neutrophil recruitment in a murine model of Legionella pneumonia: potential role of neutrophils as immunoregulatory cells. Infect. Immun. 69, 2017–2024 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Spehlmann, M. E. et al. CXCR2-dependent mucosal neutrophil influx protects against colitis-associated diarrhea caused by an attaching/effacing lesion-forming bacterial pathogen. J. Immunol. 183, 3332–3343 (2009).

    CAS  PubMed  Google Scholar 

  165. Banerjee, K., Biswas, P. S., Kim, B., Lee, S. & Rouse, B. T. CXCR2-/- mice show enhanced susceptibility to herpetic stromal keratitis: a role for IL-6-induced neovascularization. J. Immunol. 172, 1237–1245 (2004).

    CAS  PubMed  Google Scholar 

  166. Milatovic, S., Nanney, L. B., Yu, Y., White, J. R. & Richmond, A. Impaired healing of nitrogen mustard wounds in CXCR2 null mice. Wound Repair Regen. 11, 213–219 (2003).

    PubMed  PubMed Central  Google Scholar 

  167. Fridlender, Z. G. et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: ‘N1’ versus ‘N2’ TAN. Cancer Cell 16, 183–194 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Raccosta, L. et al. The oxysterol-CXCR2 axis plays a key role in the recruitment of tumor-promoting neutrophils. J. Exp. Med. 210, 1711–1728 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Gong, L. et al. Promoting effect of neutrophils on lung tumorigenesis is mediated by CXCR2 and neutrophil elastase. Mol. Cancer 12, 154 (2013).

    PubMed  PubMed Central  Google Scholar 

  170. Tazzyman, S. et al. Inhibition of neutrophil infiltration into A549 lung tumors in vitro and in vivo using a CXCR2-specific antagonist is associated with reduced tumor growth. Int. J. Cancer 129, 847–858 (2011).

    CAS  PubMed  Google Scholar 

  171. Jamieson, T. et al. Inhibition of CXCR2 profoundly suppresses inflammation-driven and spontaneous tumorigenesis. J. Clin. Invest. 122, 3127–3144 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Steele, C. W. et al. CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal Adenocarcinoma. Cancer Cell 29, 832–845 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Yu, P. F. et al. TNFalpha-activated mesenchymal stromal cells promote breast cancer metastasis by recruiting CXCR2(+) neutrophils. Oncogene 36, 482–490 (2017).

    CAS  PubMed  Google Scholar 

  174. Li, L. et al. CXCR2-CXCL1 axis is correlated with neutrophil infiltration and predicts a poor prognosis in hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 34, 129 (2015).

    PubMed  PubMed Central  Google Scholar 

  175. Metzemaekers, M., Vanheule, V., Janssens, R., Struyf, S. & Proost, P. Overview of the mechanisms that may contribute to the non-redundant activities of interferon-inducible CXC chemokine receptor 3 ligands. Front Immunol. 8, 1970 (2017).

    PubMed  Google Scholar 

  176. Hartl, D. et al. Infiltrated neutrophils acquire novel chemokine receptor expression and chemokine responsiveness in chronic inflammatory lung diseases. J. Immunol. 181, 8053–8067 (2008).

    CAS  PubMed  Google Scholar 

  177. Ichikawa, A. et al. CXCL10-CXCR3 enhances the development of neutrophil-mediated fulminant lung injury of viral and nonviral origin. Am. J. Respir. Crit. Care Med. 187, 65–77 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Rudd, J. M. et al. Neutrophils induce a novel chemokine receptors repertoire during influenza pneumonia. Front Cell Infect. Microbiol. 9, 108 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Chami, B. et al. CXCR3 plays a critical role for host protection against Salmonellosis. Sci. Rep. 7, 10181 (2017).

    PubMed  PubMed Central  Google Scholar 

  180. Forster, R. et al. Intracellular and surface expression of the HIV-1 coreceptor CXCR4/fusin on various leukocyte subsets: rapid internalization and recycling upon activation. J. Immunol. 160, 1522–1531 (1998).

    CAS  PubMed  Google Scholar 

  181. Gouwy, M., Struyf, S., Catusse, J., Proost, P. & Van Damme, J. Synergy between proinflammatory ligands of G protein-coupled receptors in neutrophil activation and migration. J. Leukoc. Biol. 76, 185–194 (2004).

    CAS  PubMed  Google Scholar 

  182. Bruhl, H. et al. Post-translational and cell type-specific regulation of CXCR4 expression by cytokines. Eur. J. Immunol. 33, 3028–3037 (2003).

    PubMed  Google Scholar 

  183. Nagase, H. et al. Cytokine-mediated regulation of CXCR4 expression in human neutrophils. J. Leukoc. Biol. 71, 711–717 (2002).

    CAS  PubMed  Google Scholar 

  184. Machado, I. D. et al. Alterations in the profile of blood neutrophil membrane receptors caused by in vivo adrenocorticotrophic hormone actions. Am. J. Physiol. Endocrinol. Metab. 307, E754–E763 (2014).

    CAS  PubMed  Google Scholar 

  185. Suratt, B. T. et al. Role of the CXCR4/SDF-1 chemokine axis in circulating neutrophil homeostasis. Blood 104, 565–571 (2004).

    CAS  PubMed  Google Scholar 

  186. Wetzler, M. et al. A new familial immunodeficiency disorder characterized by severe neutropenia, a defective marrow release mechanism, and hypogammaglobulinemia. Am. J. Med. 89, 663–672 (1990).

    CAS  PubMed  Google Scholar 

  187. Martin, C. et al. Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence. Immunity 19, 583–593 (2003).

    CAS  PubMed  Google Scholar 

  188. Weisel, K. C. et al. Modulation of CXC chemokine receptor expression and function in human neutrophils during aging in vitro suggests a role in their clearance from circulation. Mediators Inflamm. 2009, 790174 (2009).

    PubMed  PubMed Central  Google Scholar 

  189. Zhang, D. et al. Neutrophil ageing is regulated by the microbiome. Nature 525, 528–532 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Furze, R. C. & Rankin, S. M. The role of the bone marrow in neutrophil clearance under homeostatic conditions in the mouse. FASEB J. 22, 3111–3119 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Kim, H. K., De La Luz Sierra, M., Williams, C. K., Gulino, A. V. & Tosato, G. G-CSF down-regulation of CXCR4 expression identified as a mechanism for mobilization of myeloid cells. Blood 108, 812–820 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Lum, J. J., Bren, G., McClure, R. & Badley, A. D. Elimination of senescent neutrophils by TNF-related apoptosis-inducing [corrected] ligand. J. Immunol. 175, 1232–1238 (2005).

    CAS  PubMed  Google Scholar 

  193. Wang, J. et al. Visualizing the function and fate of neutrophils in sterile injury and repair. Science 358, 111–116 (2017).

    CAS  PubMed  Google Scholar 

  194. Kim, J. H. et al. Aged polymorphonuclear leukocytes cause fibrotic interstitial lung disease in the absence of regulation by B cells. Nat. Immunol. 19, 192–201 (2018).

    CAS  PubMed  Google Scholar 

  195. Eash, K. J., Means, J. M., White, D. W. & Link, D. C. CXCR4 is a key regulator of neutrophil release from the bone marrow under basal and stress granulopoiesis conditions. Blood 113, 4711–4719 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Yamada, M. et al. The increase in surface CXCR4 expression on lung extravascular neutrophils and its effects on neutrophils during endotoxin-induced lung injury. Cell Mol. Immunol. 8, 305–314 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Petty, J. M. et al. Pulmonary stromal-derived factor-1 expression and effect on neutrophil recruitment during acute lung injury. J. Immunol. 178, 8148–8157 (2007).

    CAS  PubMed  Google Scholar 

  198. Radermecker C, et al. Locally instructed CXCR4(hi) neutrophils trigger environment-driven allergic asthma through the release of neutrophil extracellular traps. Nat. Immunol. 20, 1444–1455 (2019).

  199. Lenoir, M., Djerdjouri, B. & Perianin, A. Stroma cell-derived factor 1alpha mediates desensitization of human neutrophil respiratory burst in synovial fluid from rheumatoid arthritic patients. J. Immunol. 172, 7136–7143 (2004).

    CAS  PubMed  Google Scholar 

  200. McDermott, D. H. et al. Severe congenital neutropenia resulting from G6PC3 deficiency with increased neutrophil CXCR4 expression and myelokathexis. Blood 116, 2793–2802 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Wang, A. et al. CXCR4/CXCL12 hyperexpression plays a pivotal role in the pathogenesis of lupus. J. Immunol. 182, 4448–4458 (2009).

    CAS  PubMed  Google Scholar 

  202. Delano, M. J. et al. Neutrophil mobilization from the bone marrow during polymicrobial sepsis is dependent on CXCL12 signaling. J. Immunol. 187, 911–918 (2011).

    CAS  PubMed  Google Scholar 

  203. Weisenburger-Lile, D. et al. Harmful neutrophil subsets in patients with ischemic stroke: association with disease severity. Neurol. Neuroimmunol. Neuroinflamm. 6, e571 (2019).

    PubMed  PubMed Central  Google Scholar 

  204. Massena, S. et al. Identification and characterization of VEGF-A-responsive neutrophils expressing CD49d, VEGFR1, and CXCR4 in mice and humans. Blood 126, 2016–2026 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Zhang, S., Youn, B. S., Gao, J. L., Murphy, P. M. & Kwon, B. S. Differential effects of leukotactin-1 and macrophage inflammatory protein-1 alpha on neutrophils mediated by CCR1. J. Immunol. 162, 4938–4942 (1999).

    CAS  PubMed  Google Scholar 

  206. Lee, S. C. et al. Cutaneous injection of human subjects with macrophage inflammatory protein-1 alpha induces significant recruitment of neutrophils and monocytes. J. Immunol. 164, 3392–3401 (2000).

    CAS  PubMed  Google Scholar 

  207. Jose, R. et al. Regulation of neutrophilic inflammation in lung injury induced by community-acquired pneumonia. Lancet 385 (Suppl), S52 (2015).

    Google Scholar 

  208. Yamamoto, T. et al. Loss of SMAD4 promotes lung metastasis of colorectal cancer by accumulation of CCR1+ tumor-associated neutrophils through CCL15-CCR1 axis. Clin. Cancer Res. 23, 833–844 (2017).

    CAS  PubMed  Google Scholar 

  209. Reichel, C. A. et al. Chemokine receptors Ccr1, Ccr2, and Ccr5 mediate neutrophil migration to postischemic tissue. J. Leukoc. Biol. 79, 114–122 (2006).

    CAS  PubMed  Google Scholar 

  210. Reichel, C. A. et al. C-C motif chemokine CCL3 and canonical neutrophil attractants promote neutrophil extravasation through common and distinct mechanisms. Blood 120, 880–890 (2012).

    CAS  PubMed  Google Scholar 

  211. Ramos, M. V. et al. Chemokine receptor CCR1 disruption limits renal damage in a murine model of hemolytic uremic syndrome. Am. J. Pathol. 180, 1040–1048 (2012).

    CAS  PubMed  Google Scholar 

  212. Kaesler, S. et al. The chemokine receptor CCR1 is strongly up-regulated after skin injury but dispensable for wound healing. Wound Repair Regen. 12, 193–204 (2004).

    PubMed  Google Scholar 

  213. Johnston, B. et al. Chronic inflammation upregulates chemokine receptors and induces neutrophil migration to monocyte chemoattractant protein-1. J. Clin. Invest. 103, 1269–1276 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Xu, P. et al. CCR2 dependent neutrophil activation and mobilization rely on TLR4-p38 axis during liver ischemia-reperfusion injury. Am. J. Transl. Res. 9, 2878–2890 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Dimitrijevic, O. B., Stamatovic, S. M., Keep, R. F. & Andjelkovic, A. V. Absence of the chemokine receptor CCR2 protects against cerebral ischemia/reperfusion injury in mice. Stroke 38, 1345–1353 (2007).

    CAS  PubMed  Google Scholar 

  216. Speyer, C. L. et al. Novel chemokine responsiveness and mobilization of neutrophils during sepsis. Am. J. Pathol. 165, 2187–2196 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Feterowski, C. et al. CC chemokine receptor 2 regulates leukocyte recruitment and IL-10 production during acute polymicrobial sepsis. Eur. J. Immunol. 34, 3664–3673 (2004).

    CAS  PubMed  Google Scholar 

  218. Souto, F. O. et al. Essential role of CCR2 in neutrophil tissue infiltration and multiple organ dysfunction in sepsis. Am. J. Respir. Crit. Care Med. 83, 234–242 (2011).

    Google Scholar 

  219. Talbot, J. et al. CCR2 expression in neutrophils plays a critical role in their migration into the joints in rheumatoid arthritis. Arthritis Rheumatol. 67, 1751–1759 (2015).

    CAS  PubMed  Google Scholar 

  220. Struyf, S. et al. Diverging binding capacities of natural LD78beta isoforms of macrophage inflammatory protein-1alpha to the CC chemokine receptors 1, 3 and 5 affect their anti-HIV-1 activity and chemotactic potencies for neutrophils and eosinophils. Eur. J. Immunol. 31, 2170–2178 (2001).

    CAS  PubMed  Google Scholar 

  221. Loetscher, P. et al. The ligands of CXC chemokine receptor 3, I-TAC, Mig, and IP10, are natural antagonists for CCR3. J. Biol. Chem. 276, 2986–2991 (2001).

    CAS  PubMed  Google Scholar 

  222. Bonecchi, R. et al. Up-regulation of CCR1 and CCR3 and induction of chemotaxis to CC chemokines by IFN-gamma in human neutrophils. J. Immunol. 162, 474–479 (1999).

    CAS  PubMed  Google Scholar 

  223. Menzies-Gow, A. et al. Eotaxin (CCL11) and eotaxin-2 (CCL24) induce recruitment of eosinophils, basophils, neutrophils, and macrophages as well as features of early- and late-phase allergic reactions following cutaneous injection in human atopic and nonatopic volunteers. J. Immunol. 169, 2712–2718 (2002).

    CAS  PubMed  Google Scholar 

  224. Alonzo, F. III et al. CCR5 is a receptor for Staphylococcus aureus leukotoxin ED. Nature 493, 51–55 (2013).

    PubMed  Google Scholar 

  225. Ottonello, L. et al. CCL3 (MIP-1alpha) induces in vitro migration of GM-CSF-primed human neutrophils via CCR5-dependent activation of ERK 1/2. Cell Signal. 17, 355–363 (2005).

    CAS  PubMed  Google Scholar 

  226. Ariel, A. et al. Apoptotic neutrophils and T cells sequester chemokines during immune response resolution through modulation of CCR5 expression. Nat. Immunol. 7, 1209–1216 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Auer, J. et al. Expression and regulation of CCL18 in synovial fluid neutrophils of patients with rheumatoid arthritis. Arthritis Res. Ther. 9, R94 (2007).

    PubMed  PubMed Central  Google Scholar 

  228. Eruslanov, E. B. et al. Tumor-associated neutrophils stimulate T cell responses in early-stage human lung cancer. J. Clin. Invest. 124, 5466–5480 (2014).

