[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reduced calcification of marine plankton in response to increased atmospheric CO2

Abstract

The formation of calcareous skeletons by marine planktonic organisms and their subsequent sinking to depth generates a continuous rain of calcium carbonate to the deep ocean and underlying sediments1. This is important in regulating marine carbon cycling and ocean–atmosphere CO2 exchange2. The present rise in atmospheric CO2 levels3 causes significant changes in surface ocean pH and carbonate chemistry4. Such changes have been shown to slow down calcification in corals and coralline macroalgae5,6, but the majority of marine calcification occurs in planktonic organisms. Here we report reduced calcite production at increased CO2 concentrations in monospecific cultures of two dominant marine calcifying phytoplankton species, the coccolithophorids Emiliania huxleyi and Gephyrocapsa oceanica . This was accompanied by an increased proportion of malformed coccoliths and incomplete coccospheres. Diminished calcification led to a reduction in the ratio of calcite precipitation to organic matter production. Similar results were obtained in incubations of natural plankton assemblages from the north Pacific ocean when exposed to experimentally elevated CO2 levels. We suggest that the progressive increase in atmospheric CO2 concentrations may therefore slow down the production of calcium carbonate in the surface ocean. As the process of calcification releases CO2 to the atmosphere, the response observed here could potentially act as a negative feedback on atmospheric CO2 levels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Response of organic and inorganic carbon production to CO2 concentration in laboratory-cultured coccolithophorids.
Figure 2: Ratio of calcification to POC production (calcite/POC) of Emiliania huxleyi as a function of CO2 concentration, [CO2].
Figure 3: Scanning electron microscopy (SEM) photographs of coccolithophorids under different CO2 concentrations.
Figure 4: Effects of CO2 manipulations on POC production, calcification and the ratio of calcification to POC production (calcite/POC) in subarctic North Pacific phytoplankton assemblages.

Similar content being viewed by others

References

  1. Milliman, J. D. Production and accumulation of calcium carbonate in the ocean: budget of a nonsteady state. Glob. Biogeochem. Cycles 7, 927–957 (1993).

    Article  ADS  CAS  Google Scholar 

  2. Holligan, P. M. & Robertson, J. E. Significance of ocean carbonate budgets for the global carbon cycle. Glob. Change Biol. 2, 85–95 ( 1996).

    Article  ADS  Google Scholar 

  3. Houghton, J. T. et al. (eds) Climate Change 1994: Radiative Forcing of Climate Change and an Evaluation of the IS92 Emission Scenario (Cambridge Univ. Press, Cambridge, 1995).

    Google Scholar 

  4. Wolf-Gladrow, D. A., Riebesell, U., Burkhardt, S. & Bijma, J. Direct effects of CO2 concentration on growth and isotopic composition of marine plankton. Tellus 51B, 461– 476 (1999).

    Article  ADS  CAS  Google Scholar 

  5. Gattuso, J.-P., Frankignoulle, M., Bourge, I., Romaine, S. & Buddemeier, R. W. Effect of calcium carbonate saturation of seawater on coral calcification. Glob. Planet. Change 18, 37–46 ( 1998).

    Article  ADS  Google Scholar 

  6. Langdon, C., Takahashi, T., Sweeney, C., Chipman, D., Goddard, J., Marubini, F., Aceves, H., Barnett, H. & Atkinson, M. Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Global Biogeochem. Cycles 14, 639–654 ( 2000).

    Article  ADS  CAS  Google Scholar 

  7. Westbroek, P., Young, J. R. & Linschooten, K. Coccolith production (biomineralisation) in the marine alga Emiliania huxleyi. J. Protozool. 36, 368–373 (1989).

    Article  Google Scholar 

  8. Westbroek, P. et al. A model system approach to biological climate forcing. The example of Emiliania huxleyi. Glob. Planet. Change 8, 27–46 (1993).

    Article  ADS  Google Scholar 

  9. Winter, A., Jordan, R. W. & Roth, P. H. in Coccolithophores (eds Winter, A. & Siesser, W. G.) 161–179 (Cambridge Univ. Press, Cambridge, 1994).

    Google Scholar 

  10. Westbroek, P. et al. Strategies for the study of climate forcing by calcification. Bull. Inst. Oceanogr. Monaco (Spec. Issue) 13, 37–60 (1994).

    Google Scholar 

  11. Holligan, P. M. et al. A biogeochemical study of the coccolithophore, Emiliania huxleyi, in the North Atlantic. Glob. Biogeochem. Cycles 7, 879–900 (1993).

    Article  ADS  CAS  Google Scholar 

  12. Nielsen, M. V. Growth, dark respiration and photosynthetic parameters of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae) acclimated to different day length-irradiance combinations. J. Phycol. 33, 818– 822 (1997).

    Article  Google Scholar 

  13. Young, J. R. Variation in Emiliania huxleyi coccolith morphology in samples from the Norwegian EHUX Experiment, 1992. Sarsia 79, 417–425 (1994).

    Article  Google Scholar 

  14. Booth, B. C., Lewin, J. & Postel, J. R. Temporal variation in the structure of autotrophic and heterotrophic communities in the subarctic Pacific. Prog. Oceanogr. 32, 57–99 ( 1993).

    Article  ADS  Google Scholar 

  15. Purdie, D. A. & Finch, M. S. Impact of a coccolithophorid bloom on dissolved carbon dioxide in sea water enclosures in a Norwegian fjord. Sarsia 79, 379–387 (1994).

    Article  Google Scholar 

  16. Frankignoulle, M., Canon, C. & Gattuso, J.-P. Marine calcification as a source of carbon dioxide: Positive feedback of increasing atmospheric CO2. Limnol. Oceanogr. 39, 458–462 ( 1994).

    Article  ADS  CAS  Google Scholar 

  17. Morse, J. W. & Mackenzie, F. T. in Developments in Sedimentology 48: Geochemistry of Sedimentary Carbonates (Elsevier, Amsterdam, 1990).

    Google Scholar 

  18. Young, J. R. in Coccolithophores. (eds Winter, A. & Siesser, W. G.) 63– 82 (Cambridge Univ. Press, Cambridge, 1994).

    Google Scholar 

  19. McConnaughey, T. A. Calcification, photosynthesis, and global cycles. Bull. Inst. Océanogr. Monaco (Spec. Issue) 13, 137–161 (1994).

    Google Scholar 

  20. McConnaughey, T. A. & Whelan, J. F. Calcification generates protons for nutrient and bicarbonate uptake. Earth Sci. Rev. 42, 95–117 ( 1997).

    Article  ADS  CAS  Google Scholar 

  21. Harris, R. P. Zooplankton grazing on the coccolithophorid Emiliania huxleyi and its role in inorganic carbon flux. Mar. Biol. 119, 431–439 (1994).

    Article  Google Scholar 

  22. Fritz, J. J. & Balch, W. M. A light-limited continuous culture study of Emiliania huxleyi: determination of coccolith detachment and its relevance to cell sinking. J. Exp. Mar. Biol. Ecol. 207, 127–147 (1996).

    Article  Google Scholar 

  23. Kheshgi, H. S., Flannery, B. P. & Hoffert, M. I. Marine biota effects on the compositional structure of the world oceans. J. Geophys. Res. 96, 4957–4969 (1991).

    Article  ADS  Google Scholar 

  24. Guillard, R. R. L. & Ryther, J. H. Studies of marine planktonic diatoms. I. Cyclothella nana (Hustedt) and Detonula confervacea (Cleve). Can. J. Microbiol. 8, 229– 239 (1962).

    Article  CAS  Google Scholar 

  25. Johnson, K. M., Wills, K. D., Butler, D. B., Johnson, W. K. & Wong, C. S. Coulometric total carbon dioxide analysis for marine studies: maximizing the performance of an automated gas extraction system and coulometric detector. Mar. Chem. 44, 167–187 (1993).

    Article  CAS  Google Scholar 

  26. Bradshaw, A. L., Brewer, P. G., Shafer, D. K. & Williams, R. T. Measurements of total carbon dioxide and alkalinity by potentiometric titration in the GEOSECS program. Earth Planet. Sci. Lett. 55 , 99–115 (1981).

    Article  ADS  CAS  Google Scholar 

  27. Goyet, C. & Poisson, A. New determination of carbonic acid dissociation constants in seawater as a function of temperature and salinity. Deep-Sea Res. 36, 1635– 1654 (1989).

    Article  ADS  CAS  Google Scholar 

  28. Lewis, E. & Wallace, D. W. R. Program Developed for CO 2 System Calculations. ORNL/CDIAC-105. (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee, 1998).

Download references

Acknowledgements

We thank A. Dauelsberg, B. Höhnisch, A. Terbrüggen, and K.-U. Richter for laboratory assistance, F. Hinz for REM analyses, D. Crawford, M. Lipsen, F. Whitney and C. Mayfield for invaluable help at sea and C. S. Wong for providing space on RV J.P. Tully. The E. huxleyi strain PML B92/11A was generously supplied by J. Green, Plymouth Marine Laboratory, and the G. oceanica strain PC 7/1 by the CODENET Algae collection in Caen. This work was supported by the Netherlands-Bremen Cooperation in Oceanography (NEBROC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulf Riebesell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riebesell, U., Zondervan, I., Rost, B. et al. Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407, 364–367 (2000). https://doi.org/10.1038/35030078

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35030078

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing