<p>Three saltwater lakes and three species of Schizothoracine fish.</p> Full article ">Figure 2
<p>(<b>A1</b>–<b>A3</b>) Annotated Venn diagrams of the transcriptome sequencing data of <span class="html-italic">G. przewalskii</span>, <span class="html-italic">G. selincuoensis,</span> and <span class="html-italic">G. namensis</span>, respectively. (<b>B1</b>–<b>B3</b>) Statistical information on the number of comparative species for <span class="html-italic">G. przewalskii</span>, <span class="html-italic">G. selincuoensis</span>, and <span class="html-italic">G. namensis</span>, respectively.</p> Full article ">Figure 3
<p>(<b>A1</b>–<b>A3</b>) Clustering dendrograms for genes of <span class="html-italic">G. przewalskii</span>, <span class="html-italic">G. selincuoensis,</span> and <span class="html-italic">G. namensis</span>, respectively. Dissimilarity was based on topological overlap, together with assigned module colors. Different co-expression modules are shown in different colors. (<b>B1</b>–<b>B3</b>) Module–trait associations of <span class="html-italic">G. przewalskii</span>, <span class="html-italic">G. selincuoensis,</span> and <span class="html-italic">G. namensis</span>, respectively. Each row corresponds to a module eigengene; each column corresponds to a trait. Red and green represent high and low expression, respectively.</p> Full article ">Figure 4
<p>Important pathways and genes regulating osmotic pressure in gills. (<b>A</b>) Differential pathways are shared across the three Schizothoracine fish, in particular, the Th17 cell differentiation KEGG pathway. (<b>B</b>) Relative expression of <span class="html-italic">h2-ea</span> in different tissues of the three Schizothoracine fish.</p> Full article ">Figure 5
<p>Alignment of the amino acid sequences. GenBank accession numbers: <span class="html-italic">Mus musculus</span> (NP_034508.2), <span class="html-italic">Rousettus aegyptiacus</span> (XP_036091053.1), <span class="html-italic">Xenopus laevis</span> (NP_001090247.1), <span class="html-italic">Pseudoliparis swirei</span> (XP_056300596.1), <span class="html-italic">Thunnus albacares</span> (XP_044215797.1), <span class="html-italic">Dicentrarchus labrax</span> (XP_051269782.1), <span class="html-italic">Danio rerio</span> (XP_002660435.3), and <span class="html-italic">Ictalurus punctatus</span> (XP_053536026.1). Black shading indicates the same amino acid sequence. Pink shading indicates conserved sequences with more than 75% of the listed polypeptides. The blue shading indicates the conserved sequence with more than half of the listed peptides.</p> Full article ">Figure 6
<p>(<b>A</b>) Three-dimensional modeling of H2-Ea sequences in <span class="html-italic">Mus musculus</span>, <span class="html-italic">Thunnus albacares</span>, <span class="html-italic">Danio rerio</span>, and the three Schizothoracine fish. (<b>B</b>–<b>D</b>) Evolutionary, conserved motif, and structural domain analyses of H2-Ea across different species. (<b>B</b>) Phylogenetic tree constructed using the NJ method. The bootstrap value is set to 1000. (<b>C</b>) Conserved motifs of H2-Ea proteins. Different motifs are represented by colored boxes and different numbers. (<b>D</b>) Conserved structural domains of H2-Ea in different species. Sky blue, purple, green, and orange boxes indicate the conserved domain of H2-Ea.</p> Full article ">Figure 7
<p>Important pathways and genes that regulate the osmotic pressure in the kidney. (<b>A</b>) Differential pathways are shared across three Schizothoracine fish, in particular, the pentose phosphate pathway. (<b>B</b>) Relative expression of <span class="html-italic">g6pd</span> in different tissues of the three Schizothoracine fish.</p> Full article ">Figure 8
<p>Alignment of amino acid sequences. The structural domain is underlined in yellow. GenBank accession numbers: <span class="html-italic">Homo sapiens</span> (AAA92653.1), <span class="html-italic">Mus musculus</span> (NP_032088.1), <span class="html-italic">Vidua chalybeata</span> (XP_053823932.1), <span class="html-italic">Pelodiscus sinensis</span> (XP_006130125.2), <span class="html-italic">Xenopus laevis</span> (XP_041427836.1), <span class="html-italic">Danio rerio</span> (XP_005162067.1), <span class="html-italic">Salmo salar</span> (NP_001135196.1), and <span class="html-italic">Ictalurus punctatus</span> (XP_017343061.1). Black shading indicates the same amino acid sequence. Pink shading indicates conserved sequences with more than 75% of the listed polypeptides. The blue shading indicates the conserved sequence with more than half of the listed peptides.</p> Full article ">Figure 9
<p>(<b>A</b>) Three-dimensional modeling of G6PD sequences of <span class="html-italic">Homo sapiens</span>, <span class="html-italic">Pelodiscus sinensis</span>, <span class="html-italic">Danio rerio</span>, and the three Schizothoracine fish. (<b>B</b>–<b>D</b>) Evolutionary, conserved motif, and structural domain analyses of G6PD across different species. (<b>B</b>) Phylogenetic tree constructed using the NJ method. The bootstrap value is set to 1000. (<b>C</b>) Conserved motifs of G6PD proteins. Different motifs are represented by colored boxes and different numbers. (<b>D</b>) Conserved structural domains of G6PD in different species. Sky blue boxes indicate the conserved domain of G6PD.</p> Full article ">Figure 10
<p>Important pathways and genes regulating osmotic pressure in the liver. (<b>A</b>) Differential pathways are shared across the three Schizothoracine fish, in particular, the propanoate metabolism pathway. (<b>B</b>) Relative expression of <span class="html-italic">suclg2</span> in different tissues of three Schizothoracine fish.</p> Full article ">Figure 11
<p>Alignment of the amino acid sequences. The structural domain is underlined in green. GenBank accession numbers: <span class="html-italic">Homo sapiens</span> (AAH68602.1), <span class="html-italic">Mus musculus</span> (NP_035637.2), <span class="html-italic">Coturnix japonica</span> (XP_015730848.1), <span class="html-italic">Gallus gallus</span> (NP_001006141.1), <span class="html-italic">Pelodiscus sinensis</span> (XP_006120066.2), <span class="html-italic">Xenopus laevis</span> (NP_001089908.1), <span class="html-italic">Carassius gibelio</span> (XP_052424800.1), <span class="html-italic">Danio rerio</span> (NP_001373238.1), and <span class="html-italic">Larimichthys crocea</span> (XP_010735540.3). Black shading indicates the same amino acid sequence. Pink shading indicates conserved sequences with more than 75% of the listed polypeptides. The blue shading indicates the conserved sequence with more than half of the listed peptides.</p> Full article ">Figure 12
<p>(<b>A</b>) Three-dimensional modeling of SUCLG2 sequences of <span class="html-italic">Homo sapiens</span>, <span class="html-italic">Pelodiscus sinensis</span>, <span class="html-italic">Danio rerio</span>, and the three Schizothoracine fish. (<b>B</b>–<b>D</b>) Evolutionary, conserved motif, and structural domain analyses of SUCLG2 in different species. (<b>B</b>) Phylogenetic tree constructed using the NJ method. The bootstrap value is set to 1000. (<b>C</b>) Conserved motifs of SUCLG2 proteins. Different motifs are represented by colored boxes and different numbers. (<b>D</b>) Conserved structural domains of SUCLG2 in different species. Pink boxes indicate the conserved domains of SUCLG2.</p> Full article ">Figure 13
<p>Regulatory pathways in the gills, kidneys, and liver of three species of Schizothoracine fishes potentially respond to high-salt environments. (<b>A</b>) H2-Ea in the regulatory pathway involved in the Th17 cell differentiation pathway in gills. (<b>B</b>) G6PD regulatory pathways involved in the pentose phosphate pathway in the kidney. (<b>C</b>) SUCLG2 regulatory pathways involved in the propanoate metabolism pathway. An upward arrow next to a gene indicates a rise in gene expression.</p> Full article ">