    PubMed  PubMed Central  Google Scholar 

  229. Bonecchi, R. & Graham, G. J. Atypical chemokine receptors and their roles in the resolution of the inflammatory response. Front Immunol. 7, 224 (2016).

    PubMed  PubMed Central  Google Scholar 

  230. Nibbs, R. J. B. & Graham, G. J. Immune regulation by atypical chemokine receptors. Nat. Rev. Immunol. 13, 815–829 (2013).

    PubMed  Google Scholar 

  231. Bachelerie, F. et al. An atypical addition to the chemokine receptor nomenclature: IUPHAR Review 15. Br. J. Pharm. 172, 3945–3949 (2015).

    CAS  Google Scholar 

  232. Luo, H., Chaudhuri, A., Zbrzezna, V., He, Y. & Pogo, A. O. Deletion of the murine Duffy gene (Dfy) reveals that the Duffy receptor is functionally redundant. Mol. Cell Biol. 20, 3097–3101 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Mei, J. et al. CXCL5 regulates chemokine scavenging and pulmonary host defense to bacterial infection. Immunity 33, 106–117 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Lee, K. M., Nibbs, R. J. B. & Graham, G. J. D6: the ‘crowd controller’ at the immune gateway. Trends Immunol. 34, 7–12 (2013).

    CAS  PubMed  Google Scholar 

  235. Rot, A. et al. Cell-autonomous regulation of neutrophil migration by the D6 chemokine decoy receptor. J. Immunol. 190, 6450–6456 (2013).

    CAS  PubMed  Google Scholar 

  236. Castanheira, F. V. E. S. et al. The atypical chemokine receptor ACKR2 is protective against sepsis. Shock 49, 682–689 (2018).

    CAS  PubMed  Google Scholar 

  237. Massara, M. et al. ACKR2 in hematopoietic precursors as a checkpoint of neutrophil release and anti-metastatic activity. Nat. Commun. 9, 676 (2018).

    PubMed  PubMed Central  Google Scholar 

  238. Del Prete, A., Bonecchi, R., Vecchi, A., Mantovani, A. & Sozzani, S. CCRL2, a fringe member of the atypical chemoattractant receptor family. Eur. J. Immunol. 43, 1418–1422 (2013).

    PubMed  Google Scholar 

  239. Del Prete, A. et al. The atypical receptor CCRL2 is required for CXCR2-dependent neutrophil recruitment and tissue damage. Blood 130, 1223–1234 (2017).

    PubMed  Google Scholar 

  240. Fan, X. et al. Murine CXCR1 is a functional receptor for GCP-2/CXCL6 and interleukin-8/CXCL8. J. Biol. Chem. 282, 11658–11666 (2007).

    CAS  PubMed  Google Scholar 

  241. Menten, P. et al. The LD78beta isoform of MIP-1alpha is the most potent CCR5 agonist and HIV-1-inhibiting chemokine. J. Clin. Invest. 104, R1–R5 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the Research Foundation - Flanders (FWO-Vlaanderen) (G.0808.18N), the European Union’s Horizon 2020 research and innovation program ImmunoAID under grant agreement No 779295 and a “C1” grant (C16/17/010) from KU Leuven. M.M. obtained a PhD fellowship supported by the L’Oréal-UNESCO for Women in Science initiative and the FWO-Vlaanderen. M.G. is a research expert funded by the Rega Foundation.

Author information

Authors and Affiliations

Authors

Contributions

M.M. wrote the initial manuscript, which was corrected and modified by M.G. and P.P. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Paul Proost.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Metzemaekers, M., Gouwy, M. & Proost, P. Neutrophil chemoattractant receptors in health and disease: double-edged swords. Cell Mol Immunol 17, 433–450 (2020). https://doi.org/10.1038/s41423-020-0412-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-020-0412-0

Keywords

This article is cited by

Search

Quick links