[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Genetic fusion of chemokines to a self tumor antigen induces protective, T-cell dependent antitumor immunity

Abstract

We converted a model, syngeneic, nonimmunogenic tumor antigen into a vaccine by fusing it with a proinflammatory chemokine. Two chemokines, interferon inducible protein 10 and monocyte chemotactic protein 3, were fused to lymphoma Ig variable regions (sFv). The sFv–chemokine fusion proteins elicited chemotactic responses in vitro and induced inflammatory responses in vivo. Furthermore, in two independent models, vaccination with DNA constructs encoding the corresponding fusions generated superior protection against a large tumor challenge (20 times the minimum lethal dose), as compared with the best available protein vaccines. Immunity was not elicited by controls, including fusions with irrelevant sFv; fusions with a truncated chemokine that lacked receptor binding and chemotactic activity; mixtures of free chemokine and sFv proteins; or naked DNA plasmid vaccines encoding unlinked sFv and chemokine. The requirement for linkage of conformationally intact sFv and functionally active chemokine strongly suggested that the mechanism underlying these effects was the novel targeting of antigen presenting cells (APC) for chemokine receptor-mediated uptake of antigen, rather than the simple recruitment of APC to tumor by the chemokine. Finally, in addition to superior potency, these fusions were distinguished from lymphoma Ig fusions with granulocyte-macrophage colony-stimulating factor or other cytokines by their induction of critical effector T cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lymphoma fusion protein and DNA genetic constructs.
Figure 2: Effect of chemokine fusions on folding of sFv antigen.
Figure 3: Receptor binding and biologic function of chemokine-sFv fusions.
Figure 4: Antibody responses following immunization with chemokine-sFv fusions, but not sFv alone or mixtures of chemokine and sFv.
Figure 5: Levels of protective immunity following immunization with chemokine-sFv fusion protein and DNA vaccines.
Figure 6: Comparison of chemokine-sFv fusions derived from the A20 lymphoma with Ig–KLH, and requirement for physical linkage between chemokine and antigen.

Similar content being viewed by others

References

  1. Haelens, A. et al. Leukocyte migration and antivation by murine chemokines. Immunobiology 195, 499–521 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  2. Rollins, B.J. Chemokines. Blood 90, 909– 928 (1997).

    CAS  PubMed  Google Scholar 

  3. Luster, A.D. Chemokines-chemotactic cytokines that mediate inflammation. N. Engl. J. Med. 338, 436–445 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Prado, G.N., Suzuki, H., Wilkinson, N., Cousins, B. & Navarro, J. Role of the C terminus of the interleukin 8 receptor in signal transduction and internalization. J. Biol. Chem. 271, 19186–19190 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  5. Solari, R. et al. Receptor-mediated endocytosis of CC-chemokines. J. Biol. Chem. 272, 9617–9620 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  6. Signoret, N. et al. Phorbol esters and SDF-1 induce rapid endocytosis and down modulation of the chemokine receptor CXCR4. J. Cell. Biol. 139 , 651–664 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Streiter, R.M. et al. The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J. Biol. Chem. 270, 27348– 27357 (1995).

    Article  Google Scholar 

  8. Ohmori, Y. & Hamilton, T.A. A macrophage LPS-inducible early gene encodes the murine homologue of IP-10. Biochem. Biophys. Res. Commun. 168, 1261–1267 ( 1990).

    Article  CAS  PubMed  Google Scholar 

  9. Luster, A.D. & Leder, P. IP-10, a -C-X-C- chemokine, elicits a potent thymus-dependent antitumor response in vivo. J. Exp. Med. 178, 1057–1065 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  10. Thirion, S. et al. Mouse macrophage derived monocyte chemotactic protein-3: cDNA cloning and identification as MARC/FIC. Biochem. Biophys. Res. Commun. 201, 493–499 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  11. Gong, J.-H., Uguccioni, M., Dewald, B., Baggiolini, M. & Clark-Lewis, I. RANTES and MCP-3 antagonists bind multiple chemokine receptors. J. Biol. Chem. 271 , 10521–10527 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Xu, L.L. et al. Monocyte chemotactic protein-3 (MCP3) interacts with multiple leukocyte receptors: binding and signaling of MCP3 through shared as well as unique receptors on monocytes and neutrophils. Eur. J. Immunol. 25, 2612–2617 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Stevenson, G.T. & Stevenson, F.K. Antibody to a molecularly-defined antigen confined to a tumor cell surface. Nature 254, 714–716 ( 1975).

    Article  CAS  PubMed  Google Scholar 

  14. Kaminski, M.S., Kitamura, K., Maloney, D.G. & Levy, R. Idiotype vaccination against murine B cell lymphoma, inhibition of tumor immunity by free idiotype protein. J. Immunol. 138, 1289–1296 (1987).

    CAS  PubMed  Google Scholar 

  15. Kwak, L.W. et al. Induction of immune responses in patients with B-cell lymphoma against the surface-immunoglobulin idiotype expressed by their tumors. N. Engl. J. Med. 327, 1209–1215 ( 1992).

    Article  CAS  PubMed  Google Scholar 

  16. Huston, J.S. et al. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc. Natl. Acad. Sci. USA 85, 5879–5883 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huston, J.S. et al. Protein engineering of single-chain Fv analogs and fusion proteins. Methods Enzymol. 203, 46– 98 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Bergman, Y. & Haimovich, J. Characterization of a carcinogen-induced murine B lymphocyte cell line of C3H/eB origin. Eur. J. Immunol. 7, 413–417 ( 1977).

    Article  CAS  PubMed  Google Scholar 

  19. Kim, K.J., Kanellopoulos-Langevin, C., Merwin, R.M., Sachs, D.H. & Asofsky, R. Establishment and characterization of BALB/c lymphoma lines with B cell properties. J. Immunol. 122, 549–554 (1979).

    CAS  PubMed  Google Scholar 

  20. Buchner, J., Pastan, I. & Brinkmann, U. A method for increasing the yield of properly folded recombinant fusion proteins: single-chain immunotoxins from renaturation of bacterial inclusion bodies. Anal. Biochem. 205 , 263–270 (1992).

    CAS  Google Scholar 

  21. Boyle, J.S., Brady, J.L. & Lew, A.M. Enhanced responses to a DNA vaccine encoding a fusion antigen that is directed to sites of immune induction. Nature 392, 408–411 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Kwak, L.W. et al. Transfer of myeloma idiotype-specific immunity from an actively immunised marrow donor. Lancet 345, 1016– 1020 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Tao, M.-H. & Levy, R. Idiotype/granulocyte-macrophage colony-stimulating factor fusion protein as a vaccine for B-cell lymphoma. Nature 362, 755–758 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  24. Syrengelas, A.D., Chen, T.T. & Levy, R. DNA immunization induces protective immunity against B-cell lymphoma. Nat. Med. 2, 1038– 1041 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Stevenson, F.K. et al. Idiotypic DNA vaccines against B-cell lymphoma. Immunol. Rev. 145, 211–227 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  26. King, C.Y. et al. DNA vaccines with single-chain Fv fused to fragment C of tetanus toxin induce protective immunity against lymphoma and myeloma. Nat. Med. 4, 1281–1286 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Cheng, L., Ziegelhoffer, P.R. & Yang, N.-S. In vivo promoter activity and transgene expression in mammalian somatic tissues evaluated by using particle bombardment. Proc. Natl. Acad. Sci. USA 90, 4455– 4459 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu, M.A. The immunologist's grail: vaccines that generate cellular immunity. Proc. Natl. Acad. Sci. USA 94, 10496– 10498 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Feltquate, D.M., Heaney, S., Webster, R.G. & Robinson, H.L. Different T helper cell types and antibody isotypes generated by saline and gene gun DNA immunization. J. Immunol. 158, 2278–2284 (1997).

    CAS  PubMed  Google Scholar 

  30. Wu, Y. & Kipps, T.J. Deoxyribonucleic acid vaccines encoding antigens with rapid proteasome-dependent degradation are highly efficient inducers of cytolytic T lymphocytes. J. Immunol. 159 , 6037–6043 (1997).

    CAS  PubMed  Google Scholar 

  31. Blasi, E., Matthieson, B.J. & Varesio, L. Selective immortalization of murine macrophages from fresh bone marrow by a raf/myc recombinant murine retrovirus. Nature 318, 667–670 ( 1985).

    Article  CAS  PubMed  Google Scholar 

  32. Falk, W., Goodwin, R.H. & Leonard, E.J. A 48-well micro chemotaxis assembly for rapid and accurate measurement of leukocyte migration. J. Immunol. Methods 33, 239–247 ( 1980).

    Article  CAS  PubMed  Google Scholar 

  33. Kwak, L.W., Young, H.A., Pennington, R.W. & Weeks, S.W. Vaccination with syngeneic, lymphoma-derived immunoglobulin idiotype combined with granulocyte/ macrophage colony-stimulating factor primes mice for a protective T-cell response. Proc. Natl. Acad. Sci. USA 93, 10972–10977 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guide for the Care and Use of Laboratory Animals publication no. 86-23 (National Institutes of Health, Bethesda, Md, 1985).

  35. Irvine, K.R., Rao, J.B., Rosenberg, S.A. & Restifo, N.P. Cytokine enhancement of DNA immunization leads to effective treatment of established pulmonary metastases. J. Immunol. 156, 238 –245 (1996).

    CAS  PubMed  Google Scholar 

  36. Kruisbeek, A.M. in Current Protocols in Immunology (eds. Coligan, J.E., Kruisbeck, A.M., Margulies, D.H., Shevach, E.M. & Strober, W.) 4.1.1– 4.2.1 (Wiley & Sons, New York, 1994).

    Google Scholar 

Download references

Acknowledgements

We are grateful to K.R. Irvine and N. Restifo for assistance with gene-gun experiments and R.W. Pennington and O.C. Bowersox for technical assistance. We also thank R.L. Hornung for help in preparing figures and J.J. Oppenheim, W.J. Murphy, and J. Berzofsky for critical reading of the manuscript. This project has been funded in part with federal funds from the National Cancer Institute, National Institutes of Health, under Contract No. N01-CO-56000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry W. Kwak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biragyn, A., Tani, K., Grimm, M. et al. Genetic fusion of chemokines to a self tumor antigen induces protective, T-cell dependent antitumor immunity. Nat Biotechnol 17, 253–258 (1999). https://doi.org/10.1038/6995

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/6995

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing