[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Crosstalk between autophagy and inflammatory signalling pathways: balancing defence and homeostasis

Key Points

  • The cellular degradative process of autophagy participates in multiple aspects of immunity, including cell-autonomous defence, innate immune signalling and antigen presentation.

  • Extensive crosstalk between autophagy and inflammatory signalling cascades ensures a robust immune response towards pathogens while avoiding collateral damage to the host. Several chronic inflammatory disorders are associated with autophagy dysfunction.

  • Pathways that induce autophagy, such as those downstream of pattern recognition receptors, are conversely subject to regulation by autophagy.

  • Autophagy can increase and decrease different components of the same inflammatory signalling cascade in a context-dependent manner.

  • Many immune-related functions of conserved autophagy proteins reflect non-canonical functions of the autophagy machinery, representing new opportunities for therapeutic intervention.

Abstract

Autophagy has broad functions in immunity, ranging from cell-autonomous defence to coordination of complex multicellular immune responses. The successful resolution of infection and avoidance of autoimmunity necessitates efficient and timely communication between autophagy and pathways that sense the immune environment. The recent literature indicates that a variety of immune mediators induce or repress autophagy. It is also becoming increasingly clear that immune signalling cascades are subject to regulation by autophagy, and that a return to homeostasis following a robust immune response is critically dependent on this pathway. Importantly, examples of non-canonical forms of autophagy in mediating immunity are pervasive. In this article, the progress in elucidating mechanisms of crosstalk between autophagy and inflammatory signalling cascades is reviewed. Improved mechanistic understanding of the autophagy machinery offers hope for treating infectious and inflammatory diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crosstalk between Toll-like receptor and NOD-like receptor signalling and autophagy.
Figure 2: Intersection between autophagy and cytokines.
Figure 3: Autophagy coordinates a multicellular adaptive immune response.

Similar content being viewed by others

References

  1. Russell, R. C. et al. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat. Cell Biol. 15, 741–750 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ge, L., Melville, D., Zhang, M. & Schekman, R. The ER-Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis. eLife 2, e00947 (2013).

    PubMed  PubMed Central  Google Scholar 

  3. Hamasaki, M. et al. Autophagosomes form at ER-mitochondria contact sites. Nature 495, 389–393 (2013).

    CAS  PubMed  Google Scholar 

  4. Dooley, H. C. et al. WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1. Mol. Cell 55, 238–252 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Randow, F. & Youle, R. J. Self and nonself: how autophagy targets mitochondria and bacteria. Cell Host Microbe 15, 403–411 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Choy, A. et al. The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation. Science 338, 1072–1076 (2012).This study provides an example of how intracellular bacteria block autophagy to evade trafficking to the lysosome.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen, Y. H. et al. Phosphatidylserine vesicles enable efficient en bloc transmission of enteroviruses. Cell 160, 619–630 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Martinez, J. et al. Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat. Cell Biol. 17, 893–906 (2015).This study demonstrates that LAP is distinguished from autophagy by its dependence on rubicon and NADPH oxidase 2 (NOX2).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhao, Z. et al. Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens. Cell Host Microbe 4, 458–469 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hwang, S. et al. Nondegradative role of Atg5-Atg12/ Atg16L1 autophagy protein complex in antiviral activity of interferon gamma. Cell Host Microbe 11, 397–409 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Choi, J. et al. The parasitophorous vacuole membrane of Toxoplasma gondii is targeted for disruption by ubiquitin-like conjugation systems of autophagy. Immunity 40, 924–935 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Selleck, E. M. et al. A noncanonical autophagy pathway restricts Toxoplasma gondii growth in a strain-specific manner in IFN-γ activated human cells. mBio 6, e01157–e01115 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ohshima, J. et al. Role of mouse and human autophagy proteins in IFN-γ-induced cell-autonomous responses against Toxoplasma gondii. J. Immunol. 192, 3328–3335 (2014).

    CAS  PubMed  Google Scholar 

  14. Haldar, A. K., Piro, A. S., Pilla, D. M., Yamamoto, M. & Coers, J. The E2-like conjugation enzyme Atg3 promotes binding of IRG and Gbp proteins to Chlamydia- and Toxoplasma-containing vacuoles and host resistance. PLoS ONE 9, e86684 (2014).

    PubMed  PubMed Central  Google Scholar 

  15. Park, S. et al. Targeting by Autophagy proteins (TAG): targeting of IFNγ-inducible GTPases to membranes by the LC3 conjugation system of autophagy. Autophagy 12, 1153–1167 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Shoji-Kawata, S. et al. Identification of a candidate therapeutic autophagy-inducing peptide. Nature 494, 201–206 (2013).This study shows that a cell-permeable beclin 1 peptide induces autophagy to enhance host defence.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Orvedahl, A. et al. Autophagy protects against Sindbis virus infection of the central nervous system. Cell Host Microbe 7, 115–127 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kernbauer, E., Ding, Y. & Cadwell, K. An enteric virus can replace the beneficial function of commensal bacteria. Nature 516, 94–98 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Cadwell, K. et al. Virus-plus-susceptibility gene interaction determines Crohn's disease gene Atg16L1 phenotypes in intestine. Cell 141, 1135–1145 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Visvikis, O. et al. Innate host defense requires TFEB-mediated transcription of cytoprotective and antimicrobial genes. Immunity 40, 896–909 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Maurer, K. et al. Autophagy mediates tolerance to Staphylococcus aureus α-toxin. Cell Host Microbe 17, 429–440 (2015).This study shows that autophagy limits damage caused by a pore-forming toxin from a clinical isolate of S. aureus.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Figueiredo, N. et al. Anthracyclines induce DNA damage response-mediated protection against severe sepsis. Immunity 39, 874–884 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Medzhitov, R., Schneider, D. S. & Soares, M. P. Disease tolerance as a defense strategy. Science 335, 936–941 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Marchiando, A. M. et al. A deficiency in the autophagy gene Atg16L1 enhances resistance to enteric bacterial infection. Cell Host Microbe 14, 216–224 (2013).

    CAS  PubMed  Google Scholar 

  25. Park, S. et al. Autophagy genes enhance murine gammaherpesvirus 68 reactivation from latency by preventing virus-induced systemic inflammation. Cell Host Microbe 19, 91–101 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lu, Q. et al. Homeostatic control of innate lung inflammation by vici syndrome gene Epg5 and additional autophagy genes promotes influenza pathogenesis. Cell Host Microbe 19, 102–113 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Tattoli, I. et al. Amino acid starvation induced by invasive bacterial pathogens triggers an innate host defense program. Cell Host Microbe 11, 563–575 (2012).

    CAS  PubMed  Google Scholar 

  28. Saitoh, T. et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production. Nature 456, 264–268 (2008).This study is the first to demonstrate the immunosuppressive function of autophagy in limiting inflammasome activation.

    CAS  PubMed  Google Scholar 

  29. Nakahira, K. et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12, 222–230 (2011).

    CAS  PubMed  Google Scholar 

  30. Zhong, Z. et al. NF-κB restricts inflammasome activation via elimination of damaged mitochondria. Cell 164, 896–910 (2016).This study shows that mitophagy inhibits inflammasome activation in the presence of LPS.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Dupont, N. et al. Shigella phagocytic vacuolar membrane remnants participate in the cellular response to pathogen invasion and are regulated by autophagy. Cell Host Microbe 6, 137–149 (2009).

    CAS  PubMed  Google Scholar 

  32. Meunier, E. et al. Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases. Nature 509, 366–370 (2014).

    CAS  PubMed  Google Scholar 

  33. Kreibich, S. et al. Autophagy proteins promote repair of endosomal membranes damaged by the Salmonella type three secretion system 1. Cell Host Microbe 18, 527–537 (2015).

    CAS  PubMed  Google Scholar 

  34. Suzuki, T. et al. Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLoS Pathog. 3, e111 (2007).

    PubMed  PubMed Central  Google Scholar 

  35. Byrne, B. G., Dubuisson, J. F., Joshi, A. D., Persson, J. J. & Swanson, M. S. Inflammasome components coordinate autophagy and pyroptosis as macrophage responses to infection. mBio 4, e00620–00612 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Shi, C. S. et al. Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction. Nat. Immunol. 13, 255–263 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Bodemann, B. O. et al. RalB and the exocyst mediate the cellular starvation response by direct activation of autophagosome assembly. Cell 144, 253–267 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ravindran, R. et al. The amino acid sensor GCN2 controls gut inflammation by inhibiting inflammasome activation. Nature 531, 523–527 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wlodarska, M. et al. NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell 156, 1045–1059 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Travassos, L. H. et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat. Immunol. 11, 55–62 (2010).

    CAS  PubMed  Google Scholar 

  41. Cooney, R. et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat. Med. 16, 90–97 (2010).

    CAS  PubMed  Google Scholar 

  42. Homer, C. R. et al. A dual role for receptor-interacting protein kinase 2 (RIP2) kinase activity in nucleotide-binding oligomerization domain 2 (NOD2)-dependent autophagy. J. Biol. Chem. 287, 25565–25576 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Anand, P. K. et al. TLR2 and RIP2 pathways mediate autophagy of Listeria monocytogenes via extracellular signal-regulated kinase (ERK) activation. J. Biol. Chem. 286, 42981–42991 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Irving, A. T. et al. The immune receptor NOD1 and kinase RIP2 interact with bacterial peptidoglycan on early endosomes to promote autophagy and inflammatory signaling. Cell Host Microbe 15, 623–635 (2014).

    CAS  PubMed  Google Scholar 

  45. Chauhan, S., Mandell, M. A. & Deretic, V. IRGM governs the core autophagy machinery to conduct antimicrobial defense. Mol. Cell 58, 507–521 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Plantinga, T. S. et al. Crohn's disease-associated ATG16L1 polymorphism modulates pro-inflammatory cytokine responses selectively upon activation of NOD2. Gut 60, 1229–1235 (2011).

    CAS  PubMed  Google Scholar 

  47. Buffen, K. et al. Autophagy modulates Borrelia burgdorferi-induced production of interleukin-1β (IL-1β). J. Biol. Chem. 288, 8658–8666 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lassen, K. G. et al. Atg16L1 T300A variant decreases selective autophagy resulting in altered cytokine signaling and decreased antibacterial defense. Proc. Natl Acad. Sci. USA 111, 7741–7746 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Murthy, A. et al. A Crohn's disease variant in Atg16l1 enhances its degradation by caspase 3. Nature 506, 456–462 (2014).

    CAS  PubMed  Google Scholar 

  50. Lupfer, C. et al. Receptor interacting protein kinase 2-mediated mitophagy regulates inflammasome activation during virus infection. Nat. Immunol. 14, 480–488 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Wen, Z. et al. Neutrophils counteract autophagy-mediated anti-inflammatory mechanisms in alveolar macrophage: role in posthemorrhagic shock acute lung inflammation. J. Immunol. 193, 4623–4633 (2014).

    CAS  PubMed  Google Scholar 

  52. Chu, H. et al. Gene-microbiota interactions contribute to the pathogenesis of inflammatory bowel disease. Science 352, 1116–1120 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Xu, Y. et al. Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity 27, 135–144 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Delgado, M. A., Elmaoued, R. A., Davis, A. S., Kyei, G. & Deretic, V. Toll-like receptors control autophagy. EMBO J. 27, 1110–1121 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Shi, C. S. & Kehrl, J. H. TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy. Sci. Signal. 3, ra42 (2010).

    PubMed  PubMed Central  Google Scholar 

  56. Meijer, A. H. & van der Vaart, M. DRAM1 promotes the targeting of mycobacteria to selective autophagy. Autophagy 10, 2389–2391 (2014).

    CAS  PubMed  Google Scholar 

  57. Fujita, K., Maeda, D., Xiao, Q. & Srinivasula, S. M. Nrf2-mediated induction of p62 controls Toll-like receptor-4-driven aggresome-like induced structure formation and autophagic degradation. Proc. Natl Acad. Sci. USA 108, 1427–1432 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Wild, P. et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333, 228–233 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Moy, R. H. et al. Antiviral autophagy restricts Rift Valley fever virus infection and is conserved from flies to mammals. Immunity 40, 51–65 (2014).

    CAS  PubMed  Google Scholar 

  60. Benjamin, J. L., Sumpter, R. Jr., Levine, B. & Hooper, L. V. Intestinal epithelial autophagy is essential for host defense against invasive bacteria. Cell Host Microbe 13, 723–734 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Lee, H. K., Lund, J. M., Ramanathan, B., Mizushima, N. & Iwasaki, A. Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science 315, 1398–1401 (2007).

    CAS  PubMed  Google Scholar 

  62. Henault, J. et al. Noncanonical autophagy is required for type I interferon secretion in response to DNA-immune complexes. Immunity 37, 986–997 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Sanjuan, M. A. et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450, 1253–1257 (2007).

    CAS  PubMed  Google Scholar 

  64. Akoumianaki, T. et al. Aspergillus cell wall melanin blocks LC3-associated phagocytosis to promote pathogenicity. Cell Host Microbe 19, 79–90 (2016).

    CAS  PubMed  Google Scholar 

  65. Katsuragi, Y. Ichimura, Y. & Komatsu, M. p62/SQSTM1 functions as a signaling hub and an autophagy adaptor. FEBS J. 282, 4672–4678 (2015).

    CAS  PubMed  Google Scholar 

  66. Lee, H. M. et al. Autophagy negatively regulates keratinocyte inflammatory responses via scaffolding protein p62/SQSTM1. J. Immunol. 186, 1248–1258 (2011).

    CAS  PubMed  Google Scholar 

  67. Kim, J. K. et al. MicroRNA-125a inhibits autophagy activation and antimicrobial responses during mycobacterial infection. J. Immunol. 194, 5355–5365 (2015).

    CAS  PubMed  Google Scholar 

  68. Lei, Y. et al. The mitochondrial proteins NLRX1 and TUFM form a complex that regulates type I interferon and autophagy. Immunity 36, 933–946 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Xia, M. et al. Mitophagy enhances oncolytic measles virus replication by mitigating DDX58/RIG-I-like receptor signaling. J. Virol. 88, 5152–5164 (2014).

    PubMed  PubMed Central  Google Scholar 

  70. Zhao, Y. et al. COX5B regulates MAVS-mediated antiviral signaling through interaction with ATG5 and repressing ROS production. PLoS Pathog. 8, e1003086 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Tal, M. C. et al. Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling. Proc. Natl Acad. Sci. USA 106, 2770–2775 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Jounai, N. et al. The Atg5–Atg12 conjugate associates with innate antiviral immune responses. Proc. Natl Acad. Sci. USA 104, 14050–14055 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Saitoh, T. et al. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc. Natl Acad. Sci. USA 106, 20842–20846 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Konno, H., Konno, K. & Barber, G. N. Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling. Cell 155, 688–698 (2013).

    CAS  PubMed  Google Scholar 

  75. Liang, Q. et al. Crosstalk between the cGAS DNA sensor and Beclin-1 autophagy protein shapes innate antimicrobial immune responses. Cell Host Microbe 15, 228–238 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Lan, Y. Y., Londono, D., Bouley, R., Rooney, M. S. & Hacohen, N. Dnase2a deficiency uncovers lysosomal clearance of damaged nuclear DNA via autophagy. Cell Rep. 9, 180–119 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Mathew, R. et al. Functional role of autophagy-mediated proteome remodeling in cell survival signaling and innate immunity. Mol. Cell 55, 916–930 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Grimm, W. A. et al. The Thr300Ala variant in ATG16L1 is associated with improved survival in human colorectal cancer and enhanced production of type I interferon. Gut 65, 456–464 (2016).

    CAS  PubMed  Google Scholar 

  79. Gutierrez, M. G. et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119, 753–766 (2004).

    CAS  PubMed  Google Scholar 

  80. Harris, J. et al. T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis. Immunity 27, 505–517 (2007).

    CAS  PubMed  Google Scholar 

  81. Mostowy, S. et al. p62 and NDP52 proteins target intracytosolic Shigella and Listeria to different autophagy pathways. J. Biol. Chem. 286, 26987–26995 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Matsuzawa, T. et al. IFN-γ elicits macrophage autophagy via the p38 MAPK signaling pathway. J. Immunol. 189, 813–818 (2012).

    CAS  PubMed  Google Scholar 

  83. Chang, Y. P. et al. Autophagy facilitates IFN-γ-induced Jak2-STAT1 activation and cellular inflammation. J. Biol. Chem. 285, 28715–28722 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Boonhok, R. et al. LAP-like process as an immune mechanism downstream of IFN-γ in control of the human malaria Plasmodium vivax liver stage. Proc. Natl Acad. Sci. USA 113, E3519–E3528 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Shen, S. et al. Cytoplasmic STAT3 represses autophagy by inhibiting PKR activity. Mol. Cell 48, 667–680 (2012).

    CAS  PubMed  Google Scholar 

  86. Van Grol, J. et al. HIV-1 inhibits autophagy in bystander macrophage/monocytic cells through Src-Akt and STAT3. PLoS ONE 5, e11733 (2010).

    PubMed  PubMed Central  Google Scholar 

  87. Terawaki, S. et al. RUN and FYVE domain-containing protein 4 enhances autophagy and lysosome tethering in response to Interleukin-4. J. Cell Biol. 210, 1133–1152 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Dupont, N. et al. Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1β. EMBO J. 30, 4701–4711 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Cullen, S. P., Kearney, C. J., Clancy, D. M. & Martin, S. J. Diverse activators of the NLRP3 inflammasome promote IL-1β secretion by triggering necrosis. Cell Rep. 11, 1535–1548 (2015).

    CAS  PubMed  Google Scholar 

  90. Zhang, M., Kenny, S., Ge, L., Xu, K. & Schekman, R. Translocation of interleukin-1β into a vesicle intermediate in autophagy-mediated secretion. eLife 4, e11205 (2015).

    PubMed  PubMed Central  Google Scholar 

  91. Pilli, M. et al. TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. Immunity 37, 223–234 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Castillo, E. F. et al. Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation. Proc. Natl Acad. Sci. USA 109, E3168–E3176 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Lee, J. P. et al. Loss of autophagy enhances MIF/macrophage migration inhibitory factor release by macrophages. Autophagy 12, 907–916 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Peral de Castro, C. et al. Autophagy regulates IL-23 secretion and innate T cell responses through effects on IL-1 secretion. J. Immunol. 189, 4144–4153 (2012).

    CAS  PubMed  Google Scholar 

  95. Ding, Y. et al. Autophagy regulates TGF-β expression and suppresses kidney fibrosis induced by unilateral ureteral obstruction. J. Am. Soc. Nephrol. 25, 2835–2846 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Trinchieri, G. Type I interferon: friend or foe? J. Exp. Med. 207, 2053–2063 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Mello Pde, A. et al. Adenosine uptake is the major effector of extracellular ATP toxicity in human cervical cancer cells. Mol. Biol. Cell 25, 2905–2918 (2014).

    PubMed  Google Scholar 

  98. Biswas, D. et al. ATP-induced autophagy is associated with rapid killing of intracellular mycobacteria within human monocytes/macrophages. BMC Immunol. 9, 35 (2008).

    PubMed  PubMed Central  Google Scholar 

  99. Takenouchi, T. et al. The activation of P2X7 receptor impairs lysosomal functions and stimulates the release of autophagolysosomes in microglial cells. J. Immunol. 182, 2051–2062 (2009).

    CAS  PubMed  Google Scholar 

  100. Bian, S. et al. P2X7 integrates PI3K/AKT and AMPK-PRAS40-mTOR signaling pathways to mediate tumor cell death. PLoS ONE 8, e60184 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Martins, I. et al. Molecular mechanisms of ATP secretion during immunogenic cell death. Cell Death Differ. 21, 79–91 (2014).

    CAS  PubMed  Google Scholar 

  102. Michaud, M. et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334, 1573–1577 (2011).This study demonstrates that autophagy promotes antitumour immunity by mediating the release of ATP.

    CAS  PubMed  Google Scholar 

  103. Tang, D. et al. Endogenous HMGB1 regulates autophagy. J. Cell Biol. 190, 881–892 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Kang, R. et al. The receptor for advanced glycation end products (RAGE) sustains autophagy and limits apoptosis, promoting pancreatic tumor cell survival. Cell Death Differ. 17, 666–676 (2010).

    CAS  PubMed  Google Scholar 

  105. Tang, D. et al. High-mobility group box 1 is essential for mitochondrial quality control. Cell. Metabolism 13, 701–711 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhu, X. et al. Cytosolic HMGB1 controls the cellular autophagy/apoptosis checkpoint during inflammation. J. Clin. Invest. 125, 1098–1110 (2015).

    PubMed  PubMed Central  Google Scholar 

  107. Yanai, H. et al. Conditional ablation of HMGB1 in mice reveals its protective function against endotoxemia and bacterial infection. Proc. Natl Acad. Sci. USA 110, 20699–20704 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Pua, H. H., Dzhagalov, I., Chuck, M., Mizushima, N. & He, Y. W. A critical role for the autophagy gene Atg5 in T cell survival and proliferation. J. Exp. Med. 204, 25–31 (2007).This study is the first to demonstrate that deficiency in an autophagy protein leads to defects in lymphocyte survival and proliferation.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Stephenson, L. M. et al. Identification of Atg5-dependent transcriptional changes and increases in mitochondrial mass in Atg5-deficient T lymphocytes. Autophagy 5, 625–635 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Jia, W. & He, Y. W. Temporal regulation of intracellular organelle homeostasis in T lymphocytes by autophagy. J. Immunol. 186, 5313–5322 (2011).

    CAS  PubMed  Google Scholar 

  111. Kovacs, J. R. et al. Autophagy promotes T-cell survival through degradation of proteins of the cell death machinery. Cell Death Differ. 19, 144–152 (2012).

    CAS  PubMed  Google Scholar 

  112. Pei, B. et al. Invariant NKT cells require autophagy to coordinate proliferation and survival signals during differentiation. J. Immunol. 194, 5872–5884 (2015).

    CAS  PubMed  Google Scholar 

  113. Willinger, T. & Flavell, R. A. Canonical autophagy dependent on the class III phosphoinositide-3 kinase Vps34 is required for naive T-cell homeostasis. Proc. Natl Acad. Sci. USA 109, 8670–8675 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Matsuzawa, Y. et al. TNFAIP3 promotes survival of CD4 T cells by restricting MTOR and promoting autophagy. Autophagy 11, 1052–1062 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Xu, X. et al. Autophagy is essential for effector CD8+ T cell survival and memory formation. Nat. Immunol. 15, 1152–1161 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. O'Sullivan, T. E., Johnson, L. R., Kang, H. H. & Sun, J. C. BNIP3- and BNIP3L-mediated mitophagy promotes the generation of natural killer cell memory. Immunity 43, 331–342 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Puleston, D. J. et al. Autophagy is a critical regulator of memory CD8+ T cell formation. eLife 3, e03706 (2014).

    PubMed Central  Google Scholar 

  118. Schlie, K. et al. Survival of effector CD8+ T cells during influenza infection is dependent on autophagy. J. Immunol. 194, 4277–4286 (2015).

    CAS  PubMed  Google Scholar 

  119. Henson, S. M. et al. p38 signaling inhibits mTORC1-independent autophagy in senescent human CD8+ T cells. J. Clin. Invest. 124, 4004–4016 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Hubbard, V. M. et al. Macroautophagy regulates energy metabolism during effector T cell activation. J. Immunol. 185, 7349–7357 (2010).

    CAS  PubMed  Google Scholar 

  121. Miller, B. C. et al. The autophagy gene ATG5 plays an essential role in B lymphocyte development. Autophagy 4, 309–314 (2008).

    CAS  PubMed  Google Scholar 

  122. Conway, K. L. et al. ATG5 regulates plasma cell differentiation. Autophagy 9, 528–537 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Pengo, N. et al. Plasma cells require autophagy for sustainable immunoglobulin production. Nat. Immunol. 14, 298–305 (2013).

    CAS  PubMed  Google Scholar 

  124. Paul, S., Kashyap, A. K., Jia, W., He, Y. W. & Schaefer, B. C. Selective autophagy of the adaptor protein Bcl10 modulates T cell receptor activation of NF-κB. Immunity 36, 947–958 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Wei, J. et al. Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis. Nat. Immunol. 17, 277–285 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Kabat, A. M. et al. The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation. eLife 5, de12444 (2016).

    Google Scholar 

  127. Dengjel, J. et al. Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc. Natl Acad. Sci. USA 102, 7922–7927 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Nedjic, J., Aichinger, M., Emmerich, J., Mizushima, N. & Klein, L. Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature 455, 396–400 (2008).

    CAS  PubMed  Google Scholar 

  129. Ireland, J. M. & Unanue, E. R. Autophagy in antigen-presenting cells results in presentation of citrullinated peptides to CD4 T cells. J. Exp. Med. 208, 2625–2632 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Paludan, C. et al. Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 307, 593–596 (2005).

    CAS  PubMed  Google Scholar 

  131. Lee, Y. et al. p62 plays a specific role in interferon-γ-induced presentation of a Toxoplasma vacuolar antigen. Cell Rep. 13, 223–233 (2015).

    CAS  PubMed  Google Scholar 

  132. Sakowski, E. T. et al. Ubiquilin 1 promotes IFN-γ-induced xenophagy of Mycobacterium tuberculosis. PLoS Pathog. 11, e1005076 (2015).

    PubMed  PubMed Central  Google Scholar 

  133. Romao, S. et al. Autophagy proteins stabilize pathogen-containing phagosomes for prolonged MHC II antigen processing. J. Cell Biol. 203, 757–766 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Martinez, J. et al. Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells. Proc. Natl Acad. Sci. USA 108, 17396–17401 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Brooks, C. R. et al. KIM-1-/TIM-1-mediated phagocytosis links ATG5-/ULK1-dependent clearance of apoptotic cells to antigen presentation. EMBO J. 34, 2441–2464 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Lee, H. K. et al. In vivo requirement for Atg5 in antigen presentation by dendritic cells. Immunity 32, 227–239 (2010).This study demonstrates that the autophagy pathway in DCs is crucial for antigen presentation during herpesvirus infection in vivo.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Gobeil, P. A. & Leib, D. A. Herpes simplex virus gamma34.5 interferes with autophagosome maturation and antigen presentation in dendritic cells. mBio 3, e00267–00212 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Ravindran, R. et al. Vaccine activation of the nutrient sensor GCN2 in dendritic cells enhances antigen presentation. Science 343, 313–317 (2014).This study shows that autophagy induced by the nutrient sensor GCN2 promotes cross-presentation of viral antigens.

    CAS  PubMed  Google Scholar 

  139. Jostins, L. et al. Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119–124 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Cadwell, K. et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456, 259–263 (2008).This study identifies a role for the autophagy gene ATG16L1 in supporting intestinal Paneth cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Patel, K. K. et al. Autophagy proteins control goblet cell function by potentiating reactive oxygen species production. EMBO J. 32, 3130–3144 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Adolph, T. E. et al. Paneth cells as a site of origin for intestinal inflammation. Nature 503, 272–276 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Conway, K. L. et al. Atg16l1 is required for autophagy in intestinal epithelial cells and protection of mice from Salmonella infection. Gastroenterology 145, 1347–1357 (2013).

    CAS  PubMed  Google Scholar 

  144. Hubbard-Lucey, V. M. et al. Autophagy gene atg16l1 prevents lethal T cell alloreactivity mediated by dendritic cells. Immunity 41, 579–591 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Martin, L. J. et al. Functional variant in the autophagy-related 5 gene promotor is associated with childhood asthma. PLoS ONE 7, e33454 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Zhou, X. J. et al. Genetic association of PRDM1- ATG5 intergenic region and autophagy with systemic lupus erythematosus in a Chinese population. Ann. Rheumat. Diseases 70, 1330–1337 (2011).

    CAS  Google Scholar 

  147. Dickinson, J. D. et al. IL13 activates autophagy to regulate secretion in airway epithelial cells. Autophagy 12, 397–409 (2015).

    PubMed  PubMed Central  Google Scholar 

  148. Clarke, A. J. et al. Autophagy is activated in systemic lupus erythematosus and required for plasmablast development. Ann. Rheumat. Diseases 74, 912–920 (2015).

    Google Scholar 

  149. Alessandri, C. et al. T lymphocytes from patients with systemic lupus erythematosus are resistant to induction of autophagy. FASEB J. 26, 4722–4732 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Weindel, C. G. et al. B cell autophagy mediates TLR7-dependent autoimmunity and inflammation. Autophagy 11, 1010–1024 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Martinez, J. et al. Noncanonical autophagy inhibits the autoinflammatory, lupus-like response to dying cells. Nature 533, 115–119 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Huang, J. et al. Activation of antibacterial autophagy by NADPH oxidases. Proc. Natl Acad. Sci. USA 106, 6226–6231 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. De Luca, A. et al. CD4+ T cell vaccination overcomes defective cross-presentation of fungal antigens in a mouse model of chronic granulomatous disease. J. Clin. Invest. 122, 1816–1831 (2012).

    CAS  PubMed  Google Scholar 

  154. De Luca, A. et al. IL-1 receptor blockade restores autophagy and reduces inflammation in chronic granulomatous disease in mice and in humans. Proc. Natl Acad. Sci. USA 111, 3526–3531 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Schwerd, T. et al. Impaired antibacterial autophagy links granulomatous intestinal inflammation in Niemann-Pick disease type C1 and XIAP deficiency with NOD2 variants in Crohn's disease. Gut http://dx.doi.org/10.1136/gutjnl-2015-310382 (2016).

  156. Luciani, A. et al. Defective CFTR induces aggresome formation and lung inflammation in cystic fibrosis through ROS-mediated autophagy inhibition. Nat. Cell Biol. 12, 863–875 (2010).

    CAS  PubMed  Google Scholar 

  157. Abdulrahman, B. A. et al. Autophagy stimulation by rapamycin suppresses lung inflammation and infection by Burkholderia cenocepacia in a model of cystic fibrosis. Autophagy 7, 1359–1370 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Renna, M. et al. Azithromycin blocks autophagy and may predispose cystic fibrosis patients to mycobacterial infection. J. Clin. Invest. 121, 3554–3563 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Pyo, J. O. et al. Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nature Commun. 4, 2300 (2013).

    Google Scholar 

  160. Starr, T. et al. Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle. Cell Host Microbe 11, 33–45 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Kimmey, J. M. et al. Unique role for ATG5 in neutrophil-mediated immunopathology during M. tuberculosis infection. Nature 528, 565–569 (2015).This study identifies a non-autophagy function of ATG5 in defence against M. tuberculosis.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Reggiori, F. et al. Coronaviruses hijack the LC3-I-positive EDEMosomes, ER-derived vesicles exporting short-lived ERAD regulators, for replication. Cell Host Microbe 7, 500–508 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Kageyama, S. et al. The LC3 recruitment mechanism is separate from Atg9L1-dependent membrane formation in the autophagic response against Salmonella. Mol. Biol. Cell 22, 2290–2300 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Sorbara, M. T. et al. The protein ATG16L1 suppresses inflammatory cytokines induced by the intracellular sensors Nod1 and Nod2 in an autophagy-independent manner. Immunity 39, 858–873 (2013).

    CAS  PubMed  Google Scholar 

  165. Liu, E., Van Grol, J. & Subauste, C. S. Atg5 but not Atg7 in dendritic cells enhances IL-2 and IFN-γ production by Toxoplasma gondii-reactive CD4+ T cells. Microbes Infect. 17, 275–284 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

  167. Cullup, T. et al. Recessive mutations in EPG5 cause Vici syndrome, a multisystem disorder with defective autophagy. Nat. Genet. 45, 83–87 (2013).

    CAS  PubMed  Google Scholar 

  168. Hakonarson, H. et al. A genome-wide association study identifies KIAA0350 as a type 1 diabetes gene. Nature 448, 591–594 (2007).

    CAS  PubMed  Google Scholar 

  169. Soleimanpour, S. A. et al. The diabetes susceptibility gene Clec16a regulates mitophagy. Cell 157, 1577–1590 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Schuster, C. et al. The autoimmunity-associated gene CLEC16A modulates thymic epithelial cell autophagy and alters T cell selection. Immunity 42, 942–952 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Smyth, D. J. et al. PTPN22 Trp620 explains the association of chromosome 1p13 with type 1 diabetes and shows a statistical interaction with HLA class II genotypes. Diabetes 57, 1730–1737 (2008).

    CAS  PubMed  Google Scholar 

  172. Martinez, A. et al. Chromosomal region 16p13: further evidence of increased predisposition to immune diseases. Ann. Rheumat. Diseases 69, 309–311 (2010).

    CAS  Google Scholar 

  173. Scharl, M. et al. Crohn's disease-associated polymorphism within the PTPN2 gene affects muramyl-dipeptide-induced cytokine secretion and autophagy. Inflamm. Bowel Dis. 18, 900–912 (2012).

    PubMed  Google Scholar 

  174. Yang, Z., Fujii, H., Mohan, S. V., Goronzy, J. J. & Weyand, C. M. Phosphofructokinase deficiency impairs ATP generation, autophagy, and redox balance in rheumatoid arthritis T cells. J. Exp. Med. 210, 2119–2134 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author would like to thank V. Torres (New York University School of Medicine) and members of the Cadwell laboratory for comments on the manuscript. K.C. is supported by NIH grants DK103788, DK093668, HL123340, Stony Wold-Herbert Fund, and philanthropic support from Bernard Levine. K.C. is a Burroughs Wellcome Fund Investigator in the Pathogenesis of Infectious Diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Cadwell.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Glossary

Autophagy

An evolutionarily conserved process in which double-membrane vesicles sequester intracellular contents (such as damaged organelles and macromolecules) and target them for degradation through fusion with lysosomes.

Xenophagy

A cell-intrinsic defence mechanism involving the selective degradation of microorganisms (such as bacteria, fungi, parasites and viruses) through an autophagy-related mechanism.

Sequestosome 1

(SQSTM1). A prototypical adaptor protein that targets ubiquitylated proteins for selective autophagy by binding ubiquitin and LC3. Through incorporation into the autophagosome, SQSTM1 itself becomes a substrate for autophagic degradation.

Inflammasome

A multi-protein oligomer that catalyses the autoactivation of caspase 1, which cleaves pro-IL-1β and pro-IL-18 to produce the active forms of these cytokines.

Pyroptosis

An inflammatory form of programmed cell death that is dependent on inflammasome-mediated activation of caspase 1.

Outer membrane vesicles

(OMVs). Vesicles derived from the bacterial outer membrane that can be immunogenic and mediate interactions between commensal or pathogenic bacteria and the host.

B1a B cells

B1 B cells are a group of self-renewing, autoreactive B cells with a limited B cell receptor repertoire. These cells are mainly found in the peritoneal cavity and the pleural cavity. B1 cells are subdivided into the B1a (CD5+) and B1b (CD5) subsets.

Citrullinated self-peptide

A self-peptide that incorporates the amino acid citrulline. These peptides are generated post-translationally by peptidylarginine deiminases. The citrulline moiety is the essential part of the antigenic determinant towards which characteristic autoantibodies in patients with rheumatoid arthritis are generated.

Cross-presentation

The initiation of a CD8+ T cell response to an antigen that is not present within antigen-presenting cells (APCs). This exogenous antigen must be taken up by APCs and then re-routed to the MHC class I pathway of antigen presentation.

Crohn disease

Together with ulcerative colitis, Crohn disease is one of the two main forms of chronic inflammatory bowel disease (IBD). It most commonly affects the lower portion of the small intestine, resulting in symptoms of abdominal pain, diarrhoea, fever and weight loss. Analysis of the strong genetic predisposition led to the identification of mutations in the NOD2 gene that are particularly strongly associated with ileal disease, but not with ulcerative colitis.

ER stress pathway

(Endoplasmic reticulum stress pathway). A conserved stress response pathway that senses the accumulation of unfolded proteins in the endoplasmic reticulum.

Haematopoietic stem cell transplantation

(HSCT). A procedure in which HSCs from bone marrow or blood are transplanted to treat leukaemia and other disorders.

Graft-versus-host disease

(GVHD). A common complication of HSCT in which allogeneic T cells derived from a non-identical donor attack healthy tissue in the recipient.

Chronic granulomatous disease

An inherited disorder caused by defective oxidase activity in the respiratory burst of phagocytes. It results from mutations in any of four genes that are necessary to generate the superoxide radicals required for neutrophil antimicrobial function. Affected patients suffer from increased susceptibility to recurrent infections.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cadwell, K. Crosstalk between autophagy and inflammatory signalling pathways: balancing defence and homeostasis. Nat Rev Immunol 16, 661–675 (2016). https://doi.org/10.1038/nri.2016.100

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2016.100

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing