Abstract
For most drug-metabolizing enzymes (DMEs), the functional consequences of genetic polymorphisms have been examined. Variants leading to reduced or increased enzymatic activity as compared to the wild-type alleles have been identified. This review tries to define potential fields in the therapy of major medical conditions where genotyping (or phenotyping) of genetically polymorphic DMEs might be beneficial for drug safety or therapeutic outcome. The possible application of genotyping is discussed for depression, cardiovascular diseases and thromboembolic disorders, gastric ulcer, malignant diseases and tuberculosis. Some drugs used for relief of these ailments are metabolized with participation of genetically polymorphic DMEs including CYP2D6, CYP2C9, CYP2C19, thiopurine-S-methyltransferase, dihydropyrimidine dehydrogenase, uridine diphosphate glucuronosyltransferase and N-acetyltransferase type 2. Current evidence suggests that taking genetically determined metabolic capacities of DMEs into account has the potential to improve individual risk/benefit relationship. However, more prospective studies with clinical endpoints are needed before the paradigm of ‘personalized medicine’ based on DME variants can be established.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 6 print issues and online access
£169.00 per year
only £28.17 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Kirchheiner J, Sasse J, Roots I, Brockmoller J, Bauer M . The value of pharmacogenetic tests in antidepressive medication therapy. Nervenarzt 2005; 76: 1340–1354.
de Leon J, Armstrong SC, Cozza KL . Clinical guidelines for psychiatrists for the use of pharmacogenetic testing for CYP450 2D6 and CYP450 2C19. Psychosomatics 2006; 47: 75–85.
Kalow W . Familial incidence of low pseudocholinesterase level. Lancet 1956; 2: 576–577.
Bauer M, Whybrow PC, Angst J, Versiani M, Moller HJ . World federation of societies of biological psychiatry (WFSBP) guidelines for biological treatment of unipolar depressive disorders part 1: acute and continuation treatment of major depressive disorder. World J Biol Psychiatry 2002; 3: 5–43.
Nelson JC . Managing treatment-resistant major depression. J Clin Psychiatry 2003; 64 (Suppl 1): 5–12.
Baumann P, Jonzier Perey M, Koeb L, Küpfer A, Tinguely D, Schopf J . Amitriptyline pharmacokinetics and clinical response: II. Metabolic polymorphism assessed by hydroxylation of debrisoquine and mephenytoin. Int Clin Psychopharmacol 1986; 1: 102–112.
Bertilsson L, Dahl ML, Dalen P, Al-Shurbaji A . Molecular genetics of CYP2D6: clinical relevance with focus on psychotropic drugs. Br J Clin Pharmacol 2002; 53: 111–122.
Sachse C, Brockmoller J, Bauer S, Roots I . Cytochrome P450 2D6 variants in a Caucasian population: allele frequencies and phenotypic consequences. Am J Hum Genet 1997; 60: 284–295.
Zanger UM, Fischer J, Raimundo S, Stuven T, Evert BO, Schwab M et al. Comprehensive analysis of the genetic factors determining expression and function of hepatic CYP2D6. Pharmacogenetics 2001; 11: 573–585.
Griese EU, Zanger UM, Brudermanns U, Gaedigk A, Mikus G, Morike K et al. Assessment of the predictive power of genotypes for the in-vivo catalytic function of CYP2D6 in a German population. Pharmacogenetics 1998; 8: 15–26.
Kirchheiner J, Nickchen K, Bauer M, Wong ML, Licinio J, Roots I et al. Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol Psychiatry 2004; 9: 442–473.
Brosen K . Some aspects of genetic polymorphism in the biotransformation of antidepressants. Therapie 2004; 59: 5–12.
Lam YW, Gaedigk A, Ereshefsky L, Alfaro CL, Simpson J . CYP2D6 inhibition by selective serotonin reuptake inhibitors: analysis of achievable steady-state plasma concentrations and the effect of ultrarapid metabolism at CYP2D6. Pharmacotherapy 2002; 22: 1001–1006.
Laine K, Tybring G, Hartter S, Andersson K, Svensson JO, Widen J et al. Inhibition of cytochrome P4502D6 activity with paroxetine normalizes the ultrarapid metabolizer phenotype as measured by nortriptyline pharmacokinetics and the debrisoquin test. Clin Pharmacol Ther 2001; 70: 327–335.
Spigset O, Granberg K, Hagg S, Norstrom A, Dahlqvist R . Relationship between fluvoxamine pharmacokinetics and CYP2D6/CYP2C19 phenotype polymorphisms. Eur J Clin Pharmacol 1997; 52: 129–133.
Carrillo JA, Dahl ML, Svensson JO, Alm C, Rodriguez I, Bertilsson L . Disposition of fluvoxamine in humans is determined by the polymorphic CYP2D6 and also by the CYP1A2 activity. Clin Pharmacol Ther 1996; 60: 183–190.
Spigset O, Granberg K, Hagg S, Soderstrom E, Dahlqvist R . Non-linear fluvoxamine disposition. Br J Clin Pharmacol 1998; 45: 257–263.
Eap CB, Bondolfi G, Zullino D, Savary-Cosendai L, Powell-Golay K, Kosel M et al. Concentrations of the enantiomers of fluoxetine and norfluoxetine after multiple doses of fluoxetine in cytochrome P4502D6 poor and extensive metabolizers. J Clin Psychopharmacol 2001; 21: 330–334.
Fuller RW, Snoddy HD, Krushinski JH, Robertson DW . Comparison of norfluoxetine enantiomers as serotonin uptake inhibitors in vivo. Neuropharmacology 1992; 31: 997–1000.
Sindrup SH, Brøsen K, Gram LF . Pharmacokinetics of the selective serotonin reuptake inhibitor paroxetine: nonlinearity and relation to the sparteine oxidation polymorphism. Clin Pharmacol Ther 1992; 1: 288–295.
Kirchheiner J, Henckel HB, Meineke I, Roots I, Brockmöller J . Impact of the CYP2D6 ultra-rapid metabolizer genotype on mirtazapine pharmacokinetics and adverse events in healthy volunteers. J Clin Psychopharmacol 2004; 24: 647–652.
Otton SV, Ball SE, Cheung SW, Inaba T, Rudolph RL, Sellers EM . Venlafaxine oxidation in vitro is catalysed by CYP2D6. Br J Clin Pharmacol 1996; 41: 149–156.
Fukuda T, Yamamoto I, Nishida Y, Zhou Q, Ohno M, Takada K et al. Effect of the CYP2D6*10 genotype on venlafaxine pharmacokinetics in healthy adult volunteers. Br J Clin Pharmacol 1999; 47: 450–453.
Veefkind AH, Haffmans PM, Hoencamp E . Venlafaxine serum levels and CYP2D6 genotype. Ther Drug Monit 2000; 22: 202–208.
Firkusny L, Gleiter CH . Maprotiline metabolism appears to co-segregate with the genetically-determined CYP2D6 polymorphic hydroxylation of debrisoquine. Br J Clin Pharmacol 1994; 37: 383–388.
Gabris G, Baumann P, Janzier-perey MPB, Woggon B, Küpfer A . N-methylation of maprotiline in debrisoquine/mephenytoin-phenotyped depressive patients. Biochemical Pharmacology 1985; 34: 409–410.
Faucette SR, Hawke RL, Lecluyse EL, Shord SS, Yan B, Laethem RM et al. Validation of bupropion hydroxylation as a selective marker of human cytochrome P450 2B6 catalytic activity. Drug Metab Dispos 2000; 28: 1222–1230.
Barbhaiya RH, Buch AB, Greene DS . Single and multiple dose pharmacokinetics of nefazodone in subjects classified as extensive and poor metabolizers of dextromethorphan. Br J Clin Pharmacol 1996; 42: 573–581.
Dostert P, Benedetti MS, Poggesi I . Review of the pharmacokinetics and metabolism of reboxetine, a selective noradrenaline reuptake inhibitor. Eur Neuropsychopharmacol 1997; 7 (Suppl 1): S23–S35; discussion S71–S73.
Schoerlin MP, Blouin RA, Pfefen JP, Guentert TW . Comparison of the pharmacokinetics of moclobemide in poor and efficient metabolizers of debrisoquine. Acta Psychiatr Scand Suppl 1990; 360: 98–100.
Härtter S, Dingemanse J, Baier D, Ziegler G, Hiemke C . The role of cytochrome P450 2D6 in the metabolism of moclobemide. Eur Neuropsychopharmacol 1996; 6: 225–230.
Gram LF, Guentert TW, Grange S, Vistisen K, Brøsen K . Moclobemide, a substrate of CYP2C19 and an inhibitor of CYP2C19, CYP2D6, and CYP1A2: a panel study. Clin Pharmacol Ther 1995; 57: 670–677.
Mihara K, Otani K, Suzuki A, Yasui N, Nakano H, Meng X et al. Relationship between the CYP2D6 genotype and the steady-state plasma concentrations of trazodone and its active metabolite m-chlorophenylpiperazine. Psychopharmacology (Berl) 1997; 133: 95–98.
Rau T, Wohlleben G, Wuttke H, Thuerauf N, Lunkenheimer J, Lanczik M et al. CYP2D6 genotype: impact on adverse effects and nonresponse during treatment with antidepressants-a pilot study. Clin Pharmacol Ther 2004; 75: 386–393.
Grasmader K, Verwohlt PL, Rietschel M, Dragicevic A, Muller M, Hiemke C et al. Impact of polymorphisms of cytochrome-P450 isoenzymes 2C9, 2C19 and 2D6 on plasma concentrations and clinical effects of antidepressants in a naturalistic clinical setting. Eur J Clin Pharmacol 2004; 60: 329–336.
Lessard E, Yessine M, Hamelin B, O’Hara G, LeBlanc J, Turgeon J . Influence of CYP2D6 activity on the disposition and cardiovascular toxicity of the antidepressant agent venlafaxine in humans. Pharmacogenetics 1999; 9: 435–443.
Chen S, Chou WH, Blouin RA, Mao Z, Humphries LL, Meek QC et al. The cytochrome P450 2D6 (CYP2D6) enzyme polymorphism: screening costs and influence on clinical outcomes in psychiatry. Clin Pharmacol Ther 1996; 60: 522–534.
Kirchheiner J, Brosen K, Dahl ML, Gram LF, Kasper S, Roots I et al. CYP2D6 and CYP2C19 genotype-based dose recommendations for antidepressants: a first step towards subpopulation-specific dosages. Acta Psychiatr Scand 2001; 104: 173–192.
Lennard MS, Silas JH, Freestone S, Trevethick J . Defective metabolism of metoprolol in poor hydroxylators of debrisoquine. Br J Clin Pharmacol 1982; 14: 301–303.
Lennard MS, Tucker GT, Silas JH, Freestone S, Ramsay LE, Woods HF . Differential stereoselective metabolism of metoprolol in extensive and poor debrisoquin metabolizers. Clin Pharmacol Ther 1983; 34: 732–737.
Koytchev R, Alken RG, Vlahov V, Kirkov V, Kaneva R, Thyroff Friesinger U et al. Influence of the cytochrome P4502D6*4 allele on the pharmacokinetics of controlled-release metoprolol. Eur J Clin Pharmacol 1998; 54: 469–474.
McGourty JC, Silas JH, Lennard MS, Tucker GT, Woods HF . Metoprolol metabolism and debrisoquine oxidation polymorphism--population and family studies. Br J Clin Pharmacol 1985; 20: 555–566.
Lennard MS, Silas JH, Freestone S, Ramsay LE, Tucker GT, Woods HF . Oxidation phenotype – a major determinant of metoprolol metabolism and response. N Engl J Med 1982; 307: 1558–1560.
Kirchheiner J, Heesch C, Bauer S, Meisel C, Seringer A, Goldammer M et al. Impact of the ultrarapid metabolizer genotype of cytochrome P450 2D6 on metoprolol pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther 2004; 76: 302–312.
Neugebauer G, Akpan W, Kaufmann B, Reiff K . Stereoselective disposition of carvedilol in man after intravenous and oral administration of the racemic compound. Eur J Clin Pharmacol 1990; 38: 108–111.
Oldham HG, Clarke SE . In vitro identification of the human cytochrome P450 enzymes involved in the metabolism of R(+)- and S(−)-carvedilol. Drug Metab Dispos 1997; 25: 970–977.
Zhou HH, Wood AJJ . Stereoselective disposition of carvedilol is determined by CYP2D6. Clin Pharmacol Ther 1995; 57: 518–524.
Graff DW, Williamson KM, Pieper JA, Carson SW, Adams Jr KF, Cascio WE et al. Effect of fluoxetine on carvedilol pharmacokinetics, CYP2D6 activity, and autonomic balance in heart failure patients. J Clin Pharmacol 2001; 41: 97–106.
Kirchheiner J, Bauer S, Meineke I, Rohde W, Prang V, Meisel C et al. Impact of CYP2C9 and CYP2C19 polymorphisms on tolbutamide kinetics and the insulin and glucose response in healthy volunteers. Pharmacogenetics 2002; 12: 101–109.
Stearns RA, Chakravarty PK, Chen R, Chiu SH . Biotransformation of losartan to its active carboxylic acid metabolite in human liver microsomes. Role of cytochrome P4502C and 3A subfamily members. Drug Metab Dispos 1995; 23: 207–215.
McCrea JB, Cribb A, Rushmore T, Osborne B, Gillen L, Lo MW et al. Phenotypic and genotypic investigations of a healthy volunteer deficient in the conversion of losartan to its active metabolite E-31. Clin Pharmacol Ther 1999; 65: 348–352.
Yasar U, Forslund-Bergengren C, Tybring G, Dorado P, Llerena A, Sjoqvist F et al. Pharmacokinetics of losartan and its metabolite E-3174 in relation to the CYP2C9 genotype. Clin Pharmacol Ther 2002; 71: 89–98.
Lee CR, Pieper JA, Frye RF, Hinderliter AL, Blaisdell JA, Goldstein JA . Tolbutamide, flurbiprofen, and losartan as probes of CYP2C9 activity in humans. J Clin Pharmacol 2003; 43: 84–91.
Hallberg P, Karlsson J, Kurland L, Lind L, Kahan T, Malmqvist K et al. The CYP2C9 genotype predicts the blood pressure response to irbesartan: results from the Swedish Irbesartan Left Ventricular Hypertrophy Investigation vs Atenolol (S0ILVHIA) trial. J Hypertens 2002; 20: 2089–2093.
Uchida S, Watanabe H, Nishio S, Hashimoto H, Yamazaki K, Hayashi H et al. Altered pharmacokinetics and excessive hypotensive effect of candesartan in a patient with the CYP2C91/3 genotype. Clin Pharmacol Ther 2003; 74: 505–508.
Adcock DM, Koftan C, Crisan D, Kiechle FL . Effect of polymorphisms in the cytochrome P450 CYP2C9 gene on warfarin anticoagulation. Arch Pathol Lab Med 2004; 128: 1360–1363.
Miners JO, Birkett DJ . Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol 1998; 45: 525–538.
Scordo MG, Pengo V, Spina E, Dahl ML, Gusella M, Padrini R . Influence of CYP2C9 and CYP2C19 genetic polymorphisms on warfarin maintenance dose and metabolic clearance. Clin Pharmacol Ther 2002; 72: 702–710.
Higashi MK, Veenstra DL, Kondo LM, Wittkowsky AK, Srinouanprachanh SL, Farin FM et al. Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA 2002; 287: 1690–1698.
Aithal GP, Day CP, Kesteven PJ, Daly AK . Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet 1999; 353: 717–719.
Takahashi H, Wilkinson GR, Padrini R, Echizen H . CYP2C9 and oral anticoagulation therapy with acenocoumarol and warfarin:similarities yet differences. Clin Pharmacol Ther 2004; 75: 376–380.
Morin S, Bodin L, Loriot MA, Thijssen HH, Robert A, Strabach S et al. Pharmacogenetics of acenocoumarol pharmacodynamics. Clin Pharmacol Ther 2004; 75: 403–414.
Schalekamp T, van Geest-Daalderop JH, de Vries-Goldschmeding H, Conemans J, Bernsen MjM, de Boer A . Acenocoumarol stabilization is delayed in CYP2C93 carriers. Clin Pharmacol Ther 2004; 75: 394–402.
Visser LE, van Vliet M, van Schaik RH, Kasbergen AA, De Smet PA, Vulto AG et al. The risk of overanticoagulation in patients with cytochrome P450 CYP2C9*2 or CYP2C9*3 alleles on acenocoumarol or phenprocoumon. Pharmacogenetics 2004; 14: 27–33.
Visser LE, van Schaik RH, van Vliet M, Trienekens PH, De Smet PA, Vulto AG et al. The risk of bleeding complications in patients with cytochrome P450 CYP2C9*2 or CYP2C9*3 alleles on acenocoumarol or phenprocoumon. Thromb Haemost 2004; 92: 61–66.
Kirchheiner J, Ufer M, Walter EC, Kammerer B, Kahlich R, Meisel C et al. Effects of CYP2C9 polymorphisms on the pharmacokinetics of R- and S-phenprocoumon in healthy volunteers. Pharmacogenetics 2004; 14: 19–26.
Hummers-Pradier E, Hess S, Adham IM, Papke T, Pieske B, Kochen MM . Determination of bleeding risk using genetic markers in patients taking phenprocoumon. Eur J Clin Pharmacol 2003; 59: 213–219.
Schalekamp T, Oosterhof M, van Meegen E, van Der Meer FJ, Conemans J, Hermans M et al. Effects of cytochrome P450 2C9 polymorphisms on phenprocoumon anticoagulation status. Clin Pharmacol Ther 2004; 76: 409–417.
Sconce EA, Khan TI, Wynne HA, Avery P, Monkhouse L, King BP et al. The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood 2005; 106: 2329–2333.
Schalekamp T, Brasse BP, Roijers JF, van Meegen E, van der Meer FJ, van Wijk EM et al. VKORC1 and CYP2C9 genotypes and phenprocoumon anticoagulation status: interaction between both genotypes affects dose requirement. Clin Pharmacol Ther 2007; 81: 185–193.
Montes R, Ruiz de Gaona E, Martinez-Gonzalez MA, Alberca I, Hermida J . The c.−1639G>A polymorphism of the VKORC1 gene is a major determinant of the response to acenocoumarol in anticoagulated patients. Br J Haematol 2006; 133: 183–187.
De Morais SM, Wilkinson GR, Blaisdell J, Meyer UA, Nakamura K, Goldstein JA . Identification of a new genetic defect responsible for the polymorphism of (S)-mephenytoin metabolism in Japanese. Mol Pharmacol 1994; 46: 594–598.
Andersson T, Holmberg J, Rohss K, Walan A . Pharmacokinetics and effect on caffeine metabolism of the proton pump inhibitors, omeprazole, lansoprazole, and pantoprazole. Br J Clin Pharmacol 1998; 45: 369–375.
Klotz U, Schwab M, Treiber G . CYP2C19 polymorphism and proton pump inhibitors. Basic Clin Pharmacol Toxicol 2004; 95: 2–8.
Chong E, Ensom MH . Pharmacogenetics of the proton pump inhibitors: a systematic review. Pharmacotherapy 2003; 23: 460–471.
Fuhr U, Jetter A . Rabeprazole: pharmacokinetics and pharmacokinetic drug interactions. Pharmazie 2002; 57: 595–601.
Furuta T, Shirai N, Takashima M, Xiao F, Hanai H, Nakagawa K et al. Effects of genotypic differences in CYP2C19 status on cure rates for Helicobacter pylori infection by dual therapy with rabeprazole plus amoxicillin. Pharmacogenetics 2001; 11: 341–348.
Furuta T, Shirai N, Takashima M, Xiao F, Hanai H, Sugimura H et al. Effect of genotypic differences in CYP2C19 on cure rates for Helicobacter pylori infection by triple therapy with a proton pump inhibitor, amoxicillin, and clarithromycin. Clin Pharmacol Ther 2001; 69: 158–168.
Furuta T, Ohashi K, Kamata T, Takashima M, Kosuge K, Kawasaki T et al. Effect of genetic differences in omeprazole metabolism on cure rates for Helicobacter pylori infection and peptic ulcer. Ann Intern Med 1998; 129: 1027–1030.
Furuta T, Shirai N, Sugimoto M, Ohashi K, Ishizaki T . Pharmacogenomics of proton pump inhibitors. Pharmacogenomics 2004; 5: 181–202.
Wedlund PJ . The CYP2C19 enzyme polymorphism. Pharmacology 2000; 61: 174–183.
Schwab M, Schaeffeler E, Klotz U, Treiber G . CYP2C19 polymorphism is a major predictor of treatment failure in white patients by use of lansoprazole-based quadruple therapy for eradication of Helicobacter pylori. Clin Pharmacol Ther 2004; 76: 201–209.
