The Challenges and Opportunities for Performance Enhancement in Resonant Fiber Optic Gyroscopes
<p>Performance comparison of various gyroscope technologies used for inertial/tactical/ control grades; adopted from [<a href="#B4-sensors-25-00223" class="html-bibr">4</a>].</p> "> Figure 2
<p>A schematic diagram illustrating the working principle of resonant fiber optic gyroscopes (RFOGs). Any rotation experienced by the fiber ring resonator (FRR) will result in an upward or downward shift in the resonance frequency for the two counter-propagating waves (CW and CCW, respectively). This frequency shift may be demodulated into an intensity change by typically locking the source frequency with respect to the FRR resonance.</p> "> Figure 3
<p>A typical lock-in detection-based readout system for RFOGs (reproduced from [<a href="#B26-sensors-25-00223" class="html-bibr">26</a>]). The input CW and CCW light beams are either phase or frequency-modulated to enable lock-in detection. One of the output signals (CCW in the above figure) is used to keep the source laser locked to the FRR resonance, whereas the other (CW) is used to read out the rotation rate.</p> "> Figure 4
<p>Schematic diagram illustrating the various algorithmic blocks implemented in an FPGA for signal detection [<a href="#B20-sensors-25-00223" class="html-bibr">20</a>].</p> "> Figure 5
<p>Bar graph showing the improvement in bias stability of RFOGs over the past three decades.</p> "> Figure 6
<p>Schematic diagram of a single-coupler resonator with reflector (SCRWR) gyroscope configuration with an intensity-based readout [<a href="#B80-sensors-25-00223" class="html-bibr">80</a>].</p> "> Figure 7
<p>Beat frequency for different rotation induced phase changes [<a href="#B11-sensors-25-00223" class="html-bibr">11</a>].</p> "> Figure 8
<p>Change in beat frequency vs. rotational bias for different values of reflectivity [<a href="#B11-sensors-25-00223" class="html-bibr">11</a>].</p> "> Figure 9
<p>Schematic diagram of a frequency comb source-based RFOG. Two mode-locked lasers are used to generate a separate comb of frequencies for the CW and CCW light beams. The rotation rate is measured by beating the two frequency combs as they are modulated by using FRR resonance shift through closed-loop feedback.</p> "> Figure 10
<p>A simulated frequency comb from which a set of frequencies are carved out in the central region.</p> "> Figure 11
<p>Comparison of (<b>a</b>) HC-PBGF, (<b>b</b>) NANF structures [<a href="#B75-sensors-25-00223" class="html-bibr">75</a>] (<b>c</b>), and CTF structures [<a href="#B95-sensors-25-00223" class="html-bibr">95</a>].</p> "> Figure 12
<p>Schematic diagram of an RFOG using an ASE source in a reflected resonator open-loop configuration [<a href="#B76-sensors-25-00223" class="html-bibr">76</a>].</p> ">
Abstract
:1. Motivation
2. Working Principle of Resonant Fiber Optic Gyroscopes
3. Key Implementation Challenges for Resonant Fiber Optic Gyroscopes
3.1. Rayleigh Backscattering
3.2. Polarization Fluctuations
3.3. Optical Kerr Effect
3.4. Laser Frequency Stabilization
3.5. Signal Processing
3.6. RFOG Performance Evolution
4. Opportunities for Performance Enhancement in Resonant Fiber Optic Gyroscopes
4.1. Single-Coupler Resonator with Reflector (SCRWR)
4.1.1. SCRWR: Intensity-Based Readout
4.1.2. SCRWR: Beat Frequency-Based Readout
4.2. Frequency Comb Source-Based RFOG
4.3. Hollow-Core Anti-Resonant Fiber-Based RFOG
4.4. RFOG Using a Broadband Source
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IFOG | Interferometric fiber optic gyroscope |
RFOG | Resonant fiber optic gyroscope |
MEMS | Micro electro mechanical sensors |
RLG | Ring laser gyroscope |
RMOG | Resonant micro optic gyroscope |
FSR | Free spectral range |
FWHM | Full-width half maximum |
FPGA | Field programmable gate array |
SCRWR | Single-coupler resonator with reflector |
IMU | Inertial measurement unit |
EDFA | Erbium-doped fiber amplifier |
FCS | Frequency comb source |
NANF | Anti-resonant nodeless fiber |
References
- Lefevre, H.C. The Fiber-Optic Gyroscope; Artech House: Washington, DC, USA, 2022. [Google Scholar]
- Nayak, J. Fiber-optic gyroscopes: From design to production. Appl. Opt. 2011, 50, E152–E161. [Google Scholar] [CrossRef]
- Lefèvre, H.C. The fiber-optic gyroscope: Challenges to become the ultimate rotation-sensing technology. Opt. Fiber Technol. 2013, 19, 828–832. [Google Scholar] [CrossRef]
- Passaro, V.M.; Cuccovillo, A.; Vaiani, L.; De Carlo, M.; Campanella, C.E. Gyroscope technology and applications: A review in the industrial perspective. Sensors 2017, 17, 2284. [Google Scholar] [CrossRef]
- Divakaruni, S.P.; Sanders, S.J. Fiber optic gyros-A compelling choice for high precision applications. In Proceedings of the Optical Fiber Sensors, Optical Society of America, Cancun, Mexico, 23–27 October 2006; p. MC2. [Google Scholar]
- Buret, T.; Ramecourt, D.; Honthaas, J.; Willemenot, E.; Paturel, Y.; Gaiffe, T. Fiber optic gyroscopes for space application. In Proceedings of the Optical Fiber Sensors, Optica Publishing Group, Cancun, Mexico, 23–27 October 2006; p. MC4. [Google Scholar]
- Goodall, C.; Carmichael, S.; Scannell, B. The Battle between MEMS and FOGs for Precision Guidance; Analog Devices Technical Article MS-2432; Analog Devices, Inc.: Wilmington, WA, USA, 2013. [Google Scholar]
- Gill, W.A.; Howard, I.; Mazhar, I.; McKee, K. A review of MEMS vibrating gyroscopes and their reliability issues in harsh environments. Sensors 2022, 22, 7405. [Google Scholar] [CrossRef]
- Korkishko, Y.N.; Fedorov, V.; Prilutskiy, V.; Ponomarev, V.; Fedorov, I.; Kostritskii, S.; Morev, I.; Obuhovich, D.; Prilutskiy, S.; Zuev, A.; et al. High-precision inertial measurement unit IMU-5000. In Proceedings of the 2018 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL), Lake Como, Italy, 27–29 March 2018; pp. 1–4. [Google Scholar]
- Zhu, R.; Zhang, Y.; Bao, Q. A novel intelligent strategy for improving measurement precision of FOG. IEEE Trans. Instrum. Meas. 2000, 49, 1183–1188. [Google Scholar]
- Sumukh Nandan, R.; Poudyal, S.; Srivastava, S.; Gowrishankar, R. Self-beating resonant optical gyroscope with a “reflector”: The possibility of high sensitivities at reduced costs. Appl. Opt. 2019, 58, 1699–1706. [Google Scholar]
- Sanders, G.A.; Strandjord, L.K.; Wu, J.; Williams, W.; Smiciklas, M.; Salit, M.; Narayanan, C.; Qiu, T. Development of compact resonator fiber optic gyroscopes. In Proceedings of the 2017 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL), Kauai, HI, USA, 28–30 March 2017; pp. 168–170. [Google Scholar]
- Skalskỳ, M.; Havránek, Z.; Fialka, J. Efficient modulation and processing method for closed-loop fiber optic gyroscope with piezoelectric modulator. Sensors 2019, 19, 1710. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.S.; Xuan, H.; Chen, X.; Zou, H.; Liu, X.; Zhao, X. Polarimetry fiber optic gyroscope. Opt. Express 2019, 27, 19984–19995. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, L.; Lin, Y.; Ma, H.; Jin, Z. Coherent Detection Technique for Resonant Fiber Optic Gyroscope. In Proceedings of the Asia Communications and Photonics Conference, Optical Society of America, Chengdu, China, 2–5 November 2019; p. M4A–178. [Google Scholar]
- Zhang, J.; Ma, H.; Li, H.; Jin, Z. Single-polarization fiber-pigtailed high-finesse silica waveguide ring resonator for a resonant micro-optic gyroscope. Opt. Lett. 2017, 42, 3658–3661. [Google Scholar] [CrossRef]
- Aghaie, K.Z.; Digonnet, M.J. Sensitivity limit of a coupled-resonator optical waveguide gyroscope with separate input/output coupling. JOSA B 2015, 32, 339–344. [Google Scholar] [CrossRef]
- Liang, W.; Ilchenko, V.S.; Savchenkov, A.A.; Dale, E.; Eliyahu, D.; Matsko, A.B.; Maleki, L. Resonant microphotonic gyroscope. Optica 2017, 4, 114–117. [Google Scholar] [CrossRef]
- Li, X.; Liu, P.; Guang, X.; Xu, Z.; Guan, L.; Li, G. Temperature dependence of faraday effect-induced bias error in a fiber optic gyroscope. Sensors 2017, 17, 2046. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Lei, M.; Feng, Z.; Wu, Y.; Zheng, X. A novel resonance optical gyroscope used photonic crystal fiber. In Proceedings of the 2018 25th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS), Saint Petersburg, Russia, 28–30 May 2018; pp. 1–4. [Google Scholar]
- Moslehi, B. Analysis of optical phase noise in fiber-optic systems employing a laser source with arbitrary coherence time. J. Light. Technol. 1986, 4, 1334–1351. [Google Scholar] [CrossRef]
- Teng, F.; Jin, J.; Li, Y.; Zhang, C. Study on phase noise induced by 1/f noise of the modulator drive circuit in high-sensitivity fiber optic gyroscope. Opt. Fiber Technol. 2018, 42, 50–55. [Google Scholar] [CrossRef]
- Gong, Y.; Bi, R.; Shen, H.; Zou, K.; Chen, K.; Shu, X. Influence of intensity noise on the resonant fiber optic gyroscope and restraining. Opt. Commun. 2021, 495, 127074. [Google Scholar] [CrossRef]
- Ezekiel, S.; Balsamo, S. Passive ring resonator laser gyroscope. Appl. Phys. Lett. 1977, 30, 478–480. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, H.; Zhou, K.; Jin, Z. Experiments by PM spectroscopy in resonator fiber optic gyro. Opt. Fiber Technol. 2007, 13, 135–138. [Google Scholar] [CrossRef]
- Ma, H.; Chen, Y.; Li, M.; Jin, Z. Transient response of a resonator fiber optic gyro with triangular wave phase modulation. Appl. Opt. 2010, 49, 6253–6263. [Google Scholar] [CrossRef]
- Meyer, R.; Ezekiel, S.; Stowe, D.W.; Tekippe, V. Passive fiber-optic ring resonator for rotation sensing. Opt. Lett. 1983, 8, 644–646. [Google Scholar] [CrossRef]
- Imai, T.; Nishide, K.I.; Ochi, H.; Ohtsu, M. Passive ring resonator fiber optic gyro using modulatable highly coherent laser diode module. In Proceedings of the Fiber Optic Gyros: 15th Anniversary Conference SPIE, Boston, MA, USA, 4–6 September 1992; Volume 1585, pp. 153–162. [Google Scholar]
- Bai, Z.; Zhao, Z.; Tian, M.; Jin, D.; Pang, Y.; Li, S.; Yan, X.; Wang, Y.; Lu, Z. A comprehensive review on the development and applications of narrow-linewidth lasers. Microw. Opt. Technol. Lett. 2022, 64, 2244–2255. [Google Scholar] [CrossRef]
- Cutler, C.; Newton, S.; Shaw, H.J. Limitation of rotation sensing by scattering. Opt. Lett. 1980, 5, 488–490. [Google Scholar] [CrossRef]
- Lefevre, H.C. The Fiber-Optic Gyroscope, 2nd ed.; Artech House: Washington, DC, USA, 2014. [Google Scholar]
- Ma, H.; He, Z.; Hotate, K. Reduction of backscattering induced noise by carrier suppression in waveguide-type optical ring resonator gyro. J. Light. Technol. 2010, 29, 85–90. [Google Scholar] [CrossRef]
- Iwatsuki, K.; Hotate, K.; Higashiguchi, M. Effect of Rayleigh backscattering in an optical passive ring-resonator gyro. Appl. Opt. 1984, 23, 3916–3924. [Google Scholar] [CrossRef]
- Takahashi, M.; Tai, S.; Kyuma, K. Effect of reflections on the drift characteristics of a fiber-optic passive ring-resonator gyroscope. J. Light. Technol. 1990, 8, 811–816. [Google Scholar] [CrossRef]
- Hotate, K.; Takiguchi, K.; Hirose, A. Adjustment-free method to eliminate the noise induced by the backscattering in an optical passive ring-resonator gyro. IEEE Photonics Technol. Lett. 1990, 2, 75–77. [Google Scholar] [CrossRef]
- Ying, D.; Ma, H.; Jin, Z. Resonator fiber optic gyro using the triangle wave phase modulation technique. Opt. Commun. 2008, 281, 580–586. [Google Scholar] [CrossRef]
- Gao, W.; Wang, Z.; Wang, G.; Miao, W. Angular random walk improvement of resonator fiber optic gyro by optimizing modulation frequency. IEEE Photonics J. 2019, 11, 1–13. [Google Scholar] [CrossRef]
- Blin, S.; Kim, H.K.; Digonnet, M.J.; Kino, G.S. Reduced thermal sensitivity of a fiber-optic gyroscope using an air-core photonic-bandgap fiber. J. Light. Technol. 2007, 25, 861–865. [Google Scholar] [CrossRef]
- Liu, N.; Niu, Y.; Feng, L.; Jiao, H.; Wang, X. Suppression of backscattering induced noise by the sideband locking technique in a resonant fiber optic gyroscope. Chin. Opt. Lett. 2018, 16, 010608. [Google Scholar]
- Shang, K.; Lei, M.; Fang, Y.; Yu, H.; Zhang, L. Resonator fiber-optic gyro with intensity error suppression using a bias-sampling compensation technique. Appl. Opt. 2020, 59, 3995–3999. [Google Scholar] [CrossRef]
- watsuki, K.; Hotate, K.; Higashiguchi, M. Eigenstate of polarization in a fiber ring resonator and its effect in an optical passive ring-resonator gyro. Appl. Opt. 1986, 25, 2606–2612. [Google Scholar] [CrossRef] [PubMed]
- Strandjord, L.K.; Sanders, G.A. Resonator fiber optic gyro employing a polarization-rotating resonator. In Proceedings of the Fiber Optic Gyros: 15th Anniversary Conference SPIE, Boston, MA, USA, 4–6 September 1992; Volume 1585, pp. 163–172. [Google Scholar]
- Wang, X.; He, Z.; Hotate, K. Automated Suppression of Polarization Fluctuation in Resonator Fiber Optic Gyro with Twin 90° Polarization-Axis Rotated Splices. J. Light. Technol. 2012, 31, 366–374. [Google Scholar] [CrossRef]
- Wang, X.; He, Z.; Hotate, K. Reduction of polarization-fluctuation induced drift in resonator fiber optic gyro by a resonator with twin 90 polarization-axis rotated splices. Opt. Express 2010, 18, 1677–1683. [Google Scholar] [CrossRef]
- Ma, H.; Yu, X.; Jin, Z. Reduction of polarization-fluctuation induced drift in resonator fiber optic gyro by a resonator integrating in-line polarizers. Opt. Lett. 2012, 37, 3342–3344. [Google Scholar] [CrossRef]
- Yu, X.; Ma, H.; Jin, Z. Improving thermal stability of a resonator fiber optic gyro employing a polarizing resonator. Opt. Express 2013, 21, 358–369. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Ma, H.; Jin, Z. Reducing polarization-fluctuation induced drift in resonant fiber optic gyro by using single-polarization fiber. Opt. Express 2015, 23, 2002–2009. [Google Scholar] [CrossRef]
- Kaplan, A.; Meystre, P. Large enhancement of the Sagnac effect in a nonlinear ring resonator and related effects. In Fiber-Optic Rotation Sensors and Related Technologies; Springer: Berlin/Heidelberg, Germany, 1982; pp. 375–385. [Google Scholar]
- Hotate, K.; Takiguchi, K. Drift reduction in an optical passive ring resonator gyro. In Proceedings of the Fiber Optic Gyros: 15th Anniversary Conference SPIE, Boston, MA, USA, 4–6 September 1992; Volume 1585, pp. 116–127. [Google Scholar]
- Iwatsuki, K.; Hotate, K.; Higashiguchi, M. Kerr effect in an optical passive ring-resonator gyro. J. Light. Technol. 1986, 4, 645–651. [Google Scholar] [CrossRef]
- Sanders, G.A.; Strandjord, L.K.; Qiu, T. Hollow core fiber optic ring resonator for rotation sensing. In Proceedings of the Optical Fiber Sensors, Optica Publishing Group, Cancun, Mexico, 23–27 October 2006; p. ME6. [Google Scholar]
- Terrel, M.A.; Digonnet, M.J.; Fan, S. Resonant fiber optic gyroscope using an air-core fiber. J. Light. Technol. 2011, 30, 931–937. [Google Scholar] [CrossRef]
- Li, X.; Xu, Z.; Hong, Y.; Liu, P.; Ling, W. Comparative analysis of fiber ring resonator based on different fibers. Optik 2016, 127, 2954–2958. [Google Scholar] [CrossRef]
- Takiguchi, K.; Hotate, K. Method to reduce the optical Kerr-effect-induced bias in an optical passive ring-resonator gyro. IEEE Photonics Technol. Lett. 1992, 4, 203–206. [Google Scholar] [CrossRef]
- Ravaille, A.; Feugnet, G.; Debord, B.; Gérôme, F.; Benabid, F.; Bretenaker, F. Rotation measurements using a resonant fiber optic gyroscope based on Kagome fiber. Appl. Opt. 2019, 58, 2198–2204. [Google Scholar] [CrossRef] [PubMed]
- Shupe, D.M. Fiber resonator gyroscope: Sensitivity and thermal nonreciprocity. Appl. Opt. 1981, 20, 286–289. [Google Scholar] [CrossRef] [PubMed]
- Hotate, K.; Kikuchi, Y. Analysis of the thermo-optically induced bias drift in resonator fiber optic gyro. In Proceedings of the Fiber Optic Sensor Technology II, Boston, MA, USA, 5–8 November 2001; Volume 4204, pp. 81–88. [Google Scholar]
- Ma, H.; Yan, Y.; Lu, X.; Jin, Z. Eliminating bias drift error in lock-in frequency for a resonant fiber optic gyro. Appl. Opt. 2014, 53, 3399–3403. [Google Scholar] [CrossRef]
- Geng, J.; Yang, L.; Zhang, Y. Resonant optical gyroscope based on all-optical frequency locking. IEEE Trans. Instrum. Meas. 2022, 71, 1–4. [Google Scholar] [CrossRef]
- Xie, C.; Tang, J.; Cui, D.; Wu, D.; Zhang, C.; Li, C.; Zhen, Y.; Xue, C.; Liu, J. Improvement of scale factor for resonant fiber optical gyroscope. In Proceedings of the Asia Communications and Photonics Conference, Optica Publishing Group, Wuhan, China, 2–5 November 2016; p. ATh3B–2. [Google Scholar]
- Zhang, X.L.; Ma, H.L.; Jin, Z.H.; Ding, C. Open-loop operation experiments in a resonator fiber-optic gyro using the phase modulation spectroscopy technique. Appl. Opt. 2006, 45, 7961–7965. [Google Scholar] [CrossRef]
- Jin, Z.; Yang, Z.; Ma, H.; Ying, D. Open-loop experiments in a resonator fiber-optic gyro using digital triangle wave phase modulation. IEEE Photonics Technol. Lett. 2007, 19, 1685–1687. [Google Scholar] [CrossRef]
- Feng, L.; Ren, X.; Deng, X.; Liu, H. Analysis of a hollow core photonic bandgap fiber ring resonator based on micro-optical structure. Opt. Express 2012, 20, 18202–18208. [Google Scholar] [CrossRef]
- Srivastava, S.; Pattnaik, B. Resonant optical gyroscope with ‘reflector’: Analysis and simulations. J. Opt. 2016, 45, 152–157. [Google Scholar] [CrossRef]
- Liu, S.; Liu, L.; Hu, J.; Liu, Q.; Ma, H.; He, Z. Reduction of relative intensity noise in a broadband source-driven RFOG using a high-frequency modulation technique. Opt. Lett. 2022, 47, 5100–5103. [Google Scholar] [CrossRef] [PubMed]
- Sanders, G.A.; Szafraniec, B.; Liu, R.Y.; Laskoskie, C.L.; Strandjord, L.K.; Weed, G. Fiber optic gyros for space, marine, and aviation applications. In Proceedings of the Fiber Optic Gyros: 20th Anniversary Conference, Denver, CO, USA, 5–6 August 1996; Volume 2837, pp. 61–71. [Google Scholar]
- Kajioka, H.; Kumagai, T.; Nakai, H.; Dohsho, T.; Soekawa, H.; Yuhara, T. Commercial applications of mass-produced fiber optic gyros. In Proceedings of the Fiber Optic Gyros: 20th Anniversary Conference, Denver, CO, USA, 5–6 August 1996; Volume 2837, pp. 18–32. [Google Scholar]
- Hotate, K. Future evolution of fiber optic gyros. Opt. Rev. 1997, 4, 28–34. [Google Scholar] [CrossRef]
- Hu, J.; Liu, S.; Liu, L.; Ma, H. Closed-Loop Resonant Fiber-Optic Gyroscope with a Broadband Light Source. J. Light. Technol. 2023. [Google Scholar] [CrossRef]
- Jin, Z.; Yu, X.; Ma, H. Resonator fiber optic gyro employing a semiconductor laser. Appl. Opt. 2012, 51, 2856–2864. [Google Scholar] [CrossRef]
- Sanders, G.A.; Strandjord, L.K.; Williams, W.; Benser, E.; Ayotte, S.; Costin, F. Improvements to signal processing and component minaturization of compact resonator fiber optic gyroscopes. In Proceedings of the 2018 DGON Inertial Sensors and Systems (ISS), Braunschweig, Germany, 11–12 September 2018; pp. 1–22. [Google Scholar]
- Jiao, H.; Feng, L.; Liu, N.; Yang, Z. Improvement of long-term stability of hollow-core photonic-crystal fiber optic gyro based on single-polarization resonator. Opt. Express 2018, 26, 8645–8655. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Lin, Y.; Liu, L.; Ma, H.; Jin, Z. Signal processing improvement of passive resonant fiber optic gyroscope using a reciprocal modulation-demodulation technique. Opt. Express 2020, 28, 18103–18111. [Google Scholar] [CrossRef]
- Liu, L.; Liu, S.; Qian, W.; Li, H.; Ma, H. Resonant fiber optical gyroscope using the single-mode fiber ring resonator. Appl. Opt. 2021, 60, 6755–6760. [Google Scholar] [CrossRef]
- Sanders, G.A.; Taranta, A.A.; Narayanan, C.; Fokoua, E.N.; Mousavi, S.A.; Strandjord, L.K.; Smiciklas, M.; Bradley, T.D.; Hayes, J.; Jasion, G.T.; et al. Hollow-core resonator fiber optic gyroscope using nodeless anti-resonant fiber. Opt. Lett. 2021, 46, 46–49. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, Q.; Ma, H.; He, Z. White-light-driven resonant fiber-optic gyro based on round trip filtering scheme. Opt. Lett. 2022, 47, 1137–1140. [Google Scholar] [CrossRef] [PubMed]
- Strandjord, L.K.; Qiu, T.; Wu, J.; Ohnstein, T.; Sanders, G.A. Resonator fiber optic gyro progress including observation of navigation grade angle random walk. In Proceedings of the OFS2012 22nd International Conference on Optical Fiber Sensors, Beijing, China, 15–19 October 2012; Volume 8421, pp. 87–91. [Google Scholar]
- Sanders, G.; Strandjord, L.; Wu, J.; Williams, W.; Smiciklas, M.; Salit, M.; Narayanan, C.; Benser, E.; Qiu, T. Improvements of compact resonator fiber optic gyroscopes. In Proceedings of the 2017 DGON Inertial Sensors and Systems (ISS), Karlsruhe, Germany, 19–20 September 2017; pp. 1–12. [Google Scholar]
- Zhao, S.; Liu, Q.; Liu, Y.; Ma, H.; He, Z. Navigation-grade resonant fiber-optic gyroscope using ultra-simple white-light multibeam interferometry. Photonics Res. 2022, 10, 542–549. [Google Scholar] [CrossRef]
- Srivastava, S.; Rao DS, S.; Nandakumar, H. Novel optical gyroscope: Proof of principle demonstration and future scope. Sci. Rep. 2016, 6, 1–8. [Google Scholar] [CrossRef]
- Paschotta, R.; Brinck, D.; Farwell, S.; Hanna, D. Resonant loop mirror with narrow-band reflections and its application in single-frequency fiber lasers. Appl. Opt. 1997, 36, 593–596. [Google Scholar] [CrossRef]
- Sanchez, F. Matrix algebra for all-fiber optical resonators. J. Light. Technol. 1991, 9, 838–844. [Google Scholar] [CrossRef]
- Capmany, J.; Muriel, M.A. A new transfer matrix formalism for the analysis of fiber ring resonators: Compound coupled structures for FDMA demultiplexing. J. Light. Technol. 1990, 8, 1904–1919. [Google Scholar] [CrossRef]
- Barbarossa, G.; Matteo, A.M.; Armenise, M.N. Theoretical analysis of triple-coupler ring-based optical guided-wave resonator. J. Light. Technol. 1995, 13, 148–157. [Google Scholar] [CrossRef]
- Mandal, S.; Dasgupta, K.; Basak, T.; Ghosh, S. A generalized approach for modeling and analysis of ring-resonator performance as optical filter. Opt. Commun. 2006, 264, 97–104. [Google Scholar] [CrossRef]
- Li, W.; Sun, J. Optical vernier filter with cascaded double-coupler compound fiber loop resonators. Optik 2010, 121, 1370–1375. [Google Scholar] [CrossRef]
- Srivastava, S.; Gopal, R.; Sai, S.; Srinivasan, K. Feedback Mach-Zehnder resonator with “reflector:” Analysis and applications in single frequency fiber lasers. Appl. Phys. Lett. 2006, 89, 141118. [Google Scholar] [CrossRef]
- Sun, G.; Moon, D.S.; Chung, Y. High birefringence fiber ring resonator with an inline reflector for single-frequency fiber lasers. Opt. Commun. 2007, 280, 157–160. [Google Scholar] [CrossRef]
- Das, A.J.; Nalawade, S.; Padhy, B.; Thakur, H.V. Narrowband fiber laser using single coupler resonator with reflector. In Proceedings of the International Conference on Fiber Optics and Photonics, New Delhi, India, 13–17 December 2008; Volume 1, pp. 5–7. [Google Scholar]
- Srivastava, S.; Srinivasan, K. Coupled-cavity analysis of the resonant loop mirror: Closed-form expressions and simulations for enhanced performance lasing. Appl. Opt. 2005, 44, 572–581. [Google Scholar] [CrossRef]
- Nandan, R.S.; Srivastava, S.; Gowrishankar, R. Non-reciprocal biasing for performance enhancement of the resonant fiber gyroscope with ‘Reflector’using In-line Faraday rotators: Design, analysis and characterization. Opt. Fiber Technol. 2019, 53, 102038. [Google Scholar] [CrossRef]
- Shupe, D.M. Thermally induced nonreciprocity in the fiber-optic interferometer. Appl. Opt. 1980, 19, 654–655. [Google Scholar] [CrossRef]
- Sanders, G.A.; Strandjord, L.K.; Qiu, T. Resonator Fiber Optic Gyroscope Utilizing Laser Frequency Combs. U.S. Patent 8,659,760, 25 February 2014. [Google Scholar]
- Mahudapathi, S.; Bekal, A.; Singh, H.; Srinivasan, B. Investigation of bias stability enhancement using frequency comb source in resonant fiber optic gyroscope. In Proceedings of the Optical and Quantum Sensing and Precision Metrology II, San Francisco, CA, USA, 22–27 January 2022; Volume 12016, pp. 187–195. [Google Scholar]
- Yan, M.; Zhao, K.; Zhao, X.; Luo, W.; Yao, Q.; Li, H.; Liang, H. Interferometric Air-Core Anti-Resonant Fiber Optic Gyroscope with Enhanced Thermal Stability. J. Light. Technol. 2023, 41, 2879–2884. [Google Scholar] [CrossRef]
- Liu, S.; Hu, J.; Wang, Y.; Wang, H.; Liu, L.; Ma, H. Improving the Performance of Broadband Source-Driven Resonant Fiber-Optic Gyroscopes. J. Light. Technol. 2024. [Google Scholar] [CrossRef]
Parameters | Control Grade | Tactical Grade | Inertial Grade |
---|---|---|---|
ARW (°) | >0.5 | 0.05–0.5 | <0.05 |
Bias stability (°/h) | >10 | 0.1–10 | <0.1 |
Scale factor stability (ppm) | >500 | 100–500 | <100 |
Year | Sensitivity (°/h) | Methods Used | Reference |
---|---|---|---|
1983 | 0.5 | SMF and He-Ne laser | [27] |
2006 | 0.144 | PMF with phase modulation | [61] |
2007 | 0.0825 | PMF with phase modulation | [62] |
2012 | 0.153 | HC-PBF based FRR | [63] |
2016 | 0.01 | Single coupler resonator with reflector | [64] |
2019 | <1 | Beat-frequency-based detection | [11] |
2022 | 0.001 | Broadband source | [65] |
Year | Bias Stability (°/h) | Methods Used | Reference |
---|---|---|---|
1991 | 10 | PMF, 90° splice | [42] |
2012 | 9.5 | Frequency stabilization | [70] |
2012 | 4.7 | PMF, In-line polarizer | [45] |
2013 | 2 | PMF, In-line polarizer | [46] |
2017 | 1 | PDH locking scheme | [71] |
2018 | 0.5 | PCF, signal processing | [20] |
2018 | 0.45 | PDH locking scheme | [55] |
2020 | 0.15 | HCPBF with Meniscus lens | [72] |
2020 | 0.06 | Reciprocal modulation-demodulation | [73] |
2021 | 0.05 | SMF, birefringence | [74] |
2021 | 0.05 | Nested anti-resonant nodeless fiber (NANF) | [75] |
2022 | 0.012 | Round-trip filtering with a broadband source | [76] |
2023 | 0.0063 | Broadband source with closed-loop | [69] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahudapathi, S.; R, S.N.; R, G.; Srinivasan, B. The Challenges and Opportunities for Performance Enhancement in Resonant Fiber Optic Gyroscopes. Sensors 2025, 25, 223. https://doi.org/10.3390/s25010223
Mahudapathi S, R SN, R G, Srinivasan B. The Challenges and Opportunities for Performance Enhancement in Resonant Fiber Optic Gyroscopes. Sensors. 2025; 25(1):223. https://doi.org/10.3390/s25010223
Chicago/Turabian StyleMahudapathi, Sumathi, Sumukh Nandan R, Gowrishankar R, and Balaji Srinivasan. 2025. "The Challenges and Opportunities for Performance Enhancement in Resonant Fiber Optic Gyroscopes" Sensors 25, no. 1: 223. https://doi.org/10.3390/s25010223
APA StyleMahudapathi, S., R, S. N., R, G., & Srinivasan, B. (2025). The Challenges and Opportunities for Performance Enhancement in Resonant Fiber Optic Gyroscopes. Sensors, 25(1), 223. https://doi.org/10.3390/s25010223