[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Thioredoxin-interacting protein links oxidative stress to inflammasome activation

Abstract

The NLRP3 inflammasome has a major role in regulating innate immunity. Deregulated inflammasome activity is associated with several inflammatory diseases, yet little is known about the signaling pathways that lead to its activation. Here we show that NLRP3 interacted with thioredoxin (TRX)-interacting protein (TXNIP), a protein linked to insulin resistance. Inflammasome activators such as uric acid crystals induced the dissociation of TXNIP from thioredoxin in a reactive oxygen species (ROS)-sensitive manner and allowed it to bind NLRP3. TXNIP deficiency impaired activation of the NLRP3 inflammasome and subsequent secretion of interleukin 1β (IL-1β). Akin to Txnip−/− mice, Nlrp3−/− mice showed improved glucose tolerance and insulin sensitivity. The participation of TXNIP in the NLRP3 inflammasome activation may provide a mechanistic link to the observed involvement of IL-1β in the pathogenesis of type 2 diabetes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TXNIP binds to NLRP3.
Figure 2: ROS induce the dissociation of TXNIP from TRX and binding to NLRP3.
Figure 3: The kinetics of ROS production, the dissociation of TXNIP from TRX and the association of TXNIP with NLRP3 in THP-1 cells.
Figure 4: TXNIP is essential for activation of the NLRP3 inflammasome.
Figure 5: TXNIP is essential for activation of the NLRP3 inflammasome in vivo.
Figure 6: Expression of TXNIP is induced by glucose.
Figure 7: TXNIP and NLRP3 are linked to the secretion of IL-1β from islet cells.
Figure 8: NLRP3 deficiency affects glucose homeostasis.

Similar content being viewed by others

References

  1. Martinon, F., Mayor, A. & Tschopp, J. The inflammasomes: guardians of the body. Annu. Rev. Immunol. 27, 229–265 (2009).

    Article  CAS  Google Scholar 

  2. Chen, G., Shaw, M.H., Kim, Y.G. & Nuñez, G. Nod-like receptors: role in innate immunity and inflammatory disease. Ann. Rev. Pathol. 4, 365–398 (2009).

    Article  CAS  Google Scholar 

  3. Agostini, L. et al. NALP3 forms an IL-1β processing inflammasome with increased activity in Muckle-Wells auto-inflammatory disorder. Immunity 20, 319–325 (2004).

    Article  CAS  Google Scholar 

  4. Mariathasan, S. et al. Differential activation of the inflammasome by caspase-1adaptors ASC and Ipaf. Nature 430, 213–218 (2004).

    Article  CAS  Google Scholar 

  5. Martinon, F., Agostini, L., Meylan, E. & Tschopp, J. Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome. Curr. Biol. 14, 1929–1934 (2004).

    Article  CAS  Google Scholar 

  6. Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    Article  CAS  Google Scholar 

  7. Halle, A. et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nat. Immunol. 9, 857–865 (2008).

    Article  CAS  Google Scholar 

  8. Petrilli, V. et al. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ. 14, 1583–1589 (2007).

    Article  CAS  Google Scholar 

  9. Franchi, L. et al. Critical role for Ipaf in Pseudomonas aeruginosa-induced caspase-1 activation. Eur. J. Immunol. 37, 3030–3039 (2007).

    Article  CAS  Google Scholar 

  10. Marina-Garcia, N. et al. Pannexin-1-mediated intracellular delivery of muramyl dipeptide induces caspase-1 activation via cryopyrin/NLRP3 independently of Nod2. J. Immunol. 180, 4050–4057 (2008).

    Article  CAS  Google Scholar 

  11. Hornung, V. et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 9, 847–856 (2008).

    Article  CAS  Google Scholar 

  12. Kim, S.Y., Suh, H.W., Chung, J.W., Yoon, S.R. & Choi, I. Diverse functions of VDUP1 in cell proliferation, differentiation, and diseases. Cell. Mol. Immunol. 4, 345–351 (2007).

    CAS  PubMed  Google Scholar 

  13. Kaimul, A.M., Nakamura, H., Masutani, H. & Yodoi, J. Thioredoxin and thioredoxin-binding protein-2 in cancer and metabolic syndrome. Free Radic. Biol. Med. 43, 861–868 (2007).

    Article  CAS  Google Scholar 

  14. Dostert, C. et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320, 674–677 (2008).

    Article  CAS  Google Scholar 

  15. Nishiyama, A. et al. Identification of thioredoxin-binding protein-2/vitamin D3 up-regulated protein 1 as a negative regulator of thioredoxin function and expression. J. Biol. Chem. 274, 21645–21650 (1999).

    Article  CAS  Google Scholar 

  16. Chen, J., Saxena, G., Mungrue, I.N., Lusis, A.J. & Shalev, A. Thioredoxin-interacting protein: a critical link between glucose toxicity and beta-cell apoptosis. Diabetes 57, 938–944 (2008).

    Article  CAS  Google Scholar 

  17. Parikh, H. et al. TXNIP regulates peripheral glucose metabolism in humans. PLoS Med. 4, e158 (2007).

    Article  Google Scholar 

  18. van Greevenbroek, M.M. et al. Genetic variation in thioredoxin interacting protein (TXNIP) is associated with hypertriglyceridaemia and blood pressure in diabetes mellitus. Diabet. Med. 24, 498–504 (2007).

    Article  CAS  Google Scholar 

  19. Minn, A.H., Hafele, C. & Shalev, A. Thioredoxin-interacting protein is stimulated by glucose through a carbohydrate response element and induces beta-cell apoptosis. Endocrinology 146, 2397–2405 (2005).

    Article  CAS  Google Scholar 

  20. Turturro, F., Friday, E. & Welbourne, T. Hyperglycemia regulates thioredoxin-ROS activity through induction of thioredoxin-interacting protein (TXNIP) in metastatic breast cancer-derived cells MDA-MB-231. BMC Cancer 7, 96 (2007).

    Article  Google Scholar 

  21. Maedler, K. et al. Glucose- and interleukin-1beta-induced beta-cell apoptosis requires Ca2+ influx and extracellular signal-regulated kinase (ERK) 1/2 activation and is prevented by a sulfonylurea receptor 1/inwardly rectifying K+ channel 6.2 (SUR/Kir6.2) selective potassium channel opener in human islets. Diabetes 53, 1706–1713 (2004).

    Article  CAS  Google Scholar 

  22. Dasu, M.R., Devaraj, S. & Jialal, I. High glucose induces IL-1β expression in human monocytes: mechanistic insights. Am. J. Physiol. Endocrinol. Metab. 293, E337–E346 (2007).

    Article  CAS  Google Scholar 

  23. Suh, S.W. et al. Glucose and NADPH oxidase drive neuronal superoxide formation in stroke. Ann. Neurol. 64, 654–663 (2008).

    Article  CAS  Google Scholar 

  24. Gokulakrishnan, K., Mohanavalli, K.T., Monickaraj, F., Mohan, V. & Balasubramanyam, M. Subclinical inflammation/oxidation as revealed by altered gene expression profiles in subjects with impaired glucose tolerance and type 2 diabetes patients. Mol. Cell. Biochem. 324, 173–181 (2009).

    Article  CAS  Google Scholar 

  25. Hattersley, A.T. & Ashcroft, F.M. Activating mutations in Kir6.2 and neonatal diabetes: new clinical syndromes, new scientific insights, and new therapy. Diabetes 54, 2503–2513 (2005).

    Article  CAS  Google Scholar 

  26. Muruve, D.A. et al. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature 452, 103–107 (2008).

    Article  CAS  Google Scholar 

  27. Lamkanfi, M. et al. Glyburide inhibits the cryopyrin/Nalp3 inflammasome. J. Cell Biol. 187, 61–70 (2009).

    Article  CAS  Google Scholar 

  28. Lee, K.N. et al. VDUP1 is required for the development of natural killer cells. Immunity 22, 195–208 (2005).

    Article  CAS  Google Scholar 

  29. Son, A. et al. Dendritic cells derived from TBP-2-deficient mice are defective in inducing T cell responses. Eur. J. Immunol. 38, 1358–1367 (2008).

    Article  CAS  Google Scholar 

  30. Chen, J. et al. Thioredoxin-interacting protein deficiency induces Akt/Bcl-xL signaling and pancreatic β-cell mass and protects against diabetes. FASEB J. 22, 3581–3594 (2008).

    Article  CAS  Google Scholar 

  31. Hui, S.T. et al. Txnip balances metabolic and growth signaling via PTEN disulfide reduction. Proc. Natl. Acad. Sci. USA 105, 3921–3926 (2008).

    Article  CAS  Google Scholar 

  32. Oka, S.I. et al. Thioredoxin binding protein-2 (TBP-2)/Txnip is a critical regulator of insulin secretion and PPAR function. Endocrinology 155, 1225–1234 (2008).

    Google Scholar 

  33. Mayor, A., Martinon, F., De Smedt, T., Petrilli, V. & Tschopp, J. A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses. Nat. Immunol. 8, 497–503 (2007).

    Article  CAS  Google Scholar 

  34. Dostert, C. et al. Malarial hemozoin is a Nalp3 inflammasome activating danger signal. PLoS One 4, e6510 (2009).

    Article  Google Scholar 

  35. Larsen, C.M. et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N. Engl. J. Med. 356, 1517–1526 (2007).

    Article  CAS  Google Scholar 

  36. Didierlaurent, A. et al. Tollip regulates proinflammatory responses to interleukin-1 and lipopolysaccharide. Mol. Cell. Biol. 26, 735–742 (2006).

    Article  CAS  Google Scholar 

  37. Gotoh, M. et al. Reproducible high yield of rat islets by stationary in vitro digestion following pancreatic ductal or portal venous collagenase injection. Transplantation 43, 725–730 (1987).

    Article  CAS  Google Scholar 

  38. Papin, S. et al. The SPRY domain of Pyrin, mutated in familial Mediterranean fever patients, interacts with inflammasome components and inhibits proIL-1β processing. Cell Death Differ. 14, 1457–1466 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Vandenabeele (Ghent University) for antibody to mouse caspase-1 (p20); V. Dixit (Genentech) for Ipaf−/− mice; R.V. Bruggen (Free University Amsterdam) for S. typhimurium; R. Solari (Glaxo) for antibody to mouse IL-1β; M. Joffraud for technical help; and K. Schroder, C. Dostert and O. Gross for reading the manuscript. Supported by the Swiss National Science Foundation, MUGEN and the Swiss National Center of Competence in Research for Molecular Oncology (A.T.).

Author information

Authors and Affiliations

Authors

Contributions

R.Z. and J.T. designed the study and wrote the manuscript; R.Z. and A.T. did experiments; I.C. provided mice; and B.T. provided technical support and conceptual advice.

Corresponding author

Correspondence to Jürg Tschopp.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 721 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, R., Tardivel, A., Thorens, B. et al. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 11, 136–140 (2010). https://doi.org/10.1038/ni.1831

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1831

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing