Motion control of modern and advanced aircraft has to be provided under conditions of incomplete and inaccurate knowledge of their parameters and characteristics, possible flight modes, and environmental influences. In addition, various abnormal situations may occur during flight, in particular, equipment failures and
[...] Read more.
Motion control of modern and advanced aircraft has to be provided under conditions of incomplete and inaccurate knowledge of their parameters and characteristics, possible flight modes, and environmental influences. In addition, various abnormal situations may occur during flight, in particular, equipment failures and structural damage. These circumstances cause the problem of a rapid adjustment of the used control laws so that the control system can adapt to the mentioned changes. However, most adaptive control schemes have a model of the control object, which plays a crucial role in adjusting the control law. That is, it is required to solve also the identification problem for dynamical systems. We propose an approach to solving the above-mentioned problems based on artificial neural networks (ANNs) and hybrid technologies. In the class of traditional neural network technologies, we use recurrent neural networks of the NARX type, which allow us to obtain black-box models for controlled dynamical systems. It is shown that in a number of cases, in particular, for control objects with complicated dynamic properties, this approach turns out to be inefficient. One of the possible alternatives to this approach, investigated in the paper, consists of the transition to hybrid neural network models of the gray box type. These are semi-empirical models that combine in the resulting network structure both empirical data on the behavior of an object and theoretical knowledge about its nature. They allow solving with high accuracy the problems inaccessible by the level of complexity for ANN models of the black-box type. However, the process of forming such models requires a very large consumption of computational resources. For this reason, the paper considers another variant of the hybrid ANN model. In it, the hybrid model consists not of the combination of empirical and theoretical elements, resulting in a recurrent network of a special kind, but of the combination of elements of feedforward networks and recurrent networks. Such a variant opens up the possibility of involving deep learning technology in the construction of motion models for controlled systems. As a result of this study, data were obtained that allow us to evaluate the effectiveness of two variants of hybrid neural networks, which can be used to solve problems of modeling, identification, and control of aircraft. The capabilities and limitations of these variants are demonstrated on several examples. Namely, on the example of the problem of aircraft longitudinal angular motion, the possibilities of modeling the motion using the NARX network as applied to a supersonic transport aircraft (SST) are first considered. It is shown that under complicated operating conditions this network does not always provide acceptable modeling accuracy. Further, the same problem, but applied to a maneuverable aircraft, as a more complex object of modeling and identification, is solved using both a NARX network (black box) and a semi-empirical model (gray box). The significant advantage of the gray box model over the black box one is shown. The capabilities of the hybrid model realizing deep learning technologies are demonstrated by forming a model of the control object (SST) and neurocontroller on the example of the MRAC adaptive control scheme. The efficiency of the obtained solution is illustrated by comparing the response of the control object with a failure situation (a decrease in the efficiency of longitudinal control by 50%) with and without adaptation.
Full article