Padol S, Yuan Y, Thabane M, Padol IT, Hunt RH . The effect of CYP2C19 polymorphisms on H. pylori eradication rate in dual and triple first-line PPI therapies: a meta-analysis. Am J Gastroenterol 2006; 101: 1467–1475.
Oscarson M . Pharmacogenetics of drug metabolising enzymes: importance for personalised medicine. Clin Chem Lab Med 2003; 41: 573–580.
Collie-Duguid ES, Pritchard SC, Powrie RH, Sludden J, Collier DA, Li T et al. The frequency and distribution of thiopurine methyltransferase alleles in Caucasian and Asian populations. Pharmacogenetics 1999; 9: 37–42.
Weinshilboum RM, Sladek SL . Mercaptopurine pharmacogenetics: monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am J Hum Genet 1980; 32: 651–662.
Evans WE, Hon YY, Bomgaars L, Coutre S, Holdsworth M, Janco R et al. Preponderance of thiopurine S-methyltransferase deficiency and heterozygosity among patients intolerant to mercaptopurine or azathioprine. J Clin Oncol 2001; 19: 2293–2301.
Lennard L, Van Loon JA, Lilleyman JS, Weinshilboum RM . Thiopurine pharmacogenetics in leukemia: correlation of erythrocyte thiopurine methyltransferase activity and 6-thioguanine nucleotide concentrations. Clin Pharmacol Ther 1987; 41: 18–25.
McLeod HL, Coulthard S, Thomas AE, Pritchard SC, King DJ, Richards SM et al. Analysis of thiopurine methyltransferase variant alleles in childhood acute lymphoblastic leukaemia. Br J Haematol 1999; 105: 696–700.
Yates CR, Krynetski EY, Loennechen T, Fessing MY, Tai HL, Pui CH et al. Molecular diagnosis of thiopurine S-methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance. Ann Intern Med 1997; 126: 608–614.
Schutz E, Gummert J, Mohr F, Oellerich M . Azathioprine-induced myelosuppression in thiopurine methyltransferase deficient heart transplant recipient. Lancet 1993; 341: 436.
Nagasubramanian R, Innocenti F, Ratain MJ . Pharmacogenetics in cancer treatment. Annu Rev Med 2003; 54: 437–452.
Colombel JF, Ferrari N, Debuysere H, Marteau P, Gendre JP, Bonaz B et al. Genotypic analysis of thiopurine S-methyltransferase in patients with Crohn's disease and severe myelosuppression during azathioprine therapy. Gastroenterology 2000; 118: 1025–1030.
Kroplin T, Weyer N, Gutsche S, Iven H . Thiopurine S-methyltransferase activity in human erythrocytes: a new HPLC method using 6-thioguanine as substrate. Eur J Clin Pharmacol 1998; 54: 265–271.
Schwab M, Schaeffeler E, Marx C, Zanger U, Aulitzky W, Eichelbaum M . Shortcoming in the diagnosis of TPMT deficiency in a patient with Crohn's disease using phenotyping only. Gastroenterology 2001; 121: 498–499.
Lennard L . Therapeutic drug monitoring of antimetabolic cytotoxic drugs. Br J Clin Pharmacol 1999; 47: 131–143.
Pazmino PA, Sladek SL, Weinshilboum RM . Thiol S-methylation in uremia: erythrocyte enzyme activities and plasma inhibitors. Clin Pharmacol Ther 1980; 28: 356–367.
Andersen JB, Szumlanski C, Weinshilboum RM, Schmiegelow K . Pharmacokinetics, dose adjustments, and 6-mercaptopurine/methotrexate drug interactions in two patients with thiopurine methyltransferase deficiency. Acta Paediatr 1998; 87: 108–111.
Evans WE . Pharmacogenetics of thiopurine S-methyltransferase and thiopurine therapy. Ther Drug Monit 2004; 26: 186–191.
Milan G, Etienne MC . 5-Fluorouracil. In: Grochow LB, Ames MM (Hrsg) (eds.). A Clinical Guide to Chemotherapy Pharmacokinetics and Pharmacodynamics. Williams & Wilkins: Baltimore, 1999 pp 289–300.
Gonzalez FJ, Fernandez-Salguero P . Diagnostic analysis, clinical importance and molecular basis of dihydropyrimidine dehydrogenase deficiency. Trends Pharmacol Sci 1995; 16: 325–327.
Wei X, McLeod HL, McMurrough J, Gonzalez FJ, Fernandez-Salguero P . Molecular basis of the human dihydropyrimidine dehydrogenase deficiency and 5-fluorouracil toxicity. J Clin Invest 1996; 98: 610–615.
Miller AB, Hoogstraten B, Staquet M, Winkler A . Reporting results of cancer treatment. Cancer 1981; 47: 207–214.
Frickhofen N, Beck FJ, Jung B, Fuhr HG, Andrasch H, Sigmund M . Capecitabine can induce acute coronary syndrome similar to 5-fluorouracil. Ann Oncol 2002; 13: 797–801.
Collie-Duguid ES, Etienne MC, Milano G, McLeod HL . Known variant DPYD alleles do not explain DPD deficiency in cancer patients. Pharmacogenetics 2000; 10: 217–223.
Fleming RA, Milano G, Thyss A, Etienne MC, Renee N, Schneider M et al. Correlation between dihydropyrimidine dehydrogenase activity in peripheral mononuclear cells and systemic clearance of fluorouracil in cancer patients. Cancer Res 1992; 52: 2899–2902.
Van Kuilenburg AB, Van Lenthe H, Tromp A, Veltman PC, Van Gennip AH . Pitfalls in the diagnosis of patients with a partial dihydropyrimidine dehydrogenase deficiency. Clin Chem 2000; 46: 9–17.
Raida M, Schwabe W, Hausler P, Van Kuilenburg AB, Van Gennip AH, Behnke D et al. Prevalence of a common point mutation in the dihydropyrimidine dehydrogenase (DPD) gene within the 5′-splice donor site of intron 14 in patients with severe 5-fluorouracil (5-FU)-related toxicity compared with controls. Clin Cancer Res 2001; 7: 2832–2839.
Van Kuilenburg AB, Baars JW, Meinsma R, Van Gennip AH . Lethal 5-fluorouracil toxicity associated with a novel mutation in the dihydropyrimidine dehydrogenase gene. Ann Oncol 2003; 14: 341–342.
Kollmannsberger C, Bokemeyer C, Marx C, Fischer J, Honecker F, Schwab M et al. The association between mutations in the dihydropyrimidine dehydrogenase gene and severe toxicity of the treatment with s-fluorouracil: a prospective multicenter study. Onkologie 2001; 25 (Suppl. 6): 101.
van Kuilenburg AB, Haasjes J, Richel DJ, Zoetekouw L, Van Lenthe H, De Abreu RA et al. Clinical implications of dihydropyrimidine dehydrogenase (DPD) deficiency in patients with severe 5-fluorouracil-associated toxicity: identification of new mutations in the DPD gene. Clin Cancer Res 2000; 6: 4705–4712.
Sai K, Saeki M, Saito Y, Ozawa S, Katori N, Jinno H et al. UGT1A1 haplotypes associated with reduced glucuronidation and increased serum bilirubin in irinotecan-administered Japanese patients with cancer. Clin Pharmacol Ther 2004; 75: 501–515.
Innocenti F, Iyer L, Ratain MJ . Pharmacogenetics of anticancer agents: lessons from amonafide and irinotecan. Drug Metab Dispos 2001; 29: 596–600.
Araki K, Fujita K, Ando Y, Nagashima F, Yamamoto W, Endo H et al. Pharmacogenetic impact of polymorphisms in the coding region of the UGT1A1 gene on SN-38 glucuronidation in Japanese patients with cancer. Cancer Sci 2006; 97: 1255–1259.
Innocenti F, Undevia SD, Iyer L, Chen PX, Das S, Kocherginsky M et al. Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J Clin Oncol 2004; 22: 1382–1388.
Ando Y, Saka H, Ando M, Sawa T, Muro K, Ueoka H et al. Polymorphisms of UDP-glucuronosyltransferase gene and irinotecan toxicity: a pharmacogenetic analysis. Cancer Res 2000; 60: 6921–6926.
Maitland ML, Vasisht K, Ratain MJ . TPMT, UGT1A1 and DPYD: genotyping to ensure safer cancer therapy? Trends Pharmacol Sci 2006; 27: 432–437.
Huang YS, Chern HD, Su WJ, Wu JC, Lai SL, Yang SY et al. Polymorphism of the N-acetyltransferase 2 gene as a susceptibility risk factor for antituberculosis drug-induced hepatitis. Hepatology 2002; 35: 883–889.
Brockton N, Little J, Sharp L, Cotton SC . N-acetyltransferase polymorphisms and colorectal cancer: a HuGE review. Am J Epidemiol 2000; 151: 846–861.
Garte S, Gaspari L, Alexandrie AK, Ambrosone C, Autrup H, Autrup JL et al. Metabolic gene polymorphism frequencies in control populations. Cancer Epidemiol Biomarkers Prev 2001; 10: 1239–1248.
Grant DM, Goodfellow GH, Sugamori KS, Durette K . Pharmacogentics of the human arylamine N-actyltransferases. Pharmacology 2000; 61: 204–211.
Tiitinen H et al. Comparison of the isoniazid in activation in Finns and Lapps. Ann Med Int Finn 1968; 57: 161.
Parkin DP, Vandenplas S, Botha FJ, Vandenplas ML, Seifart HI, van Helden PD et al. Trimodality of isoniazid elimination: phenotype and genotype in patients with tuberculosis. Am J Respir Crit Care Med 1997; 155: 1717–1722.
Kita T, Tanigawara Y, Chikazawa S, Hatanaka H, Sakaeda T, Komada F et al. N-Acetyltransferase 2 genotype correlated with isoniazid acetylation in Japanese tuberculous patients. Biol Pharm Bull 2001; 24: 544–549.
Kinzig-Schippers M, Tomalik-Scharte D, Jetter A, Scheidel B, Jakob V, Rodamer M et al. Should we use N-acetyltransferase type 2 genotyping to personalize isoniazid doses? Antimicrob Agents Chemother 2005; 49: 1733–1738.
Clark DWJ . Genetically determine variability in acetylation and oxidation: therapeutic implications. Drugs 1985; 29: 342–375.
Ohno M, Yamaguchi I, Yamamoto I, Fukuda T, Yokota S, Maekura R et al. Slow N-acetyltransferase 2 genotype affects the incidence of isoniazid and rifampicin-induced hepatotoxicity. Int J Tuberc Lung Dis 2000; 4: 256–261.
Huang YS, Chern HD, Su WJ, Wu JC, Lai SL, Yang SY et al. Polymorphism of the N-acetyltransferase 2 gene as a susceptibility risk factor for antituberculosis drug-induced hepatitis. Hepatology 2002; 35: 883–889.
Donald PR, Sirgel FA, Venter A, Parkin DP, Seifart HI, van de Wal BW et al. The influence of human N-acetyltransferase genotype on the early bactericidal activity of isoniazid. Clin Infect Dis 2004; 39: 1425–1430.
Kalow W . Pharmacogenetics and pharmacogenomics: origin, status, and the hope for personalized medicine. Pharmacogenomics J 2006; 6: 162–165.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Tomalik-Scharte, D., Lazar, A., Fuhr, U. et al. The clinical role of genetic polymorphisms in drug-metabolizing enzymes. Pharmacogenomics J 8, 4–15 (2008). https://doi.org/10.1038/sj.tpj.6500462
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/sj.tpj.6500462
Keywords
This article is cited by
-
Effects of red ginseng extract on the pharmacokinetics and disposition of warfarin via intestinal Cyp2c11 modulation in rats
Journal of Pharmaceutical Investigation (2024)
-
Cost-Utility Analysis of CYP2C19 Genotype Detection for Selection of Acid-Suppressive Therapy with Lansoprazole or Vonoprazan for Patients with Reflux Esophagitis in China
Clinical Drug Investigation (2022)
-
Pharmacogenomics and COVID-19: clinical implications of human genome interactions with repurposed drugs
The Pharmacogenomics Journal (2021)
-
Different EPHX1 methylation levels in promoter area between carbamazepine-resistant epilepsy group and carbamazepine-sensitive epilepsy group in Chinese population
BMC Neurology (2019)
-
High prevalence of clarithromycin resistance and effect on Helicobacter pylori eradication in a population from Santiago, Chile: cohort study and meta-analysis
Scientific Reports (2019)