[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
You seem to have javascript disabled. Please note that many of the page functionalities won't work as expected without javascript enabled.
 
 

Baryon Structure: Form Factors and Polarization

A special issue of Symmetry (ISSN 2073-8994). This special issue belongs to the section "Physics".

Deadline for manuscript submissions: closed (31 January 2022) | Viewed by 21028

Special Issue Editors


E-Mail Website
Guest Editor
INFN Laboratori Nazionali di Frascati, Frascati, Italy

E-Mail Website
Guest Editor
1. Dipartimento di Fisica e Geologia, Università di Perugia, 06100 Perugia, Italy
2. INFN Sezione di Perugia, 06100 Perugia, Italy
Interests: hadron physics; phenomenology and theory of particle physics

E-Mail Website
Guest Editor
Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Perugia, Italy

Special Issue Information

The study of baryons is one of the greatest challenges in particle physics. It is fundamental for a deep understanding of the dynamical mechanisms that rule quantum chromodynamics, the QCD, at energy regimes where the perturbative character of this gauge theory is still not effective because of the so-called phenomenon of color confinement. Baryons, unlike elementary particles, have an internal structure of three valence quarks surrounded by a dynamical and intensely interacting sea of virtual quark-antiquark pairs and gluons. From a theoretical point of view and in the framework of quantum field theory, the most general description of the mechanisms that underlie and hence rule baryon dynamics is grounded on the concept of form factors. They represent energy-dependent coupling constants that parametrize the baryon four-currents and encode all the information concerning their dynamics.  

Form factors are complex quantities, and their complex nature manifests in the polarization of the baryons that are produced in charmonium decays and in electron-positron annihilation processes, respectively. By taking advantage of the self-analyzing weak decays of hyperons, their polarization and hence the complexity of form factors are observable, and moreover, eventual connections between the strong and the electromagnetic dynamics can be studied. 

In recent years, a growing number of experiments has been providing more and more sets of data that, with high accuracy and covering all kinematic regions, are going to complete, piece by piece, the complex puzzle of baryons form factors and their polarization. The interpretation of such an impressive amount of experimental information does require a solid and well established theoretical framework. 

This Special Issue has been conceived to provide an exhaustive and updated answer to such a request by collecting, organizing, and framing all the available data, both experimental and theoretical, on baryon cross-sections and polarization observables in a unique treatment. 

Dr. Monica Bertani
Prof. Simone Pacetti
Dr. Alessio Mangoni
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Symmetry is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • form factors
  • polarization
  • entanglement
  • hyperons
  • quantum chromodynamics
  • effective theories
  • hadronic decays
  • baryon–antibaryon asymmetry
  • CP test

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

13 pages, 425 KiB  
Article
Theoretical and Experimental Essentials on Baryon Form Factors
by Monica Bertani, Alessio Mangoni and Simone Pacetti
Symmetry 2022, 14(3), 439; https://doi.org/10.3390/sym14030439 - 23 Feb 2022
Cited by 2 | Viewed by 1497
Abstract
This brief review is a practical guide on the basic concepts, pivotal formulae, standard relations, and some unusual, often forgotten, but sometimes revealing features of baryons’ form factors. All available measured values of nucleon form factors in the space-like and time-like regions extracted [...] Read more.
This brief review is a practical guide on the basic concepts, pivotal formulae, standard relations, and some unusual, often forgotten, but sometimes revealing features of baryons’ form factors. All available measured values of nucleon form factors in the space-like and time-like regions extracted from scattering and annihilation cross-sections are also reported. Full article
(This article belongs to the Special Issue Baryon Structure: Form Factors and Polarization)
Show Figures

Figure 1

Figure 1
<p>Feynman diagram in the one-photon exchange approximation for the electron–baryon scattering <math display="inline"><semantics> <mrow> <mi>e</mi> <mi>B</mi> <mo>→</mo> <mi>e</mi> <mi>B</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 2
<p>Feynman diagram, at first order, for the <math display="inline"><semantics> <mrow> <msup> <mi>e</mi> <mo>+</mo> </msup> <msup> <mi>e</mi> <mo>−</mo> </msup> <mo>↔</mo> <mi>B</mi> <mover> <mi>B</mi> <mo>¯</mo> </mover> </mrow> </semantics></math> annihilation.</p>
Full article ">Figure 3
<p>Moduli of the proton effective FF, <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>eff</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>q</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow> </semantics></math>, measured by the experiments: E760 [<a href="#B16-symmetry-14-00439" class="html-bibr">16</a>], E835 [<a href="#B17-symmetry-14-00439" class="html-bibr">17</a>,<a href="#B18-symmetry-14-00439" class="html-bibr">18</a>], BES [<a href="#B19-symmetry-14-00439" class="html-bibr">19</a>], BABAR [<a href="#B20-symmetry-14-00439" class="html-bibr">20</a>,<a href="#B21-symmetry-14-00439" class="html-bibr">21</a>], CMD-3 [<a href="#B22-symmetry-14-00439" class="html-bibr">22</a>], FENICE [<a href="#B23-symmetry-14-00439" class="html-bibr">23</a>], PS170 [<a href="#B24-symmetry-14-00439" class="html-bibr">24</a>], and DM2 [<a href="#B25-symmetry-14-00439" class="html-bibr">25</a>,<a href="#B26-symmetry-14-00439" class="html-bibr">26</a>].</p>
Full article ">Figure 4
<p>Experimental values for the modulus of the electric (blue circles) and magnetic (red circles) proton FFs, <math display="inline"><semantics> <msub> <mi>G</mi> <mi>E</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>G</mi> <mi>M</mi> </msub> </semantics></math>, measured by the BESIII Collaboration in 2019 [<a href="#B13-symmetry-14-00439" class="html-bibr">13</a>]. The dashed line indicates the production threshold, <math display="inline"><semantics> <mrow> <msqrt> <msup> <mi>q</mi> <mn>2</mn> </msup> </msqrt> <mo>=</mo> <mn>2</mn> <msub> <mi>m</mi> <mi>p</mi> </msub> </mrow> </semantics></math>, where <math display="inline"><semantics> <msub> <mi>m</mi> <mi>p</mi> </msub> </semantics></math> is the proton mass.</p>
Full article ">Figure 5
<p>Experimental values for the moduli of the proton FFs’ ratio, <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi>G</mi> <mi>E</mi> </msub> <mo>/</mo> <msub> <mi>G</mi> <mi>M</mi> </msub> <mrow> <mo>|</mo> </mrow> </mrow> </semantics></math>, measured by the experiments: BESIII Collaboration in 2019 [<a href="#B13-symmetry-14-00439" class="html-bibr">13</a>], BABAR [<a href="#B21-symmetry-14-00439" class="html-bibr">21</a>], and PS170 [<a href="#B24-symmetry-14-00439" class="html-bibr">24</a>].</p>
Full article ">Figure 6
<p>Data on the <math display="inline"><semantics> <mrow> <msup> <mi>e</mi> <mo>+</mo> </msup> <msup> <mi>e</mi> <mo>−</mo> </msup> <mo>→</mo> <mi>n</mi> <mover> <mi>n</mi> <mo>¯</mo> </mover> </mrow> </semantics></math> cross-section measured by the experiments: BESIII [<a href="#B15-symmetry-14-00439" class="html-bibr">15</a>], FENICE [<a href="#B27-symmetry-14-00439" class="html-bibr">27</a>], DM2 [<a href="#B28-symmetry-14-00439" class="html-bibr">28</a>], SND (2014) [<a href="#B29-symmetry-14-00439" class="html-bibr">29</a>], and SND (2019) [<a href="#B30-symmetry-14-00439" class="html-bibr">30</a>].</p>
Full article ">Figure 7
<p>The neutron-to-proton cross-section ratio [<a href="#B15-symmetry-14-00439" class="html-bibr">15</a>] measured by BESIII and FENICE, together with two theoretical predictions [<a href="#B1-symmetry-14-00439" class="html-bibr">1</a>,<a href="#B31-symmetry-14-00439" class="html-bibr">31</a>] and, with the black dotted horizontal line, the squared ratio between the neutron and proton magnetic momenta.</p>
Full article ">Figure 8
<p>Data on the <math display="inline"><semantics> <mrow> <msup> <mi>e</mi> <mo>+</mo> </msup> <msup> <mi>e</mi> <mo>−</mo> </msup> <mo>→</mo> <mi>B</mi> <mover> <mi>B</mi> <mo>¯</mo> </mover> </mrow> </semantics></math> cross-section measured by the experiments: BESIII [<a href="#B32-symmetry-14-00439" class="html-bibr">32</a>,<a href="#B33-symmetry-14-00439" class="html-bibr">33</a>,<a href="#B34-symmetry-14-00439" class="html-bibr">34</a>,<a href="#B35-symmetry-14-00439" class="html-bibr">35</a>,<a href="#B36-symmetry-14-00439" class="html-bibr">36</a>,<a href="#B37-symmetry-14-00439" class="html-bibr">37</a>], BABAR [<a href="#B38-symmetry-14-00439" class="html-bibr">38</a>], and DM2 [<a href="#B26-symmetry-14-00439" class="html-bibr">26</a>], where <math display="inline"><semantics> <mrow> <mi>B</mi> <mover> <mi>B</mi> <mo>¯</mo> </mover> <mo>=</mo> <msub> <mo>Λ</mo> <mi>c</mi> </msub> <msub> <mover> <mo>Λ</mo> <mo>¯</mo> </mover> <mi>c</mi> </msub> <mo>,</mo> <mo>Λ</mo> <mstyle displaystyle="true"> <mover> <mrow> <mstyle mathsize="50%" displaystyle="true"> <mo>∑</mo> </mstyle> </mrow> <mo>¯</mo> </mover> </mstyle> <msup> <mrow/> <mn>0</mn> </msup> <mo>+</mo> <mrow> <mi mathvariant="normal">c</mi> <mo>.</mo> <mi mathvariant="normal">c</mi> <mo>.</mo> </mrow> <mo>,</mo> <msup> <mstyle mathsize="50%" displaystyle="true"> <mo>∑</mo> </mstyle> <mn>0</mn> </msup> <mstyle displaystyle="true"> <mover> <mrow> <mstyle mathsize="50%" displaystyle="true"> <mo>∑</mo> </mstyle> </mrow> <mo>¯</mo> </mover> </mstyle> <msup> <mrow/> <mn>0</mn> </msup> <mo>,</mo> <mo>Λ</mo> <mover> <mo>Λ</mo> <mo>¯</mo> </mover> <mo>,</mo> <msup> <mo>Ξ</mo> <mn>0</mn> </msup> <mover> <mo>Ξ</mo> <mo>¯</mo> </mover> <msup> <mrow/> <mn>0</mn> </msup> <mo>,</mo> <msup> <mo>Ξ</mo> <mo>−</mo> </msup> <msup> <mover> <mo>Ξ</mo> <mo>¯</mo> </mover> <mo>+</mo> </msup> <mo>,</mo> <msup> <mstyle mathsize="50%" displaystyle="true"> <mo>∑</mo> </mstyle> <mo>−</mo> </msup> <msup> <mstyle displaystyle="true"> <mover> <mrow> <mstyle mathsize="50%" displaystyle="true"> <mo>∑</mo> </mstyle> </mrow> <mo>¯</mo> </mover> </mstyle> <mo>+</mo> </msup> <mo>,</mo> <msup> <mstyle mathsize="50%" displaystyle="true"> <mo>∑</mo> </mstyle> <mo>+</mo> </msup> <msup> <mstyle displaystyle="true"> <mover> <mrow> <mstyle mathsize="50%" displaystyle="true"> <mo>∑</mo> </mstyle> </mrow> <mo>¯</mo> </mover> </mstyle> <mo>−</mo> </msup> </mrow> </semantics></math>.</p>
Full article ">
12 pages, 4384 KiB  
Article
Electromagnetic Structure of the Neutron from Annihilation Reactions
by Paul Larin, Xiaorong Zhou, Jifeng Hu, Frank Maas, Rinaldo Ferroli Baldini, Haiming Hu and Guangshun Huang
Symmetry 2022, 14(2), 298; https://doi.org/10.3390/sym14020298 - 1 Feb 2022
Cited by 3 | Viewed by 2273
Abstract
The investigation of the fundamental properties of the nucleon is one of the most important topics in the modern hadron physics. Its internal structure and dynamics can be studied through the measurement of electromagnetic form factors which represent the simplest structure observables and [...] Read more.
The investigation of the fundamental properties of the nucleon is one of the most important topics in the modern hadron physics. Its internal structure and dynamics can be studied through the measurement of electromagnetic form factors which represent the simplest structure observables and serve as a test ground for our understanding of the strong interaction. Since the first attempt to measure the time-like form factors of the neutron, only four experiments published results on its structure from annihilation reactions. Due to the lack of statistics and experimental challenges, no individual determination of the form factors of the neutron has been possible so far. Modern developments of electron-positron colliders and the associated detectors allow to measure the effective FF of the neutron with the process e+enn¯ with unprecedented precision at the BESIII experiment, which is based at the BEPCII collider in Beijing, China. In this report, we review the published results of the form factors on the neutron in the time-like regime, describe the experimental setup, and discuss their impact on our understanding of the strong interaction. Future works at BESIII will help to improve the precision of the neutron FFs and, combined with theoretical progress in this field, help to illuminate the properties of the neutron structure. Full article
(This article belongs to the Special Issue Baryon Structure: Form Factors and Polarization)
Show Figures

Figure 1

Figure 1
<p>The lowest order Feynman diagram for the annihilation of an electron positron pair and the creation of a nucleon antinucleon pair <math display="inline"><semantics> <mrow> <msup> <mi>e</mi> <mo>+</mo> </msup> <msup> <mi>e</mi> <mo>−</mo> </msup> <mo>→</mo> <mi>N</mi> <mover> <mi>N</mi> <mo>¯</mo> </mover> </mrow> </semantics></math>. <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>k</mi> <mn>2</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>p</mi> <mn>1</mn> </msub> </semantics></math>, and <math display="inline"><semantics> <msub> <mi>p</mi> <mn>2</mn> </msub> </semantics></math> are the four-momenta of the incoming electron and positron and the outgoing four-momenta of the antinucleon and nucleon, respectively. <math display="inline"><semantics> <mrow> <msup> <mi>q</mi> <mn>2</mn> </msup> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>p</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>=</mo> <mi>s</mi> </mrow> </semantics></math> is the four-momentum transfer squared, <math display="inline"><semantics> <msubsup> <mi>J</mi> <mrow> <mi>l</mi> <mi>e</mi> <mi>p</mi> </mrow> <mi>μ</mi> </msubsup> </semantics></math> and <math display="inline"><semantics> <msubsup> <mi>J</mi> <mrow> <mi>h</mi> <mi>a</mi> <mi>d</mi> </mrow> <mi>μ</mi> </msubsup> </semantics></math> are the leptonic and hadronic vector currents, <math display="inline"><semantics> <mrow> <msup> <mi>γ</mi> <mo>*</mo> </msup> <mrow> <mo>(</mo> <msup> <mi>q</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow> </semantics></math> is the virtual photon which transfers the four-momentum <math display="inline"><semantics> <msup> <mi>q</mi> <mn>2</mn> </msup> </semantics></math> between the initial and final state of the reaction. The complex nucleon structure, encoded with the electromagnetc FFs, is sketched as the filled circle.</p>
Full article ">Figure 2
<p>(<b>a</b>) Results for the Born cross section <math display="inline"><semantics> <msubsup> <mi>σ</mi> <mrow> <mi>B</mi> </mrow> <mrow> <mi>n</mi> <mover accent="true"> <mi>n</mi> <mo>¯</mo> </mover> </mrow> </msubsup> </semantics></math> with respect to the center-of-mass energy <math display="inline"><semantics> <msqrt> <mi>s</mi> </msqrt> </semantics></math>. (<b>b</b>) Results for the effective form factor <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msup> <mi>G</mi> <mi>n</mi> </msup> <mrow> <mo>|</mo> </mrow> </mrow> </semantics></math> with respect to the center-of-mass energy <math display="inline"><semantics> <msqrt> <mi>s</mi> </msqrt> </semantics></math>. The data shown as green squares is from the DM2 experiment [<a href="#B18-symmetry-14-00298" class="html-bibr">18</a>,<a href="#B19-symmetry-14-00298" class="html-bibr">19</a>], green downward triangles are results from the FENICE experiment [<a href="#B15-symmetry-14-00298" class="html-bibr">15</a>,<a href="#B22-symmetry-14-00298" class="html-bibr">22</a>], orange upward triangles show results from the SND experiment [<a href="#B23-symmetry-14-00298" class="html-bibr">23</a>], and black dots represent the measurement from the BESIII experiment [<a href="#B24-symmetry-14-00298" class="html-bibr">24</a>]. The total uncertainty of all data are determined as the quadratic sum of statistical and systematic errors, corresponding to a 68.3% confidence level of a normal distribution.</p>
Full article ">Figure 3
<p>(<b>a</b>) Results for the magnetic form factor <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msubsup> <mi>G</mi> <mi>M</mi> <mi>n</mi> </msubsup> <mrow> <mo>|</mo> </mrow> </mrow> </semantics></math> of the neutron from the FENICE experiment [<a href="#B21-symmetry-14-00298" class="html-bibr">21</a>] under the hypothesis <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msubsup> <mi>G</mi> <mi>E</mi> <mi>n</mi> </msubsup> <mrow> <mo>|</mo> <mo>=</mo> <mn>0</mn> </mrow> </mrow> </semantics></math> with respect to the CM energy <math display="inline"><semantics> <mrow> <msqrt> <mi>s</mi> </msqrt> <mo>=</mo> <mi>q</mi> </mrow> </semantics></math>. The green downward triangles are experimental data. The red dashed line indicates the production threshold for the process <math display="inline"><semantics> <mrow> <msup> <mi>e</mi> <mo>+</mo> </msup> <msup> <mi>e</mi> <mo>−</mo> </msup> <mo>→</mo> <mi>n</mi> <mover accent="true"> <mi>n</mi> <mo>¯</mo> </mover> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mn>2</mn> <msub> <mi>m</mi> <mi>n</mi> </msub> </mrow> </semantics></math>. (<b>b</b>) Results for the fraction of the Born cross sections <math display="inline"><semantics> <mrow> <msubsup> <mi>σ</mi> <mi>B</mi> <mrow> <mi>p</mi> <mover accent="true"> <mi>p</mi> <mo>¯</mo> </mover> </mrow> </msubsup> <mo>/</mo> <msubsup> <mi>σ</mi> <mi>B</mi> <mrow> <mi>n</mi> <mover accent="true"> <mi>n</mi> <mo>¯</mo> </mover> </mrow> </msubsup> </mrow> </semantics></math> neglecting the Coulomb enhancement factor. Green upward triangles are data from FENICE. The fine red dashed line and the coarse grey dashed line indicate the predicions from [<a href="#B26-symmetry-14-00298" class="html-bibr">26</a>,<a href="#B27-symmetry-14-00298" class="html-bibr">27</a>], respectively. The total uncertainty of all data are determined as the quadratic sum of statistical and systematic errors, corresponding to a 68.3% confidence level of a normal distribution.</p>
Full article ">Figure 4
<p>(<b>a</b>) Deviation of the effective form factor of the proton <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msup> <mi>G</mi> <mi>p</mi> </msup> <mrow> <mo>|</mo> </mrow> </mrow> </semantics></math> from the modified dipole law <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>D</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>q</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow> </semantics></math> with respect to the relative momentum of the proton, measured by the BaBar [<a href="#B31-symmetry-14-00298" class="html-bibr">31</a>] and BESIII experiments [<a href="#B9-symmetry-14-00298" class="html-bibr">9</a>,<a href="#B10-symmetry-14-00298" class="html-bibr">10</a>]. The plot is taken from [<a href="#B33-symmetry-14-00298" class="html-bibr">33</a>]. (<b>b</b>) Deviation of the nucleon effective form factor from the dipole law <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>D</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>q</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow> </semantics></math> with respect to the center-of-mass energy <math display="inline"><semantics> <msqrt> <mi>s</mi> </msqrt> </semantics></math>. Results for the neutron measured by the BESIII experiment [<a href="#B24-symmetry-14-00298" class="html-bibr">24</a>] are shown as black circles, results for the proton from the BABAR experiment [<a href="#B31-symmetry-14-00298" class="html-bibr">31</a>] are represented by the blue downward triangles. The coarse dashed orange line and fine dashed blue line show a simultaneous fit to the data. The plot is taken from [<a href="#B24-symmetry-14-00298" class="html-bibr">24</a>]. The total uncertainty of all data in plot (<b>a</b>,<b>b</b>) is determined as the quadratic sum of statistical and systematic errors, corresponding to a 68.3% confidence level of a normal distribution.</p>
Full article ">Figure 5
<p>Global fit to the SL and TL data for the em FFs of the nucleon. (<b>a</b>) Effective FF of the neutron <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msup> <mi>G</mi> <mi>n</mi> </msup> <mrow> <mo>|</mo> </mrow> </mrow> </semantics></math>, (<b>b</b>) effective FF of the proton <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msup> <mi>G</mi> <mi>p</mi> </msup> <mrow> <mo>|</mo> </mrow> </mrow> </semantics></math>, (<b>c</b>) the SL em FFs ratio of the proton <math display="inline"><semantics> <mrow> <msub> <mi>μ</mi> <mi>p</mi> </msub> <msubsup> <mi>G</mi> <mi>E</mi> <mi>p</mi> </msubsup> <mo>/</mo> <msubsup> <mi>G</mi> <mi>M</mi> <mi>p</mi> </msubsup> </mrow> </semantics></math>, and (<b>d</b>) the TL EM FFs ratio of the proton <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msubsup> <mi>G</mi> <mi>E</mi> <mi>p</mi> </msubsup> <mrow> <mo>|</mo> <mo>/</mo> <mo>|</mo> </mrow> <msubsup> <mi>G</mi> <mi>M</mi> <mi>p</mi> </msubsup> <mrow> <mo>|</mo> </mrow> </mrow> </semantics></math> with respect to <math display="inline"><semantics> <msup> <mi>q</mi> <mn>2</mn> </msup> </semantics></math>. The filled data are used for the fit, while the open data are shown only for comparison. A full list of the references for the used experimental data, as well as the details of the fit can be found in the corresponding reference. The plots are taken from [<a href="#B35-symmetry-14-00298" class="html-bibr">35</a>].</p>
Full article ">Figure 6
<p>Fit with Breit-Wigner distribution and Gaussian distribution to the three local structures in the residule FFs of the (<b>a</b>) proton and (<b>b</b>) neutron. The fitting results include the original damping oscillation function for the residue FF lineshape. The plots are taken from [<a href="#B37-symmetry-14-00298" class="html-bibr">37</a>].</p>
Full article ">
10 pages, 345 KiB  
Article
Experimental Review of ΛΛ¯ Production
by Xiaorong Zhou, Liang Yan, Rinaldo Baldini Ferroli and Guangshun Huang
Symmetry 2022, 14(1), 144; https://doi.org/10.3390/sym14010144 - 12 Jan 2022
Cited by 7 | Viewed by 1661
Abstract
Exclusive hyperon-antihyperon production provides a unique insight for understanding of the intrinsic dynamics when strangeness is involved. In this paper, we review the results of ΛΛ¯ production via different reactions from various experiments, e.g., via p¯p annihilation from the [...] Read more.
Exclusive hyperon-antihyperon production provides a unique insight for understanding of the intrinsic dynamics when strangeness is involved. In this paper, we review the results of ΛΛ¯ production via different reactions from various experiments, e.g., via p¯p annihilation from the LEAR experiment PS185, via electron-positron annihilation using the energy scan method at the CLEO-c and BESIII experiments and the initial-state-radiation approach utilized at the BaBar experiment. The production cross section of ΛΛ¯ near the threshold is sensitive to QCD based prediction. Experimental high precision data for p¯pΛ¯Λ close to the threshold region is obtained. The cross section of e+eΛΛ¯ is measured from its production threshold to high energy. A non-zero cross section for e+eΛΛ¯ near threshold is observed at BaBar and BESIII, which is in disagreement with the pQCD prediction. However, more precise data is needed to confirm this observation. Future experiments, utilizing p¯p reaction such as PANDA experiment or electron-positron annihilation such as the BESIII and BelleII experiments, are needed to extend the experimental data and to understand the ΛΛ¯ production. Full article
(This article belongs to the Special Issue Baryon Structure: Form Factors and Polarization)
Show Figures

Figure 1

Figure 1
<p>An illustration of the selected events at <math display="inline"><semantics> <mrow> <msqrt> <mi>s</mi> </msqrt> <mo>=</mo> <mn>2.2324</mn> </mrow> </semantics></math> GeV of (<b>a</b>) <math display="inline"><semantics> <msub> <mi>V</mi> <mi>r</mi> </msub> </semantics></math> distribution of secondary particles in <math display="inline"><semantics> <mover accent="true"> <mi>p</mi> <mo stretchy="false">¯</mo> </mover> </semantics></math> annihilating with material for <math display="inline"><semantics> <mrow> <mi>p</mi> <mover accent="true"> <mi>p</mi> <mo stretchy="false">¯</mo> </mover> <msup> <mi>π</mi> <mo>+</mo> </msup> <msup> <mi>π</mi> <mo>−</mo> </msup> </mrow> </semantics></math> final states and (<b>b</b>) the mono-momentum of <math display="inline"><semantics> <msup> <mi>π</mi> <mn>0</mn> </msup> </semantics></math> for <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>n</mi> <mo stretchy="false">¯</mo> </mover> <msup> <mi>π</mi> <mn>0</mn> </msup> <mo>+</mo> <mi>X</mi> </mrow> </semantics></math> final states. The plots are taken from Ref. [<a href="#B13-symmetry-14-00144" class="html-bibr">13</a>].</p>
Full article ">Figure 2
<p>(<b>a</b>) Total cross section results for the <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>p</mi> <mo stretchy="false">¯</mo> </mover> <mi>p</mi> <mo>→</mo> <mover accent="true"> <mo>Λ</mo> <mo stretchy="false">¯</mo> </mover> <mo>Λ</mo> </mrow> </semantics></math> reaction versus excess energy near threshold. The solid circle in blue is from Ref. [<a href="#B8-symmetry-14-00144" class="html-bibr">8</a>], the open square in green is from Ref. [<a href="#B9-symmetry-14-00144" class="html-bibr">9</a>] and the open circle in violet is from Ref. [<a href="#B10-symmetry-14-00144" class="html-bibr">10</a>]. The dotted line and solid line are two fit functions introduced in Refs. [<a href="#B9-symmetry-14-00144" class="html-bibr">9</a>,<a href="#B10-symmetry-14-00144" class="html-bibr">10</a>]. (<b>b</b>) Total cross section results for <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>p</mi> <mo stretchy="false">¯</mo> </mover> <mi>p</mi> <mo>→</mo> <mover accent="true"> <mo>Λ</mo> <mo stretchy="false">¯</mo> </mover> <mo>Λ</mo> </mrow> </semantics></math> reaction versus the incident <math display="inline"><semantics> <mover accent="true"> <mi>p</mi> <mo stretchy="false">¯</mo> </mover> </semantics></math> momentum in a wider energy range from various experiments.</p>
Full article ">Figure 3
<p>(<b>a</b>) The Born cross section of <math display="inline"><semantics> <mrow> <msup> <mi>e</mi> <mo>+</mo> </msup> <msup> <mi>e</mi> <mo>−</mo> </msup> <mo>→</mo> <mo>Λ</mo> <mover accent="true"> <mo>Λ</mo> <mo stretchy="false">¯</mo> </mover> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mo>Λ</mo> <mover accent="true"> <mo>Λ</mo> <mo stretchy="false">¯</mo> </mover> </mrow> </semantics></math> masses from 2.0 to 2.5 GeV. The solid circle in blue is from DM2, the open square in green is from BaBar and the open circle in violet is from BESIII. Dashed line indicates fit results according to Equation (<a href="#FD4-symmetry-14-00144" class="html-disp-formula">4</a>). (<b>b</b>) Results of cross section for <math display="inline"><semantics> <mrow> <msup> <mi>e</mi> <mo>+</mo> </msup> <msup> <mi>e</mi> <mo>−</mo> </msup> <mo>→</mo> <mo>Λ</mo> <mover accent="true"> <mo>Λ</mo> <mo stretchy="false">¯</mo> </mover> </mrow> </semantics></math> in a wide c.m. energy region from threshold to 4.6 GeV. The dash-dotted line in blue is the fit function introduced in Ref. [<a href="#B14-symmetry-14-00144" class="html-bibr">14</a>].</p>
Full article ">
10 pages, 364 KiB  
Article
Electromagnetic Form Factors of Σ Hyperons
by Muzaffar Irshad, Dong Liu, Xiaorong Zhou and Guangshun Huang
Symmetry 2022, 14(1), 69; https://doi.org/10.3390/sym14010069 - 4 Jan 2022
Cited by 5 | Viewed by 1657
Abstract
Electromagnetic form factors (EMFFs) are fundamental observable of baryons that intimately related to their internal structure and dynamics, where the EMFFs of hyperons provide valuable insight into the behavior of the strangeness. The EMFFs of hyperons can also help to understand those of [...] Read more.
Electromagnetic form factors (EMFFs) are fundamental observable of baryons that intimately related to their internal structure and dynamics, where the EMFFs of hyperons provide valuable insight into the behavior of the strangeness. The EMFFs of hyperons can also help to understand those of nucleons as they are connected with the flavor SU(3) symmetry. The EMFFs of nucleons can be measured in both spacelike and timelike regions. However, it is difficult to probe the EMFFs of hyperons in spacelike region due to the unstable nature of hyperons. By means of electron-positron annihilation, the EMFFs of hyperons in timelike region is accessible via the production of hyperon-antihyperon pair. The timelike EMFFs of the isospin triplet Σ hyperons measured at Babar, CLEO-c and BESIII experiments are reviewed in this paper. Besides, the relevant theoretical discussion based on the experimental results are also presented. Full article
(This article belongs to the Special Issue Baryon Structure: Form Factors and Polarization)
Show Figures

Figure 1

Figure 1
<p>Comparison of effective form factor of <math display="inline"><semantics> <msup> <mo>Σ</mo> <mn>0</mn> </msup> </semantics></math> to those of other hyperons [<a href="#B13-symmetry-14-00069" class="html-bibr">13</a>].</p>
Full article ">Figure 2
<p>Comparison of baryons pair productions at <math display="inline"><semantics> <mrow> <mi>ψ</mi> <mo>(</mo> <mn>3770</mn> <mo>)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>ψ</mi> <mo>(</mo> <mn>4170</mn> <mo>)</mo> </mrow> </semantics></math>. (<b>a</b>) The cross Section ratios [<a href="#B38-symmetry-14-00069" class="html-bibr">38</a>] differ from the theoretically predicated ratios of <math display="inline"><semantics> <mrow> <mn>1</mn> <mo>/</mo> <msup> <mi>s</mi> <mn>5</mn> </msup> </mrow> </semantics></math>, 2.74, and shows clear difference for baryons containing different numbers of strange quarks. (<b>b</b>) The ratios of <math display="inline"><semantics> <msub> <mi>G</mi> <mi>M</mi> </msub> </semantics></math> [<a href="#B38-symmetry-14-00069" class="html-bibr">38</a>] also differ from the prediction of <math display="inline"><semantics> <mrow> <mn>1</mn> <mo>/</mo> <msup> <mi>s</mi> <mn>2</mn> </msup> </mrow> </semantics></math>, 1.5.</p>
Full article ">Figure 3
<p>The cross section lineshapes for <math display="inline"><semantics> <mrow> <msup> <mi>e</mi> <mo>+</mo> </msup> <msup> <mi>e</mi> <mo>−</mo> </msup> <mo>→</mo> <msup> <mo>Σ</mo> <mo>+</mo> </msup> <msup> <mover accent="true"> <mo>Σ</mo> <mo>¯</mo> </mover> <mo>−</mo> </msup> </mrow> </semantics></math> reactions (circles) and <math display="inline"><semantics> <mrow> <msup> <mi>e</mi> <mo>+</mo> </msup> <msup> <mi>e</mi> <mo>−</mo> </msup> <mo>→</mo> <msup> <mo>Σ</mo> <mo>−</mo> </msup> <msup> <mover accent="true"> <mo>Σ</mo> <mo>¯</mo> </mover> <mo>+</mo> </msup> </mrow> </semantics></math> (squares) [<a href="#B42-symmetry-14-00069" class="html-bibr">42</a>]. The solid and dashed smooth lines are the pQCD fit for <math display="inline"><semantics> <mrow> <msup> <mi>e</mi> <mo>+</mo> </msup> <msup> <mi>e</mi> <mo>−</mo> </msup> <mo>→</mo> <msup> <mo>Σ</mo> <mo>+</mo> </msup> <msup> <mover accent="true"> <mo>Σ</mo> <mo>¯</mo> </mover> <mo>−</mo> </msup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msup> <mi>e</mi> <mo>+</mo> </msup> <msup> <mi>e</mi> <mo>−</mo> </msup> <mo>→</mo> <msup> <mo>Σ</mo> <mo>−</mo> </msup> <msup> <mover accent="true"> <mo>Σ</mo> <mo>¯</mo> </mover> <mo>+</mo> </msup> </mrow> </semantics></math>, respectively. The vertical lines denoted their production thresholds.</p>
Full article ">Figure 4
<p>The polar angular distributions at c.m. energy <math display="inline"><semantics> <mrow> <mn>2.3960</mn> </mrow> </semantics></math> GeV for (<b>a</b>) category A (<b>b</b>) category B for <math display="inline"><semantics> <mrow> <msup> <mi>e</mi> <mo>+</mo> </msup> <msup> <mi>e</mi> <mo>−</mo> </msup> <mo>→</mo> <msup> <mo>Σ</mo> <mo>+</mo> </msup> <msup> <mover accent="true"> <mo>Σ</mo> <mo>¯</mo> </mover> <mo>−</mo> </msup> </mrow> </semantics></math> reaction. The dots with error bars are from data, solid curves are the fit results, and the contributions from <math display="inline"><semantics> <msub> <mi>G</mi> <mi>E</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>G</mi> <mi>M</mi> </msub> </semantics></math> are represented by dashed and dotted curves [<a href="#B42-symmetry-14-00069" class="html-bibr">42</a>].</p>
Full article ">Figure 5
<p>(<b>a</b>) Comparison plot of the cross sections for <math display="inline"><semantics> <mrow> <msup> <mi>e</mi> <mo>+</mo> </msup> <msup> <mi>e</mi> <mo>−</mo> </msup> <mo>→</mo> <msup> <mo>Σ</mo> <mn>0</mn> </msup> <msup> <mover accent="true"> <mo>Σ</mo> <mo>¯</mo> </mover> <mn>0</mn> </msup> </mrow> </semantics></math> reaction. The triangles in green are results from BaBar [<a href="#B13-symmetry-14-00069" class="html-bibr">13</a>]. The solid line in red shows the pQCD fit. (<b>b</b>) Comparison plot of the EFFs of hyperons from BESIII results [<a href="#B42-symmetry-14-00069" class="html-bibr">42</a>,<a href="#B46-symmetry-14-00069" class="html-bibr">46</a>,<a href="#B47-symmetry-14-00069" class="html-bibr">47</a>].</p>
Full article ">
14 pages, 1993 KiB  
Article
Electromagnetic Form Factor of Doubly-Strange Hyperon
by Xiongfei Wang and Guangshun Huang
Symmetry 2022, 14(1), 65; https://doi.org/10.3390/sym14010065 - 3 Jan 2022
Cited by 11 | Viewed by 1880
Abstract
The standard model of particle physics is a well-tested theoretical framework, but there are still some issues that deserve experimental and theoretical investigation. The Ξ resonances with strangeness S=2, the so-called doubly-strange hyperon, can provide important information to further [...] Read more.
The standard model of particle physics is a well-tested theoretical framework, but there are still some issues that deserve experimental and theoretical investigation. The Ξ resonances with strangeness S=2, the so-called doubly-strange hyperon, can provide important information to further test the standard model by studying their electromagnetic form factors, such as probing the limitation of the quark models and spotting unrevealed aspects of the QCD description of the structure of hadron resonances. In this work, we review some recent studies of the electromagnetic form factors on doubly-strange hyperons in pair production from positron–electron annihilation experiment. Full article
(This article belongs to the Special Issue Baryon Structure: Form Factors and Polarization)
Show Figures

Figure 1

Figure 1
<p>Lowest-order Feynman diagram for the <math display="inline"><semantics> <mrow> <msup> <mi>e</mi> <mo>+</mo> </msup> <msup> <mi>e</mi> <mo>−</mo> </msup> <mo>→</mo> <mi>H</mi> <mover accent="true"> <mi>H</mi> <mo stretchy="false">¯</mo> </mover> </mrow> </semantics></math> process.</p>
Full article ">Figure 2
<p>Baryon octet [<a href="#B4-symmetry-14-00065" class="html-bibr">4</a>,<a href="#B17-symmetry-14-00065" class="html-bibr">17</a>].</p>
Full article ">Figure 3
<p>Distribution of <math display="inline"><semantics> <msub> <mi>M</mi> <mrow> <mi>π</mi> <mi mathvariant="normal">Λ</mi> </mrow> </msub> </semantics></math> versus <math display="inline"><semantics> <msubsup> <mi>M</mi> <mrow> <mi>π</mi> <mi mathvariant="normal">Λ</mi> </mrow> <mi>recoil</mi> </msubsup> </semantics></math> for all energy points from data [<a href="#B33-symmetry-14-00065" class="html-bibr">33</a>,<a href="#B34-symmetry-14-00065" class="html-bibr">34</a>]. The dashed lines denote the <math display="inline"><semantics> <mi mathvariant="normal">Ξ</mi> </semantics></math> signal region.</p>
Full article ">Figure 4
<p>Comparisons of Born cross sections (<b>top</b>) and EFFs (<b>bottom</b>) between the <math display="inline"><semantics> <mrow> <msup> <mi>e</mi> <mo>+</mo> </msup> <msup> <mi>e</mi> <mo>−</mo> </msup> <mo>→</mo> <msup> <mi mathvariant="normal">Ξ</mi> <mo>−</mo> </msup> <msup> <mover accent="true"> <mi mathvariant="normal">Ξ</mi> <mo stretchy="false">¯</mo> </mover> <mo>+</mo> </msup> </mrow> </semantics></math> mode and the <math display="inline"><semantics> <mrow> <msup> <mi>e</mi> <mo>+</mo> </msup> <msup> <mi>e</mi> <mo>−</mo> </msup> <mo>→</mo> <msup> <mi mathvariant="normal">Ξ</mi> <mn>0</mn> </msup> <msup> <mover accent="true"> <mi mathvariant="normal">Ξ</mi> <mo stretchy="false">¯</mo> </mover> <mn>0</mn> </msup> </mrow> </semantics></math> mode from 2.6 to 3.1 GeV, where the uncertainties include both statistical and systematical contributions.</p>
Full article ">Figure 5
<p>Fit to the Born cross sections of <math display="inline"><semantics> <mrow> <msup> <mi>e</mi> <mo>+</mo> </msup> <msup> <mi>e</mi> <mo>−</mo> </msup> <mo>→</mo> <msup> <mi mathvariant="normal">Ξ</mi> <mo>−</mo> </msup> <msup> <mover accent="true"> <mi mathvariant="normal">Ξ</mi> <mo stretchy="false">¯</mo> </mover> <mo>+</mo> </msup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msup> <mi mathvariant="normal">Ξ</mi> <mn>0</mn> </msup> <msup> <mover accent="true"> <mi mathvariant="normal">Ξ</mi> <mo stretchy="false">¯</mo> </mover> <mn>0</mn> </msup> </mrow> </semantics></math> with different assumptions [<a href="#B33-symmetry-14-00065" class="html-bibr">33</a>,<a href="#B34-symmetry-14-00065" class="html-bibr">34</a>]. In (<b>a</b>) the dots with the error bars are the measured Born cross sections at c.m. energies between 2.644 and 3.080 GeV, the blue dash-dotted line denotes the fit results using the pQCD function, the red solid line denotes the fit results using pQCD plus the BW function and the green dashed line denotes the fit results using the third model function. In (<b>b</b>,<b>c</b>) the blue solid line is the fit result using the pQCD function (<b>b</b>) and pQCD plus the BW function (<b>c</b>), and the bottom panel of each plot gives the pull distribution of the fit. The vertical dashed line denotes the production threshold for the <math display="inline"><semantics> <mi mathvariant="normal">Ξ</mi> </semantics></math> hyperon pair.</p>
Full article ">Figure 6
<p>Ratios of Born cross sections (<b>top</b>) and EFFs (<b>bottom</b>) between the <math display="inline"><semantics> <mrow> <msup> <mi>e</mi> <mo>+</mo> </msup> <msup> <mi>e</mi> <mo>−</mo> </msup> <mo>→</mo> <msup> <mi mathvariant="normal">Ξ</mi> <mo>−</mo> </msup> <msup> <mover accent="true"> <mi mathvariant="normal">Ξ</mi> <mo stretchy="false">¯</mo> </mover> <mo>+</mo> </msup> </mrow> </semantics></math> mode and the <math display="inline"><semantics> <mrow> <msup> <mi>e</mi> <mo>+</mo> </msup> <msup> <mi>e</mi> <mo>−</mo> </msup> <mo>→</mo> <msup> <mi mathvariant="normal">Ξ</mi> <mn>0</mn> </msup> <msup> <mover accent="true"> <mi mathvariant="normal">Ξ</mi> <mo stretchy="false">¯</mo> </mover> <mn>0</mn> </msup> </mrow> </semantics></math> mode from 2.6 to 3.1 GeV [<a href="#B33-symmetry-14-00065" class="html-bibr">33</a>,<a href="#B34-symmetry-14-00065" class="html-bibr">34</a>], where the uncertainties include both statistical and systematical contributions.</p>
Full article ">Figure 7
<p>Comparisons of Born cross sections (<b>left</b>) and EFFs (<b>right</b>) between the experimental results of the BESIII collaboration and the theoretical study for the <math display="inline"><semantics> <mrow> <msup> <mi>e</mi> <mo>+</mo> </msup> <msup> <mi>e</mi> <mo>−</mo> </msup> <mo>→</mo> <mi mathvariant="normal">Ξ</mi> <mover accent="true"> <mi mathvariant="normal">Ξ</mi> <mo stretchy="false">¯</mo> </mover> </mrow> </semantics></math> process near the threshold [<a href="#B41-symmetry-14-00065" class="html-bibr">41</a>].</p>
Full article ">Figure 8
<p>Theoretical predictions for the EMFFs ratio and <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi>G</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>G</mi> <mi>M</mi> </msub> <mrow> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>|</mo> </mrow> </mrow> </semantics></math> and the relative phase <math display="inline"><semantics> <mrow> <mi mathvariant="normal">Φ</mi> <mo>=</mo> </mrow> </semantics></math> arg<math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>G</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>G</mi> <mi>M</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </semantics></math> for the <math display="inline"><semantics> <mrow> <msup> <mi>e</mi> <mo>+</mo> </msup> <msup> <mi>e</mi> <mo>−</mo> </msup> <mo>→</mo> <mi mathvariant="normal">Ξ</mi> <mover accent="true"> <mi mathvariant="normal">Ξ</mi> <mo stretchy="false">¯</mo> </mover> </mrow> </semantics></math> process near the threshold [<a href="#B41-symmetry-14-00065" class="html-bibr">41</a>].</p>
Full article ">Figure 9
<p>Charmonium(-like) family.</p>
Full article ">Figure 10
<p>Comparisons of Born cross sections (<b>top</b>) and EFFs (<b>bottom</b>) between the CLEO-c experiment for the <math display="inline"><semantics> <mrow> <msup> <mi>e</mi> <mo>+</mo> </msup> <msup> <mi>e</mi> <mo>−</mo> </msup> <mo>→</mo> <msup> <mi mathvariant="normal">Ξ</mi> <mo>−</mo> </msup> <msup> <mover accent="true"> <mi mathvariant="normal">Ξ</mi> <mo stretchy="false">¯</mo> </mover> <mo>+</mo> </msup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msup> <mi mathvariant="normal">Ξ</mi> <mn>0</mn> </msup> <msup> <mover accent="true"> <mi mathvariant="normal">Ξ</mi> <mo stretchy="false">¯</mo> </mover> <mn>0</mn> </msup> </mrow> </semantics></math> processes [<a href="#B65-symmetry-14-00065" class="html-bibr">65</a>,<a href="#B66-symmetry-14-00065" class="html-bibr">66</a>] and the BESIII experiment for the <math display="inline"><semantics> <mrow> <msup> <mi>e</mi> <mo>+</mo> </msup> <msup> <mi>e</mi> <mo>−</mo> </msup> <mo>→</mo> <msup> <mi mathvariant="normal">Ξ</mi> <mo>−</mo> </msup> <msup> <mover accent="true"> <mi mathvariant="normal">Ξ</mi> <mo stretchy="false">¯</mo> </mover> <mo>+</mo> </msup> </mrow> </semantics></math> process from 3.7 to 4.6 GeV [<a href="#B32-symmetry-14-00065" class="html-bibr">32</a>], where the uncertainties include both statistical and systematical contributions.</p>
Full article ">Figure 11
<p>Illustration of <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msup> <mi>Q</mi> <mn>2</mn> </msup> <mrow> <mo>|</mo> </mrow> </mrow> </semantics></math> dependence on form factors for <math display="inline"><semantics> <mrow> <msup> <mi>e</mi> <mo>+</mo> </msup> <msup> <mi>e</mi> <mo>−</mo> </msup> <mo>→</mo> <msup> <mi mathvariant="normal">Ξ</mi> <mo>−</mo> </msup> <msup> <mover accent="true"> <mi mathvariant="normal">Ξ</mi> <mo stretchy="false">¯</mo> </mover> <mo>+</mo> </msup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msup> <mi mathvariant="normal">Ξ</mi> <mn>0</mn> </msup> <msup> <mover accent="true"> <mi mathvariant="normal">Ξ</mi> <mo stretchy="false">¯</mo> </mover> <mn>0</mn> </msup> </mrow> </semantics></math> at c.m. energies of 3.77 and 4.17 GeV [<a href="#B65-symmetry-14-00065" class="html-bibr">65</a>,<a href="#B66-symmetry-14-00065" class="html-bibr">66</a>].</p>
Full article ">Figure 12
<p>Distribution of <math display="inline"><semantics> <msub> <mi>M</mi> <mrow> <mi>π</mi> <mi mathvariant="normal">Λ</mi> </mrow> </msub> </semantics></math> versus <math display="inline"><semantics> <msubsup> <mi>M</mi> <mrow> <mi>π</mi> <mi mathvariant="normal">Λ</mi> </mrow> <mi>recoil</mi> </msubsup> </semantics></math> for all energy points from data from 4.009 to 4.600 GeV [<a href="#B32-symmetry-14-00065" class="html-bibr">32</a>]. The dashed lines denote the <math display="inline"><semantics> <mi mathvariant="normal">Ξ</mi> </semantics></math> signal region.</p>
Full article ">Figure 13
<p>Fit to the dressed cross sections [<a href="#B32-symmetry-14-00065" class="html-bibr">32</a>] at c.m. energies from 4.009 to 4.600 GeV with the assumptions of a PL function plus a <math display="inline"><semantics> <mrow> <mi>Y</mi> <mo>(</mo> <mn>4230</mn> <mo>/</mo> <mn>4260</mn> <mo>)</mo> </mrow> </semantics></math> resonance function (<b>a</b>,<b>b</b>) and without a resonance assumption (<b>c</b>), where the dots with error bars are the dressed cross sections and the solid lines show the fit results.</p>
Full article ">
9 pages, 425 KiB  
Article
Production Mechanism of the Charmed Baryon Λc+
by Weiping Wang, Xiaorong Zhou, Rinaldo Baldini Ferroli and Guangshun Huang
Symmetry 2022, 14(1), 5; https://doi.org/10.3390/sym14010005 - 21 Dec 2021
Cited by 3 | Viewed by 2646
Abstract
As the lightest charmed baryon, precision measurement of the pair production cross section of Λc+ provides unprecedented experimental information for the investigation of baryon production mechanism. In addition, the extraction of the polar angle distributions of the outgoing Λc+ [...] Read more.
As the lightest charmed baryon, precision measurement of the pair production cross section of Λc+ provides unprecedented experimental information for the investigation of baryon production mechanism. In addition, the extraction of the polar angle distributions of the outgoing Λc+ in the annihilation of the electron–positron help to determine its electromagnetic form factors, which is currently the unique key to access the internal structure of the baryons. In this article, the measurement of e+eΛc+Λ¯c process via the initial state radiation technique at Belle detector and direct electron–positron annihilation at BESIII with discrete center-of-mass energies near threshold are briefly reviewed. In addition, the electromagnetic form factor ratios of Λc+ measured by BESIII are also investigated. A few theoretical models that parameterize the center-of-mass energy dependence of the cross section and electromagnetic form factors of baryon are introduced and the contributions of Λc+ data to them are discussed. Full article
(This article belongs to the Special Issue Baryon Structure: Form Factors and Polarization)
Show Figures

Figure 1

Figure 1
<p>Feynman diagram of the process <math display="inline"><semantics> <mrow> <msup> <mi>e</mi> <mo>+</mo> </msup> <msup> <mi>e</mi> <mo>−</mo> </msup> <mo>→</mo> <msub> <mi>γ</mi> <mrow> <mi>I</mi> <mi>S</mi> <mi>R</mi> </mrow> </msub> <msubsup> <mo>Λ</mo> <mrow> <mi>c</mi> </mrow> <mo>+</mo> </msubsup> <msubsup> <mover accent="true"> <mo>Λ</mo> <mo stretchy="false">¯</mo> </mover> <mrow> <mi>c</mi> </mrow> <mo>−</mo> </msubsup> </mrow> </semantics></math>, where <math display="inline"><semantics> <msub> <mi>γ</mi> <mi>ISR</mi> </msub> </semantics></math> is the ISR photon radiated by the initial beam while <math display="inline"><semantics> <msup> <mi>γ</mi> <mo>*</mo> </msup> </semantics></math> denotes the virtual photon produced by electron–positron annihilation.</p>
Full article ">Figure 2
<p>Pair production and decay of <math display="inline"><semantics> <msub> <mo>Λ</mo> <mi>c</mi> </msub> </semantics></math> in the annihilation of the electron–positron, where <math display="inline"><semantics> <msubsup> <mo>Λ</mo> <mrow> <mi>c</mi> </mrow> <mo>+</mo> </msubsup> </semantics></math> decays to the final state <math display="inline"><semantics> <mrow> <mo>Λ</mo> <msup> <mi>π</mi> <mo>+</mo> </msup> </mrow> </semantics></math> while <math display="inline"><semantics> <msubsup> <mover accent="true"> <mo>Λ</mo> <mo stretchy="false">¯</mo> </mover> <mrow> <mi>c</mi> </mrow> <mo>−</mo> </msubsup> </semantics></math> to <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>p</mi> <mo stretchy="false">¯</mo> </mover> <msup> <mi>K</mi> <mo>+</mo> </msup> <msup> <mi>π</mi> <mo>−</mo> </msup> </mrow> </semantics></math>. The polar angle of outgoing <math display="inline"><semantics> <msubsup> <mo>Λ</mo> <mrow> <mi>c</mi> </mrow> <mo>+</mo> </msubsup> </semantics></math> is denoted by <math display="inline"><semantics> <mi>θ</mi> </semantics></math> and the angle between the production and decay planes is illustrated by <math display="inline"><semantics> <msub> <mi>ϕ</mi> <mn>1</mn> </msub> </semantics></math>.</p>
Full article ">Figure 3
<p>Cross section of <math display="inline"><semantics> <mrow> <msup> <mi>e</mi> <mo>+</mo> </msup> <msup> <mi>e</mi> <mo>−</mo> </msup> <mo>→</mo> <msubsup> <mo>Λ</mo> <mrow> <mi>c</mi> </mrow> <mo>+</mo> </msubsup> <msubsup> <mover accent="true"> <mo>Λ</mo> <mo stretchy="false">¯</mo> </mover> <mrow> <mi>c</mi> </mrow> <mo>−</mo> </msubsup> </mrow> </semantics></math> measured by BESIII and Belle collaborations [<a href="#B13-symmetry-14-00005" class="html-bibr">13</a>]. The blue solid curve is a phenomenological fit of the BESIII data while the dash-dot cyan curve denotes the prediction of the trivial phase space model, which is parameterized by Equation (<a href="#FD2-symmetry-14-00005" class="html-disp-formula">2</a>) but with the unity Coulomb factor and constant <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi>G</mi> <mi>M</mi> </msub> <mrow> <mo>|</mo> </mrow> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>Polar angle distributions and results of the fit to data at <math display="inline"><semantics> <msqrt> <mi>s</mi> </msqrt> </semantics></math> = <math display="inline"><semantics> <mrow> <mn>4574.5</mn> </mrow> </semantics></math> MeV (<b>left</b>) and <math display="inline"><semantics> <mrow> <mn>4599.5</mn> </mrow> </semantics></math> MeV (<b>right</b>), where the fit function <math display="inline"><semantics> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>α</mi> <msub> <mo>Λ</mo> <mi>c</mi> </msub> </msub> <msup> <mo form="prefix">cos</mo> <mn>2</mn> </msup> <mi>θ</mi> </mrow> </semantics></math> is shown in red curves [<a href="#B13-symmetry-14-00005" class="html-bibr">13</a>].</p>
Full article ">Figure 5
<p>Different energy dependent trends of the resulting <math display="inline"><semantics> <mrow> <msup> <mi>e</mi> <mo>+</mo> </msup> <msup> <mi>e</mi> <mo>−</mo> </msup> <mo>→</mo> <msubsup> <mo>Λ</mo> <mrow> <mi>c</mi> </mrow> <mo>+</mo> </msubsup> <msubsup> <mover accent="true"> <mo>Λ</mo> <mo stretchy="false">¯</mo> </mover> <mrow> <mi>c</mi> </mrow> <mo>−</mo> </msubsup> </mrow> </semantics></math> cross sections between BESIII and Belle.</p>
Full article ">
8 pages, 353 KiB  
Article
Dynamical Properties of Baryons
by Egle Tomasi-Gustafsson, Andrea Bianconi and Simone Pacetti
Symmetry 2021, 13(8), 1480; https://doi.org/10.3390/sym13081480 - 12 Aug 2021
Cited by 2 | Viewed by 1581
Abstract
The internal structure of composite particles is conveniently described in terms of form factors (FFs)—these are experimentally accessible in annihilation and scattering of elementary reactions, and are theoretically calculable by all models that describe the properties of particles. FFs depend only on one [...] Read more.
The internal structure of composite particles is conveniently described in terms of form factors (FFs)—these are experimentally accessible in annihilation and scattering of elementary reactions, and are theoretically calculable by all models that describe the properties of particles. FFs depend only on one kinematical variable, q2. This is the four-momentum transferred by the virtual photon that carries the interaction. Important developments in accelerator and detector techniques have brought impressive advances, both by extending the kinematical region and by reaching a higher precision. A critical review on the underlying methods and findings in polarized and unpolarized experiments is presented. The unique role played by polarization in determining the ratio of electric to magnetic form factors in the space-like region, and the extraction of individual form factors in the whole kinematical region, are described. Recent results at electron accelerators and electron–positron colliders confirm the existence of periodical structure in the annihilation cross section. We suggest a global framework which describes the dynamical structure of charge distribution in baryons, in order to build a coherent view of the creation and annihilation of baryonic matter. Full article
(This article belongs to the Special Issue Baryon Structure: Form Factors and Polarization)
Show Figures

Figure 1

Figure 1
<p>Projections of experimental uncertainties for future JLab experiment E12-07-109 [<a href="#B8-symmetry-13-01480" class="html-bibr">8</a>] (filled orange circles). Previous JLab <math display="inline"><semantics> <mrow> <msubsup> <mi>G</mi> <mi>E</mi> <mi>p</mi> </msubsup> <mo>/</mo> <msubsup> <mi>G</mi> <mi>M</mi> <mi>p</mi> </msubsup> </mrow> </semantics></math> are also shown for comparison [<a href="#B3-symmetry-13-01480" class="html-bibr">3</a>] and references therein. The dotted line is a polynomial fit.</p>
Full article ">Figure 2
<p>Generalized FF as a function of the four-momentum <math display="inline"><semantics> <msup> <mi>q</mi> <mn>2</mn> </msup> </semantics></math>. The data are from CMD-3 [<a href="#B23-symmetry-13-01480" class="html-bibr">23</a>] (red stars), BaBar [<a href="#B16-symmetry-13-01480" class="html-bibr">16</a>,<a href="#B21-symmetry-13-01480" class="html-bibr">21</a>] (black circles), BESIII [<a href="#B19-symmetry-13-01480" class="html-bibr">19</a>] (blue squares), and [<a href="#B18-symmetry-13-01480" class="html-bibr">18</a>] (green triangles). They are shown together with the six-parameter fit from [<a href="#B22-symmetry-13-01480" class="html-bibr">22</a>] compared to the fit from [<a href="#B20-symmetry-13-01480" class="html-bibr">20</a>] (red dashed line). The blue dash-dotted line corresponds to a constant cross section <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>0.87</mn> </mrow> </semantics></math> nb.</p>
Full article ">Figure 3
<p>Ratio <math display="inline"><semantics> <mrow> <mrow> <mi>R</mi> <mo>=</mo> <mo>|</mo> </mrow> <msub> <mi>G</mi> <mi>E</mi> </msub> <mrow> <mo>|</mo> <mo>/</mo> <mo>|</mo> </mrow> <msub> <mi>G</mi> <mi>M</mi> </msub> <mrow> <mo>|</mo> </mrow> </mrow> </semantics></math> as a function of <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msup> <mi>q</mi> <mn>2</mn> </msup> <mrow> <mo>|</mo> </mrow> </mrow> </semantics></math>. Symbols as in <a href="#symmetry-13-01480-f002" class="html-fig">Figure 2</a>. The fit from Equation (<a href="#FD7-symmetry-13-01480" class="html-disp-formula">7</a>) (solid black line) is decomposed into the monopole component (green dashed line) and the oscillatory component (black dotted line—shifted up by 0.5). The SL ratio from the JLab–GEp Collaboration [<a href="#B3-symmetry-13-01480" class="html-bibr">3</a>] is also shown (red squares), fitted by a constrained monopole fit (red long-dashed line).</p>
Full article ">Figure 4
<p><math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi>G</mi> <mi>E</mi> </msub> <mrow> <mo>|</mo> </mrow> </mrow> </semantics></math> (red circles) and <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi>G</mi> <mi>M</mi> </msub> <mrow> <mo>|</mo> </mrow> </mrow> </semantics></math> (blue squares) from BESIII. The dashed red (dash-dotted blue) line is the calculation of <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi>G</mi> <mi>E</mi> </msub> <mrow> <mo>|</mo> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi>G</mi> <mi>M</mi> </msub> <mrow> <mo>|</mo> </mrow> </mrow> </semantics></math> from the fits of the effective FF <math display="inline"><semantics> <msub> <mi>F</mi> <mi>p</mi> </msub> </semantics></math> and the ratio <span class="html-italic">R</span>.</p>
Full article ">

Review

Jump to: Research

20 pages, 11201 KiB  
Review
Proton Electromagnetic Form Factors in the Time-like Region through the Scan Technique
by Lei Xia, Christoph Rosner, Yadi Wang, Xiaorong Zhou, Frank E. Maas, Rinaldo Baldini Ferroli, Haiming Hu and Guangshun Huang
Symmetry 2022, 14(2), 231; https://doi.org/10.3390/sym14020231 - 25 Jan 2022
Cited by 15 | Viewed by 2911
Abstract
For over 100 y, scientists have investigated the properties of the proton, which is one of the most abundant components of visible matter in the universe. Nevertheless, researchers do not fully understand many details about its internal structure and dynamics. Time-like electromagnetic form [...] Read more.
For over 100 y, scientists have investigated the properties of the proton, which is one of the most abundant components of visible matter in the universe. Nevertheless, researchers do not fully understand many details about its internal structure and dynamics. Time-like electromagnetic form factors are some of the observable quantities that can help us achieve a deeper understanding. In this review article, we present an overview of the current experimental status in this field, consisting of measurements of the time-like reactions e+epp¯ and pp¯e+e and future measurements of pp¯μ+μ. The focus is put on recent high-precision results of the reaction e+epp¯ that have been obtained after analyzing 688.5 pb1 of data taken at the BESIII experiment. They are compared to and put into perspective with results from previous measurements in this channel. We discuss the channels pp¯e+e and pp¯μ+μ in terms of the few existing, as well as future measurements, which the PANDA experiment will perform. Finally, we review several new theoretical models and phenomenological approaches inspired by the BESIII high-precision results and then discuss their implications for a deeper understanding of the proton’s structure and inner dynamics. Full article
(This article belongs to the Special Issue Baryon Structure: Form Factors and Polarization)
Show Figures

Figure 1

Figure 1
<p>Lowest-order Feynman diagrams for elastic electron–proton scattering <math display="inline"><semantics> <mrow> <msup> <mi>e</mi> <mo>−</mo> </msup> <mi>p</mi> <mo>→</mo> <msup> <mi>e</mi> <mo>−</mo> </msup> <mi>p</mi> </mrow> </semantics></math> (<b>a</b>) and for the annihilation process <math display="inline"><semantics> <mrow> <msup> <mi>e</mi> <mo>+</mo> </msup> <msup> <mi>e</mi> <mo>−</mo> </msup> <mo>→</mo> <mi>p</mi> <mover accent="true"> <mi>p</mi> <mo>¯</mo> </mover> </mrow> </semantics></math> (<b>b</b>).</p>
Full article ">Figure 2
<p>Feynman diagrams for the ISR (<b>a</b>) and Born (<b>b</b>) process of <math display="inline"><semantics> <mrow> <msup> <mi>e</mi> <mo>+</mo> </msup> <msup> <mi>e</mi> <mo>−</mo> </msup> <mo>→</mo> <mi>p</mi> <mover accent="true"> <mi>p</mi> <mo>¯</mo> </mover> </mrow> </semantics></math>, as well as the time-reverse process <math display="inline"><semantics> <mrow> <mi>p</mi> <mover accent="true"> <mi>p</mi> <mo>¯</mo> </mover> <mo>→</mo> <msup> <mi>e</mi> <mo>+</mo> </msup> <msup> <mi>e</mi> <mo>−</mo> </msup> </mrow> </semantics></math> (<b>c</b>).</p>
Full article ">Figure 3
<p>Comparison of the results for the <math display="inline"><semantics> <mrow> <msup> <mi>e</mi> <mo>+</mo> </msup> <msup> <mi>e</mi> <mo>−</mo> </msup> <mo>↔</mo> <mi>p</mi> <mover accent="true"> <mi>p</mi> <mo>¯</mo> </mover> </mrow> </semantics></math> cross-section using the energy scan strategy in (<b>a</b>) <math display="inline"><semantics> <mrow> <mn>2</mn> <msub> <mi>m</mi> <mi>p</mi> </msub> <mo>&lt;</mo> <msqrt> <mi>s</mi> </msqrt> <mo>&lt;</mo> <mn>2.35</mn> </mrow> </semantics></math> GeV and (<b>b</b>) <math display="inline"><semantics> <mrow> <mn>2.35</mn> <mo>&lt;</mo> <msqrt> <mi>s</mi> </msqrt> <mo>&lt;</mo> <mn>4.00</mn> </mrow> </semantics></math> GeV. Shown are the published measurements from BESIII [<a href="#B36-symmetry-14-00231" class="html-bibr">36</a>,<a href="#B37-symmetry-14-00231" class="html-bibr">37</a>], CMD3 [<a href="#B34-symmetry-14-00231" class="html-bibr">34</a>,<a href="#B35-symmetry-14-00231" class="html-bibr">35</a>], CLEO [<a href="#B33-symmetry-14-00231" class="html-bibr">33</a>], BES [<a href="#B32-symmetry-14-00231" class="html-bibr">32</a>], FENICE [<a href="#B20-symmetry-14-00231" class="html-bibr">20</a>,<a href="#B21-symmetry-14-00231" class="html-bibr">21</a>,<a href="#B22-symmetry-14-00231" class="html-bibr">22</a>], E835 [<a href="#B30-symmetry-14-00231" class="html-bibr">30</a>,<a href="#B31-symmetry-14-00231" class="html-bibr">31</a>], E760 [<a href="#B29-symmetry-14-00231" class="html-bibr">29</a>], DM2 [<a href="#B24-symmetry-14-00231" class="html-bibr">24</a>,<a href="#B25-symmetry-14-00231" class="html-bibr">25</a>], DM1 [<a href="#B23-symmetry-14-00231" class="html-bibr">23</a>], and ADONE [<a href="#B18-symmetry-14-00231" class="html-bibr">18</a>].</p>
Full article ">Figure 4
<p>Comparison of the results for <math display="inline"><semantics> <mrow> <mrow> <mo stretchy="false">|</mo> </mrow> <msub> <mi>G</mi> <mi>eff</mi> </msub> <mrow> <mo stretchy="false">|</mo> </mrow> </mrow> </semantics></math> using the energy scan strategy in (<b>a</b>) <math display="inline"><semantics> <mrow> <mn>2</mn> <msub> <mi>m</mi> <mi>p</mi> </msub> <mo>&lt;</mo> <msqrt> <mi>s</mi> </msqrt> <mo>&lt;</mo> <mn>2.35</mn> </mrow> </semantics></math> GeV and (<b>b</b>) <math display="inline"><semantics> <mrow> <mn>2.35</mn> <mo>&lt;</mo> <msqrt> <mi>s</mi> </msqrt> <mo>&lt;</mo> <mn>4.00</mn> </mrow> </semantics></math> GeV. Shown are all the published measurements from BESIII [<a href="#B36-symmetry-14-00231" class="html-bibr">36</a>,<a href="#B37-symmetry-14-00231" class="html-bibr">37</a>], CMD3 [<a href="#B34-symmetry-14-00231" class="html-bibr">34</a>,<a href="#B35-symmetry-14-00231" class="html-bibr">35</a>], CLEO [<a href="#B33-symmetry-14-00231" class="html-bibr">33</a>], BES [<a href="#B32-symmetry-14-00231" class="html-bibr">32</a>], FENICE [<a href="#B20-symmetry-14-00231" class="html-bibr">20</a>,<a href="#B21-symmetry-14-00231" class="html-bibr">21</a>,<a href="#B22-symmetry-14-00231" class="html-bibr">22</a>], E835 [<a href="#B30-symmetry-14-00231" class="html-bibr">30</a>,<a href="#B31-symmetry-14-00231" class="html-bibr">31</a>], E760 [<a href="#B29-symmetry-14-00231" class="html-bibr">29</a>], PS170 [<a href="#B26-symmetry-14-00231" class="html-bibr">26</a>,<a href="#B27-symmetry-14-00231" class="html-bibr">27</a>,<a href="#B28-symmetry-14-00231" class="html-bibr">28</a>], DM2 [<a href="#B24-symmetry-14-00231" class="html-bibr">24</a>,<a href="#B25-symmetry-14-00231" class="html-bibr">25</a>], DM1 [<a href="#B23-symmetry-14-00231" class="html-bibr">23</a>], M.S.T [<a href="#B19-symmetry-14-00231" class="html-bibr">19</a>], and ADONE [<a href="#B18-symmetry-14-00231" class="html-bibr">18</a>].</p>
Full article ">Figure 5
<p>Fit to the <math display="inline"><semantics> <mrow> <mo stretchy="false">|</mo> <mo form="prefix">cos</mo> <mi>θ</mi> <mo stretchy="false">|</mo> </mrow> </semantics></math> distributions at (<b>a</b>) 2.125 GeV and (<b>b</b>) 2.396 GeV at BESIII [<a href="#B37-symmetry-14-00231" class="html-bibr">37</a>], after the application of angular-dependent <math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>δ</mi> <mo>)</mo> </mrow> </semantics></math> factors.</p>
Full article ">Figure 6
<p>Comparison of the results for <math display="inline"><semantics> <mrow> <mrow> <mo stretchy="false">|</mo> </mrow> <msub> <mi>G</mi> <mi>E</mi> </msub> <mo>/</mo> <msub> <mi>G</mi> <mi>M</mi> </msub> <mrow> <mo stretchy="false">|</mo> </mrow> </mrow> </semantics></math> using the energy scan strategy. Shown are all the published measurements from BESIII [<a href="#B36-symmetry-14-00231" class="html-bibr">36</a>,<a href="#B37-symmetry-14-00231" class="html-bibr">37</a>], CMD3 [<a href="#B34-symmetry-14-00231" class="html-bibr">34</a>,<a href="#B35-symmetry-14-00231" class="html-bibr">35</a>], PS170 [<a href="#B26-symmetry-14-00231" class="html-bibr">26</a>,<a href="#B27-symmetry-14-00231" class="html-bibr">27</a>,<a href="#B28-symmetry-14-00231" class="html-bibr">28</a>], FENICE+DM2 [<a href="#B20-symmetry-14-00231" class="html-bibr">20</a>,<a href="#B21-symmetry-14-00231" class="html-bibr">21</a>,<a href="#B22-symmetry-14-00231" class="html-bibr">22</a>,<a href="#B24-symmetry-14-00231" class="html-bibr">24</a>,<a href="#B25-symmetry-14-00231" class="html-bibr">25</a>,<a href="#B41-symmetry-14-00231" class="html-bibr">41</a>], and E835 [<a href="#B30-symmetry-14-00231" class="html-bibr">30</a>,<a href="#B31-symmetry-14-00231" class="html-bibr">31</a>,<a href="#B41-symmetry-14-00231" class="html-bibr">41</a>].</p>
Full article ">Figure 7
<p>Comparison of the results for (<b>a</b>) <math display="inline"><semantics> <mrow> <mrow> <mo stretchy="false">|</mo> </mrow> <msub> <mi>G</mi> <mi>M</mi> </msub> <mrow> <mo stretchy="false">|</mo> </mrow> </mrow> </semantics></math> and (<b>b</b>) <math display="inline"><semantics> <mrow> <mrow> <mo stretchy="false">|</mo> </mrow> <msub> <mi>G</mi> <mi>E</mi> </msub> <mrow> <mo stretchy="false">|</mo> </mrow> </mrow> </semantics></math> using the energy scan strategy. Shown are all the published measurements from BESIII [<a href="#B36-symmetry-14-00231" class="html-bibr">36</a>,<a href="#B37-symmetry-14-00231" class="html-bibr">37</a>], CLEO [<a href="#B33-symmetry-14-00231" class="html-bibr">33</a>], E835 [<a href="#B30-symmetry-14-00231" class="html-bibr">30</a>,<a href="#B31-symmetry-14-00231" class="html-bibr">31</a>], E760 [<a href="#B29-symmetry-14-00231" class="html-bibr">29</a>], and PS170 [<a href="#B26-symmetry-14-00231" class="html-bibr">26</a>,<a href="#B27-symmetry-14-00231" class="html-bibr">27</a>,<a href="#B28-symmetry-14-00231" class="html-bibr">28</a>].</p>
Full article ">Figure 8
<p>Summary of the <math display="inline"><semantics> <mrow> <msup> <mi>e</mi> <mo>+</mo> </msup> <msup> <mi>e</mi> <mo>−</mo> </msup> <mo>↔</mo> <mi>p</mi> <mover accent="true"> <mi>p</mi> <mo>¯</mo> </mover> </mrow> </semantics></math> cross-section and a fit to the data (blue solid line and band) according to Equation (<a href="#FD5-symmetry-14-00231" class="html-disp-formula">5</a>). The shown data are the published measurements from BESIII [<a href="#B36-symmetry-14-00231" class="html-bibr">36</a>,<a href="#B37-symmetry-14-00231" class="html-bibr">37</a>,<a href="#B45-symmetry-14-00231" class="html-bibr">45</a>,<a href="#B46-symmetry-14-00231" class="html-bibr">46</a>], <span class="html-italic">BABAR</span> [<a href="#B47-symmetry-14-00231" class="html-bibr">47</a>,<a href="#B48-symmetry-14-00231" class="html-bibr">48</a>,<a href="#B49-symmetry-14-00231" class="html-bibr">49</a>], CMD3 [<a href="#B34-symmetry-14-00231" class="html-bibr">34</a>,<a href="#B35-symmetry-14-00231" class="html-bibr">35</a>], CLEO [<a href="#B33-symmetry-14-00231" class="html-bibr">33</a>], BES [<a href="#B32-symmetry-14-00231" class="html-bibr">32</a>], FENICE [<a href="#B20-symmetry-14-00231" class="html-bibr">20</a>,<a href="#B21-symmetry-14-00231" class="html-bibr">21</a>,<a href="#B22-symmetry-14-00231" class="html-bibr">22</a>], E835 [<a href="#B30-symmetry-14-00231" class="html-bibr">30</a>,<a href="#B31-symmetry-14-00231" class="html-bibr">31</a>], E760 [<a href="#B29-symmetry-14-00231" class="html-bibr">29</a>], DM2 [<a href="#B24-symmetry-14-00231" class="html-bibr">24</a>,<a href="#B25-symmetry-14-00231" class="html-bibr">25</a>], DM1 [<a href="#B23-symmetry-14-00231" class="html-bibr">23</a>], and ADONE [<a href="#B18-symmetry-14-00231" class="html-bibr">18</a>]. In the fit, <math display="inline"><semantics> <msup> <mi>χ</mi> <mn>2</mn> </msup> </semantics></math> is defined as <math display="inline"><semantics> <mrow> <msup> <mi>χ</mi> <mn>2</mn> </msup> <mo>=</mo> <msub> <mo>∑</mo> <mi>i</mi> </msub> <msup> <mrow> <mo>[</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>−</mo> <msub> <mi>y</mi> <mi>i</mi> </msub> <mo>]</mo> </mrow> <mn>2</mn> </msup> <mo>/</mo> <msubsup> <mi>err</mi> <mrow> <mi>i</mi> </mrow> <mn>2</mn> </msubsup> </mrow> </semantics></math>, where <math display="inline"><semantics> <msub> <mi>err</mi> <mi>i</mi> </msub> </semantics></math> is the error of the measured results including statistical and correlated systematic uncertainties, <span class="html-italic">f</span> is the fit function, and n.d.f. is the number of degrees of freedom.</p>
Full article ">Figure 9
<p>Summary for the <math display="inline"><semantics> <mrow> <msup> <mi>e</mi> <mo>+</mo> </msup> <msup> <mi>e</mi> <mo>−</mo> </msup> <mo>↔</mo> <mi>p</mi> <mover accent="true"> <mi>p</mi> <mo>¯</mo> </mover> </mrow> </semantics></math> cross-section and a fit to the data (blue solid line and band) according to (<b>a</b>) Equation (<a href="#FD7-symmetry-14-00231" class="html-disp-formula">7</a>) and (<b>b</b>) Equation (<a href="#FD10-symmetry-14-00231" class="html-disp-formula">10</a>), with the low-energy-eff-QCD and pQCD model (green dashed-dotted curve and band), and contributions from possible resonances at around 2.15 GeV (magenta dotted curve and band) and around 2.5 GeV (teal dashed curve and band). The data shown are the published measurements from BESIII [<a href="#B36-symmetry-14-00231" class="html-bibr">36</a>,<a href="#B37-symmetry-14-00231" class="html-bibr">37</a>,<a href="#B45-symmetry-14-00231" class="html-bibr">45</a>,<a href="#B46-symmetry-14-00231" class="html-bibr">46</a>], <span class="html-italic">BABAR</span> [<a href="#B47-symmetry-14-00231" class="html-bibr">47</a>,<a href="#B48-symmetry-14-00231" class="html-bibr">48</a>,<a href="#B49-symmetry-14-00231" class="html-bibr">49</a>], CMD3 [<a href="#B34-symmetry-14-00231" class="html-bibr">34</a>,<a href="#B35-symmetry-14-00231" class="html-bibr">35</a>], CLEO [<a href="#B33-symmetry-14-00231" class="html-bibr">33</a>], BES [<a href="#B32-symmetry-14-00231" class="html-bibr">32</a>], FENICE [<a href="#B20-symmetry-14-00231" class="html-bibr">20</a>,<a href="#B21-symmetry-14-00231" class="html-bibr">21</a>,<a href="#B22-symmetry-14-00231" class="html-bibr">22</a>], E835 [<a href="#B30-symmetry-14-00231" class="html-bibr">30</a>,<a href="#B31-symmetry-14-00231" class="html-bibr">31</a>], E760 [<a href="#B29-symmetry-14-00231" class="html-bibr">29</a>], DM2 [<a href="#B24-symmetry-14-00231" class="html-bibr">24</a>,<a href="#B25-symmetry-14-00231" class="html-bibr">25</a>], DM1 [<a href="#B23-symmetry-14-00231" class="html-bibr">23</a>], and ADONE [<a href="#B18-symmetry-14-00231" class="html-bibr">18</a>]. The definition of <math display="inline"><semantics> <msup> <mi>χ</mi> <mn>2</mn> </msup> </semantics></math> is the same as in <a href="#symmetry-14-00231-f008" class="html-fig">Figure 8</a>.</p>
Full article ">Figure 10
<p>Summary of (<b>a</b>) the effective FF of the proton <math display="inline"><semantics> <mrow> <mrow> <mo stretchy="false">|</mo> </mrow> <msub> <mi>G</mi> <mi>eff</mi> </msub> <mrow> <mo stretchy="false">|</mo> </mrow> </mrow> </semantics></math> and a fit to the data (blue solid line and band) according to Equation (<a href="#FD14-symmetry-14-00231" class="html-disp-formula">14</a>) suggested in [<a href="#B44-symmetry-14-00231" class="html-bibr">44</a>,<a href="#B54-symmetry-14-00231" class="html-bibr">54</a>] with the 3-pole (green dashed-dotted curve and band) and oscillation (magenta dotted curve and band) contributions; (<b>b</b>) residuals of the proton <math display="inline"><semantics> <mrow> <mrow> <mo stretchy="false">|</mo> </mrow> <msub> <mi>G</mi> <mi>eff</mi> </msub> <mrow> <mo stretchy="false">|</mo> </mrow> </mrow> </semantics></math>, after subtraction of the smooth function described by Equation (<a href="#FD12-symmetry-14-00231" class="html-disp-formula">12</a>), as a function of the relative momentum <math display="inline"><semantics> <mrow> <mi>p</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <msqrt> <mrow> <mi>s</mi> <mo>(</mo> <mfrac> <mi>s</mi> <mrow> <mn>4</mn> <msubsup> <mi>m</mi> <mrow> <mi>p</mi> </mrow> <mn>2</mn> </msubsup> </mrow> </mfrac> <mo>−</mo> <mn>1</mn> <mo>)</mo> </mrow> </msqrt> </mrow> </semantics></math> with a fit of the oscillation according to Equation (<a href="#FD13-symmetry-14-00231" class="html-disp-formula">13</a>) (magenta solid curve and band). The shown data are the published measurements from BESIII [<a href="#B36-symmetry-14-00231" class="html-bibr">36</a>,<a href="#B37-symmetry-14-00231" class="html-bibr">37</a>,<a href="#B45-symmetry-14-00231" class="html-bibr">45</a>,<a href="#B46-symmetry-14-00231" class="html-bibr">46</a>], <span class="html-italic">BABAR</span> [<a href="#B47-symmetry-14-00231" class="html-bibr">47</a>,<a href="#B48-symmetry-14-00231" class="html-bibr">48</a>,<a href="#B49-symmetry-14-00231" class="html-bibr">49</a>], CMD3 [<a href="#B34-symmetry-14-00231" class="html-bibr">34</a>,<a href="#B35-symmetry-14-00231" class="html-bibr">35</a>], CLEO [<a href="#B33-symmetry-14-00231" class="html-bibr">33</a>], BES [<a href="#B32-symmetry-14-00231" class="html-bibr">32</a>], FENICE [<a href="#B20-symmetry-14-00231" class="html-bibr">20</a>,<a href="#B21-symmetry-14-00231" class="html-bibr">21</a>,<a href="#B22-symmetry-14-00231" class="html-bibr">22</a>], E835 [<a href="#B30-symmetry-14-00231" class="html-bibr">30</a>,<a href="#B31-symmetry-14-00231" class="html-bibr">31</a>], E760 [<a href="#B29-symmetry-14-00231" class="html-bibr">29</a>], PS170 [<a href="#B26-symmetry-14-00231" class="html-bibr">26</a>,<a href="#B27-symmetry-14-00231" class="html-bibr">27</a>,<a href="#B28-symmetry-14-00231" class="html-bibr">28</a>], DM2 [<a href="#B24-symmetry-14-00231" class="html-bibr">24</a>,<a href="#B25-symmetry-14-00231" class="html-bibr">25</a>], DM1 [<a href="#B23-symmetry-14-00231" class="html-bibr">23</a>], M. S. T [<a href="#B19-symmetry-14-00231" class="html-bibr">19</a>], and ADONE [<a href="#B18-symmetry-14-00231" class="html-bibr">18</a>]. The definition of <math display="inline"><semantics> <msup> <mi>χ</mi> <mn>2</mn> </msup> </semantics></math> is the same as in <a href="#symmetry-14-00231-f008" class="html-fig">Figure 8</a>.</p>
Full article ">Figure 11
<p>Summary of the residuals of the proton and neutron <math display="inline"><semantics> <mrow> <mrow> <mo stretchy="false">|</mo> </mrow> <msub> <mi>G</mi> <mi>eff</mi> </msub> <mrow> <mo stretchy="false">|</mo> </mrow> </mrow> </semantics></math>, after subtraction of the smooth function described by Equation (<a href="#FD12-symmetry-14-00231" class="html-disp-formula">12</a>), as a function of the relative momentum <math display="inline"><semantics> <mrow> <mi>p</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <msqrt> <mrow> <mi>s</mi> <mo>(</mo> <mfrac> <mi>s</mi> <mrow> <mn>4</mn> <msubsup> <mi>m</mi> <mrow> <mi>p</mi> </mrow> <mn>2</mn> </msubsup> </mrow> </mfrac> <mo>−</mo> <mn>1</mn> <mo>)</mo> </mrow> </msqrt> </mrow> </semantics></math> with a fit of the oscillation according to Equation (<a href="#FD13-symmetry-14-00231" class="html-disp-formula">13</a>) (magenta and cyan solid curve and band for the proton and neutron, respectively). The shown data are the published measurements from BESIII (proton [<a href="#B36-symmetry-14-00231" class="html-bibr">36</a>,<a href="#B37-symmetry-14-00231" class="html-bibr">37</a>,<a href="#B45-symmetry-14-00231" class="html-bibr">45</a>,<a href="#B46-symmetry-14-00231" class="html-bibr">46</a>] and neutron [<a href="#B55-symmetry-14-00231" class="html-bibr">55</a>]), <span class="html-italic">BABAR</span> [<a href="#B47-symmetry-14-00231" class="html-bibr">47</a>,<a href="#B48-symmetry-14-00231" class="html-bibr">48</a>,<a href="#B49-symmetry-14-00231" class="html-bibr">49</a>], and CMD3 [<a href="#B34-symmetry-14-00231" class="html-bibr">34</a>,<a href="#B35-symmetry-14-00231" class="html-bibr">35</a>]. The definition of <math display="inline"><semantics> <msup> <mi>χ</mi> <mn>2</mn> </msup> </semantics></math> is the same as in <a href="#symmetry-14-00231-f008" class="html-fig">Figure 8</a>.</p>
Full article ">Figure 12
<p>Summary of the ratio <math display="inline"><semantics> <mrow> <mrow> <mo stretchy="false">|</mo> </mrow> <msub> <mi>G</mi> <mi>E</mi> </msub> <mo>/</mo> <msub> <mi>G</mi> <mi>M</mi> </msub> <mrow> <mo stretchy="false">|</mo> </mrow> </mrow> </semantics></math> of the proton and a fit to the data (blue solid line and band) according to Equation (<a href="#FD15-symmetry-14-00231" class="html-disp-formula">15</a>) with the monopole (green dashed-dotted curve and band) and oscillation (magenta dotted curve and band) component (shifted up by 0.5), and the Kuraev model [<a href="#B56-symmetry-14-00231" class="html-bibr">56</a>] (red dashed-dotted curve and band) according to Equation (<a href="#FD16-symmetry-14-00231" class="html-disp-formula">16</a>). The shown data are the published measurements from BESIII [<a href="#B36-symmetry-14-00231" class="html-bibr">36</a>,<a href="#B37-symmetry-14-00231" class="html-bibr">37</a>,<a href="#B45-symmetry-14-00231" class="html-bibr">45</a>,<a href="#B46-symmetry-14-00231" class="html-bibr">46</a>], <span class="html-italic">BABAR</span> [<a href="#B47-symmetry-14-00231" class="html-bibr">47</a>,<a href="#B48-symmetry-14-00231" class="html-bibr">48</a>,<a href="#B49-symmetry-14-00231" class="html-bibr">49</a>], CMD3 [<a href="#B34-symmetry-14-00231" class="html-bibr">34</a>,<a href="#B35-symmetry-14-00231" class="html-bibr">35</a>], FENICE [<a href="#B20-symmetry-14-00231" class="html-bibr">20</a>,<a href="#B21-symmetry-14-00231" class="html-bibr">21</a>,<a href="#B22-symmetry-14-00231" class="html-bibr">22</a>,<a href="#B41-symmetry-14-00231" class="html-bibr">41</a>], E835 [<a href="#B30-symmetry-14-00231" class="html-bibr">30</a>,<a href="#B31-symmetry-14-00231" class="html-bibr">31</a>,<a href="#B41-symmetry-14-00231" class="html-bibr">41</a>], PS170 [<a href="#B26-symmetry-14-00231" class="html-bibr">26</a>,<a href="#B27-symmetry-14-00231" class="html-bibr">27</a>,<a href="#B28-symmetry-14-00231" class="html-bibr">28</a>], and DM2 [<a href="#B24-symmetry-14-00231" class="html-bibr">24</a>,<a href="#B25-symmetry-14-00231" class="html-bibr">25</a>,<a href="#B41-symmetry-14-00231" class="html-bibr">41</a>]. The definition of <math display="inline"><semantics> <msup> <mi>χ</mi> <mn>2</mn> </msup> </semantics></math> is the same as in <a href="#symmetry-14-00231-f008" class="html-fig">Figure 8</a>.</p>
Full article ">Figure 13
<p>Summary of (<b>a</b>) the electric FF of the proton <math display="inline"><semantics> <mrow> <mrow> <mo stretchy="false">|</mo> </mrow> <msub> <mi>G</mi> <mi>E</mi> </msub> <mrow> <mo stretchy="false">|</mo> </mrow> </mrow> </semantics></math> and a fit to the data (blue solid line and band) according to Equation (<a href="#FD17-symmetry-14-00231" class="html-disp-formula">17</a>) and the Kuraev model [<a href="#B56-symmetry-14-00231" class="html-bibr">56</a>] Equation (<a href="#FD19-symmetry-14-00231" class="html-disp-formula">19</a>) (red dashed-dotted line and band); (<b>b</b>) the magnetic FF of the proton <math display="inline"><semantics> <mrow> <mrow> <mo stretchy="false">|</mo> </mrow> <msub> <mi>G</mi> <mi>M</mi> </msub> <mrow> <mo stretchy="false">|</mo> </mrow> </mrow> </semantics></math> and a fit to the data (blue solid line and band) according to Equation (<a href="#FD18-symmetry-14-00231" class="html-disp-formula">18</a>) and the Kuraev model [<a href="#B56-symmetry-14-00231" class="html-bibr">56</a>] Equation (<a href="#FD20-symmetry-14-00231" class="html-disp-formula">20</a>) (red dashed-dotted line and band). The shown data are the published measurements from BESIII [<a href="#B36-symmetry-14-00231" class="html-bibr">36</a>,<a href="#B37-symmetry-14-00231" class="html-bibr">37</a>,<a href="#B45-symmetry-14-00231" class="html-bibr">45</a>,<a href="#B46-symmetry-14-00231" class="html-bibr">46</a>], <span class="html-italic">BABAR</span> [<a href="#B47-symmetry-14-00231" class="html-bibr">47</a>,<a href="#B48-symmetry-14-00231" class="html-bibr">48</a>,<a href="#B49-symmetry-14-00231" class="html-bibr">49</a>], and PS170 [<a href="#B26-symmetry-14-00231" class="html-bibr">26</a>,<a href="#B27-symmetry-14-00231" class="html-bibr">27</a>,<a href="#B28-symmetry-14-00231" class="html-bibr">28</a>]. The definition of <math display="inline"><semantics> <msup> <mi>χ</mi> <mn>2</mn> </msup> </semantics></math> is the same as in <a href="#symmetry-14-00231-f008" class="html-fig">Figure 8</a>.</p>
Full article ">Figure 14
<p>Measured <math display="inline"><semantics> <mrow> <mrow> <mo stretchy="false">|</mo> </mrow> <msub> <mi>G</mi> <mi>E</mi> </msub> <mo>/</mo> <msub> <mi>G</mi> <mi>M</mi> </msub> <mrow> <mo stretchy="false">|</mo> </mrow> </mrow> </semantics></math> in the time-like region from BESIII [<a href="#B36-symmetry-14-00231" class="html-bibr">36</a>,<a href="#B37-symmetry-14-00231" class="html-bibr">37</a>,<a href="#B45-symmetry-14-00231" class="html-bibr">45</a>,<a href="#B46-symmetry-14-00231" class="html-bibr">46</a>], <span class="html-italic">BABAR</span> [<a href="#B47-symmetry-14-00231" class="html-bibr">47</a>,<a href="#B48-symmetry-14-00231" class="html-bibr">48</a>,<a href="#B49-symmetry-14-00231" class="html-bibr">49</a>], CMD3 [<a href="#B34-symmetry-14-00231" class="html-bibr">34</a>,<a href="#B35-symmetry-14-00231" class="html-bibr">35</a>], BES [<a href="#B32-symmetry-14-00231" class="html-bibr">32</a>], FENICE+DM2 [<a href="#B20-symmetry-14-00231" class="html-bibr">20</a>,<a href="#B21-symmetry-14-00231" class="html-bibr">21</a>,<a href="#B22-symmetry-14-00231" class="html-bibr">22</a>,<a href="#B24-symmetry-14-00231" class="html-bibr">24</a>,<a href="#B25-symmetry-14-00231" class="html-bibr">25</a>,<a href="#B41-symmetry-14-00231" class="html-bibr">41</a>], E835 [<a href="#B30-symmetry-14-00231" class="html-bibr">30</a>,<a href="#B31-symmetry-14-00231" class="html-bibr">31</a>], and PS170 [<a href="#B26-symmetry-14-00231" class="html-bibr">26</a>,<a href="#B27-symmetry-14-00231" class="html-bibr">27</a>,<a href="#B28-symmetry-14-00231" class="html-bibr">28</a>] and in the spacelike region from the GEp Collaboration [<a href="#B58-symmetry-14-00231" class="html-bibr">58</a>]. The red dashed-dotted line and band are monopole-like fits. The definition of <math display="inline"><semantics> <msup> <mi>χ</mi> <mn>2</mn> </msup> </semantics></math> is the same as in <a href="#symmetry-14-00231-f008" class="html-fig">Figure 8</a>.</p>
Full article ">
15 pages, 573 KiB  
Review
Time-like Proton Form Factors with Initial State Radiation Technique
by Dexu Lin, Alaa Dbeyssi and Frank Maas
Symmetry 2022, 14(1), 91; https://doi.org/10.3390/sym14010091 - 6 Jan 2022
Cited by 6 | Viewed by 2274
Abstract
Electromagnetic form factors are fundamental quantities describing the internal structure of hadrons. They can be measured with scattering processes in the space-like region and annihilation processes in the time-like region. The two regions are connected by crossing symmetry. The measurements of the proton [...] Read more.
Electromagnetic form factors are fundamental quantities describing the internal structure of hadrons. They can be measured with scattering processes in the space-like region and annihilation processes in the time-like region. The two regions are connected by crossing symmetry. The measurements of the proton electromagnetic form factors in the time-like region using the initial state radiation technique are reviewed. Recent experimental studies have shown that initial state radiation processes at high luminosity electron-positron colliders can be effectively used to probe the electromagnetic structure of hadrons. The BABAR experiment at the B-factory PEP-II in Stanford and the BESIII experiment at BEPCII (an electron positron collider in the τ-charm mass region) in Beijing have measured the time-like form factors of the proton using the initial state radiation process e+epp¯γ. The two kinematical regions where the photon is emitted from the initial state at small and large polar angles have been investigated. In the first case, the photon is in the region not covered by the detector acceptance and is not detected. The Born cross section and the proton effective form factor have been measured over a wide and continuous range of the the momentum transfer squared q2 from the threshold up to 42 (GeV/c)2. The ratio of electric and magnetic form factors of the proton has been also determined. In this report, the theoretical aspect and the experimental studies of the initial state radiation process e+epp¯γ are described. The measurements of the Born cross section and the proton form factors obtained in these analyses near the threshold region and in the relatively large q2 region are examined. The experimental results are compared to the predictions from theory and models. Their impact on our understanding of the nucleon structure is discussed. Full article
(This article belongs to the Special Issue Baryon Structure: Form Factors and Polarization)
Show Figures

Figure 1

Figure 1
<p>Feynman diagram under assumption of one virtual photon exchange for the annihilation process of <math display="inline"><semantics> <mrow> <msup> <mi>e</mi> <mo>+</mo> </msup> <msup> <mi>e</mi> <mo>−</mo> </msup> <mo>→</mo> <mi>p</mi> <mover accent="true"> <mi>p</mi> <mo>¯</mo> </mover> </mrow> </semantics></math>.</p>
Full article ">Figure 2
<p>Lowest order Feynman diagram of the process <math display="inline"><semantics> <mrow> <msup> <mi>e</mi> <mo>+</mo> </msup> <msup> <mi>e</mi> <mo>−</mo> </msup> <mo>→</mo> <mi>p</mi> <mover accent="true"> <mi>p</mi> <mo>¯</mo> </mover> <mi>γ</mi> </mrow> </semantics></math> assuming one virtual photon exchange, where <math display="inline"><semantics> <mi>γ</mi> </semantics></math> is a real photon emitted from the initial state.</p>
Full article ">Figure 3
<p>The <math display="inline"><semantics> <mrow> <mi>p</mi> <mover accent="true"> <mi>p</mi> <mo>¯</mo> </mover> </mrow> </semantics></math> invariant mass spectrum from BABAR LA-ISR (<b>a</b>) and SA-ISR (<b>b</b>) analyses [<a href="#B16-symmetry-14-00091" class="html-bibr">16</a>,<a href="#B17-symmetry-14-00091" class="html-bibr">17</a>].</p>
Full article ">Figure 4
<p>The <math display="inline"><semantics> <mrow> <mi>p</mi> <mover accent="true"> <mi>p</mi> <mo>¯</mo> </mover> </mrow> </semantics></math> invariant mass spectrum from BESIII ISR analyses: (<b>a</b>) from LA-ISR analysis, the blue histogram represents the background events from <math display="inline"><semantics> <mrow> <msup> <mi>e</mi> <mo>+</mo> </msup> <msup> <mi>e</mi> <mo>−</mo> </msup> <mo>→</mo> <mi>p</mi> <mover accent="true"> <mi>p</mi> <mo>¯</mo> </mover> <msup> <mi>π</mi> <mn>0</mn> </msup> </mrow> </semantics></math> process [<a href="#B21-symmetry-14-00091" class="html-bibr">21</a>], (<b>b</b>) from SA-ISR analysis [<a href="#B20-symmetry-14-00091" class="html-bibr">20</a>].</p>
Full article ">Figure 5
<p>The cross section for the process <math display="inline"><semantics> <mrow> <msup> <mi>e</mi> <mo>+</mo> </msup> <msup> <mi>e</mi> <mo>−</mo> </msup> <mo>→</mo> <mi>p</mi> <mover accent="true"> <mi>p</mi> <mo>¯</mo> </mover> </mrow> </semantics></math> (<b>a</b>) and the effective FF of the proton (<b>b</b>) [<a href="#B21-symmetry-14-00091" class="html-bibr">21</a>]. The experimental data presented also include measurements from direct annihilation process. The details of the plots are described in the Ref. [<a href="#B21-symmetry-14-00091" class="html-bibr">21</a>].</p>
Full article ">Figure 6
<p>Examples of proton angular distributions including a fit to extract the ratio of the proton FFs from the BABAR (<b>a</b>) and BESIII (<b>b</b>) LA-ISA analyses (threshold-1.95 GeV/c<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>), and the BESIII SA-ISR (<b>c</b>) analysis (2.3–2.6 GeV/c<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>). The details of the plots are described in the original references [<a href="#B16-symmetry-14-00091" class="html-bibr">16</a>,<a href="#B20-symmetry-14-00091" class="html-bibr">20</a>,<a href="#B21-symmetry-14-00091" class="html-bibr">21</a>].</p>
Full article ">Figure 7
<p>The ratio of the proton FFs from BABAR and BESIII LA-ISR analyses at the <math display="inline"><semantics> <mrow> <mi>p</mi> <mover accent="true"> <mi>p</mi> <mo>¯</mo> </mover> </mrow> </semantics></math> invariant mass region of threshold-3.0 GeV/c<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>, and from BESIII SA-ISR analysis at the mass region of 2.0–3.0 GeV/c<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>. Results also include measurements from PS170, BESIII (direct annihilation) and CMD-3 experiments [<a href="#B45-symmetry-14-00091" class="html-bibr">45</a>,<a href="#B46-symmetry-14-00091" class="html-bibr">46</a>,<a href="#B47-symmetry-14-00091" class="html-bibr">47</a>]. The dotted line is the fit result in Ref. [<a href="#B48-symmetry-14-00091" class="html-bibr">48</a>], the dot-dashed line shows a new fit result with the same formula by including both BESIII ISR results, and the grey band shows the standard deviation of this fit.</p>
Full article ">Figure 8
<p>Periodic oscillation structure of the proton effective FF [<a href="#B21-symmetry-14-00091" class="html-bibr">21</a>]. The dotted line represents the oscillation contribution, which is described by Equation (<a href="#FD12-symmetry-14-00091" class="html-disp-formula">12</a>) and the value of fit parameters are taken from Ref. [<a href="#B56-symmetry-14-00091" class="html-bibr">56</a>].</p>
Full article ">
Back to TopTop