Timing of Maternal Stress Differentially Affects Immune and Stress Phenotypes in Progeny
<p>Immunoglobulin-G concentrations for piglets over a 21-day lactation period were born to maternally stressed sows, n = 36. Sow treatments were hydrocortisone acetate (HCA) capsules or placebo (CON) fed for 21 days during mid-gestation (M-HCA) or late gestation (L-HCA). Data are expressed as means ± the standard error of the mean. <sup>a,b</sup> Means with different superscripts differ at <span class="html-italic">p</span>-value < 0.05 between treatments within a day according to the Tukey–Kramer adjustment.</p> "> Figure 2
<p>Effect of maternal treatment on T-cell proliferation response to concanavalin A (<b>a</b>) and B-cell proliferation response to LPS (<b>b</b>) in the piglet over the 21d lactation phase, n = 36. Sow treatments were hydrocortisone acetate (HCA) capsules or placebo (CON) fed for 21 days during mid-gestation (M-HCA) or late gestation (L-HCA). Data are expressed as means ± the standard error of the mean. <sup>a,b</sup> Means with different superscripts differ at <span class="html-italic">p</span>-value < 0.05 between treatments within day. Treatment x Day <span class="html-italic">p</span>-value < 0.01 for both according to the Tukey–Kramer adjustment.</p> "> Figure 3
<p>Plasma cortisol (<b>a</b>), interleukin-17 [IL-17] (<b>b</b>) and tumor necrosis factor-α [TNF-α] (<b>c</b>) concentrations in prenatally stressed piglets (n = 36) at 21 days of lactation [21LAC], and 24 h [24HPW] and 7 days [7DPW] post-weaning. Sow treatments were hydrocortisone acetate (HCA) capsules or placebo (CON) fed for 21 days during mid-gestation (M-HCA) or late gestation (L-HCA). Data are expressed as means ± standard error of the mean. Means with an * differ at <span class="html-italic">p</span>-value < 0.05 and # at 0.05 < <span class="html-italic">p</span>-value < 0.10 between treatments according to the Tukey–Kramer adjustment. Treatment x Day <span class="html-italic">p</span>-value = 0.09 for cortisol, <span class="html-italic">p</span>-value = 0.04 for IL-17, and <span class="html-italic">p</span>-value = 0.02 for TNF-α.</p> "> Figure 4
<p>Effect of maternal treatment on T-cell proliferation response to concanavalin A (<b>a</b>) and B-cell proliferation response to LPS (<b>b</b>) in the piglets during the post-wean phase, n = 36. Sow treatments were hydrocortisone acetate (HCA) capsules or placebo (CON) fed for 21 days during mid-gestation (M-HCA) or late gestation (L-HCA). Data are expressed as means ± the standard error of the mean. <sup>a,b</sup> Means denoted with different superscripts differ at <span class="html-italic">p</span>-value < 0.05 between treatments within day, according to the Tukey–Kramer adjustment. Treatment x Day <span class="html-italic">p</span> = 0.01 for T-cell proliferation and <span class="html-italic">p</span>-value = 0.91 for B-cell proliferation.</p> "> Figure 5
<p>Effect of maternal treatment on body weight (<b>a</b>) and average daily gain (ADG) (<b>b</b>) in piglets overall for the post-wean phase, n = 36. Sow treatments were hydrocortisone acetate (HCA) capsules or placebo (CON) fed for 21 days during mid-gestation (M-HCA) or late gestation (L-HCA). Data are expressed as means ± standard error of the mean. Means with a * differ at <span class="html-italic">p</span>-value < 0.05, and means with a # between treatments differ at 0.05 < <span class="html-italic">p</span>-value < 0.10 according to the Tukey–Kramer adjustment. Treatment effect <span class="html-italic">p</span>-value = 0.04 for weight and <span class="html-italic">p</span>-value = 0.04 for ADG.</p> "> Figure 6
<p>Pig plasma cortisol concentrations at various time points post-ACTH or saline injections at 21 days post-wean, n = 24. Injection type was adrenocorticotropic hormone (ACTH) or saline (SAL). Sow treatments were hydrocortisone acetate (HCA) capsules or placebo (CON) fed for 21 days during mid-gestation (M-HCA) or late gestation (L-HCA). Data are expressed as means ± standard error of the mean. Means denoted with a different alphabetical superscript differ at <span class="html-italic">p</span> < 0.05 across sow treatment but within injection type, means denoted with * differ at <span class="html-italic">p</span>-value < 0.05 within sow treatment but across injection type according to the Tukey–Kramer adjustment. Treatment × Injection Type × Hour <span class="html-italic">p</span> < 0.01.</p> ">
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Sample Collection
2.3. Complete Blood Cell Count and Lymphocyte Isolation and Proliferation Assay
2.4. Cortisol, Cytokines, Stress Markers, and Immunoglobulins
2.5. Behavioral Observations
2.6. Statistical Analysis
3. Results
3.1. Maternal Treatment Effects at Birth
3.2. Maternal Prenatal Stress on Progeny During Suckling Period
3.3. Prenatal Stress and Wean and Mix Stressors: Immune and Cortisol Measures
3.4. Prenatal Stress and Wean and Mix Stressors: Behavior and Weight
3.5. Prenatal Stress Effects on Cortisol and Immune to ACTH Challenge
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Graham, A.M.; Rasmussen, J.M.; Entringer, S.; Ben Ward, E.; Rudolph, M.D.; Gilmore, J.H.; Styner, M.; Wadhwa, P.D.; Fair, D.A.; Buss, C. Maternal Cortisol Concentrations during Pregnancy and Sex-Specific Associations With Neonatal Amygdala Connectivity and Emerging Internalizing Behaviors. Biol. Psychiatry 2019, 85, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Merlot, E.; Couret, D.; Otten, W. Prenatal Stress, Fetal Imprinting and Immunity. Brain Behav. Immun. 2008, 22, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Otten, W.; Kanitz, E.; Tuchscherer, M. The Impact of Prenatal Stress on Offspring Development in Pigs. J. Agric. Sci. 2015, 153, 907–919. [Google Scholar] [CrossRef]
- Schwerin, M.; Kanitz, E.; Tuchscherer, M.; Brüssow, K.-P.; Nürnberg, G.; Otten, W. Stress-Related Gene Expression in Brain and Adrenal Gland of Porcine Fetuses and Neonates. Theriogenology 2005, 63, 1220–1234. [Google Scholar] [CrossRef] [PubMed]
- Otten, W.; Kanitz, E.; Tuchscherer, M.; Schneider, F.; Brüssow, K.-P. Effects of Adrenocorticotropin Stimulation on Cortisol Dynamics of Pregnant Gilts and Their Fetuses: Implications for Prenatal Stress Studies. Theriogenology 2004, 61, 1649–1659. [Google Scholar] [CrossRef]
- Otten, W.; Kanitz, E.; Couret, D.; Veissier, I.; Prunier, A.; Merlot, E. Maternal Social Stress during Late Pregnancy Affects Hypothalamic-Pituitary-Adrenal Function and Brain Neurotransmitter Systems in Pig Offspring. Domest. Anim. Endocrinol. 2010, 38, 146–156. [Google Scholar] [CrossRef]
- Nugent, B.M.; Bale, T.L. The omniscient placenta: Metabolic and epigenetic regulation of fetal programming. Front. Neuroendocrinol. 2015, 39, 28–37. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Merlot, E.; Quesnel, H.; Prunier, A. Prenatal stress, immunity and neonatal health in farm animal species. Animal 2013, 7, 2016–2025. [Google Scholar] [CrossRef] [PubMed]
- Jarvis, S.; Moinard, C.; Robson, S.K.; Baxter, E.; Ormandy, E.; Douglas, A.J.; Seckl, J.R.; Russell, J.A.; Lawrence, A.B. Programming the Offspring of the Pig by Prenatal Social Stress: Neuroendocrine Activity and Behaviour. Horm. Behav. 2006, 49, 68–80. [Google Scholar] [CrossRef]
- Haussmann, M.F.; Carroll, J.A.; Weesner, G.D.; Daniels, M.J.; Matteri, R.L.; Lay, D.C. Administration of ACTH to Restrained, Pregnant Sows Alters Their Pigs’ Hypothalamic-Pituitary-Adrenal (HPA) Axis2. J. Anim. Sci. 2000, 78, 2399–2411. [Google Scholar] [CrossRef]
- Couret, D.; Prunier, A.; Mounier, A.-M.; Thomas, F.; Oswald, I.P.; Merlot, E. Comparative Effects of a Prenatal Stress Occurring during Early or Late Gestation on Pig Immune Response. Physiol. Behav. 2009, 98, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Kranendonk, G.; Hopster, H.; Fillerup, M.; Ekkel, E.D.; Mulder, E.J.; Taverne, M.A. Cortisol Administration to Pregnant Sows Affects Novelty-Induced Locomotion, Aggressive Behaviour, and Blunts Gender Differences in Their Offspring. Horm. Behav. 2006, 49, 663–672. [Google Scholar] [CrossRef] [PubMed]
- Otten, W.; Kanitz, E.; Tuchscherer, M.; Puppe, B.; Nürnberg, G. Repeated Administrations of Adrenocorticotropic Hormone during Gestation in Gilts: Effects on Growth, Behaviour and Immune Responses of Their Piglets. Livest. Sci. 2007, 106, 261–270. [Google Scholar] [CrossRef]
- Lay, D.C., Jr.; Kattesh, H.G.; Cunnick, J.E.; Daniels, M.J.; Kranendonk, G.; McMunn, K.A.; Toscano, M.J.; Roberts, M.P. Effect of Prenatal Stress on Subsequent Response to Mixing Stress and a Lipopolysaccharide Challenge in Pigs1. J. Anim. Sci. 2011, 89, 1787–1794. [Google Scholar] [CrossRef]
- Sinkora, M.; Butler, J.E. The ontogeny of the porcine immune system. Dev. Comp. Immunol. 2009, 33, 273–283. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tuchscherer, M.; Kanitz, E.; Otten, W.; Tuchscherer, A. Effects of Prenatal Stress on Cellular and Humoral Immune Responses in Neonatal Pigs. Vet. Immunol. Immunopathol. 2002, 86, 195–203. [Google Scholar] [CrossRef]
- Wang, W.; Sung, N.; Gilman-Sachs, A.; Kwak-Kim, J. T Helper (Th) Cell Profiles in Pregnancy and Recurrent Pregnancy Losses: Th1/Th2/Th9/Th17/Th22/Tfh Cells. Front. Immunol. 2020, 11, 2025. [Google Scholar] [CrossRef]
- Salak-Johnson, J.L.; McGlone, J.J. Making Sense of Apparently Conflicting Data: Stress and Immunity in Swine and Cattle. J. Anim. Sci. 2007, 85, E81–E88. [Google Scholar] [CrossRef]
- Sabic, D.; Koenig, J.M. A Perfect Storm: Fetal Inflammation and the Developing Immune System. Pediatr. Res. 2020, 87, 319–326. [Google Scholar] [CrossRef]
- Machado-Neto, R.; Graves, C.N.; Curtis, S.E. Immunoglobulins in Piglets from Sows Heat Stressed Prepartum. J. Anim. Sci. 1987, 65, 445–455. [Google Scholar] [CrossRef]
- Borghesi, J.; Mario, L.C.; Rodrigues, M.N.; Favaron, P.O.; Miglino, M.A. Immunoglobulin Transport during Gestation in Domestic Animals and Humans: A Review. Open J. Anim. Sci. 2014, 4, 323–336. [Google Scholar] [CrossRef]
- Kranendonk, G.; Hopster, H.; van-Eerdenburg, F.; van Reenen, K.; Fillerup, M.; de Groot, J.; Korte, M.; Taverne, M. Evaluation of oral administration of cortisol as a model for prenatal stress in pregnant sows. Am. J. Vet. Res. 2005, 5, 780–790. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Nutrient Requirements of Swine, 11th ed.; The National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Pond, W.G.; Boleman, S.L.; Fiorotto, M.L.; Ho, H.; Knabe, D.A.; Mersmann, H.J.; Savell, J.W.; Su, D.R. Perinatal Ontogeny of Brain Growth in the Domestic Pig. Proc. Soc. Exp. Biol. Med. 2000, 223, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Entringer, S.; Buss, C.; Rasmussen, J.M.; Lindsay, K.; Gillen, D.L.; Cooper, D.M.; Wadhwa, P.D. Maternal Cortisol During Pregnancy and Infant Adiposity: A Prospective Investigation. J. Clin. Endocrinol. Metab. 2017, 102, 1366–1374. [Google Scholar] [CrossRef]
- Edwards, R.; Omtvedt, I.T.; Turman, E.J.; Rule, D.R.; Stephens, D.F.; Mahoney, G.W.A. Reproductive Performance of Gilts Following Heat Stress Prior to Breeding and in Early Gestation. J. Anim. Sci. 1968, 27, 1634–1637. [Google Scholar] [CrossRef]
- Omtvedt, I.T.; Nelson, R.E.; Edwards, R.L.; Stephens, D.F.; Turman, E.J. Influence of Heat Stress During Early, Mid and Late Pregnancy of Gilts. J. Anim. Sci. 1971, 32, 312–317. [Google Scholar] [CrossRef]
- Salvante, K.G.; Milano, K.; Kliman, H.J.; Nepomnaschy, P.A. Placental 11 β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) expression very early during human pregnancy. J. Dev. Orig. Health. Dis. 2017, 8, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Klemcke, H.G.; Christenson, R.K. Porcine Placental 11β-Hydroxysteroid Dehydrogenase Activity. Biol. Reprod. 1996, 55, 217–223. [Google Scholar] [CrossRef]
- Jahnke, J.R.; Terán, E.; Murgueitio, F.; Cabrera, H.; Thompson, A.L. Maternal stress, placental 11β-hydroxysteroid dehydrogenase type 2, and infant HPA axis development in humans: Psychosocial and physiological pathways. Placenta 2021, 15, 179–187. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kumar, P.; Magon, N. Hormones in Pregnancy. Niger. Med. J. 2012, 53, 179–183. [Google Scholar] [CrossRef]
- Oakey, R.E. Serum Cortisol Binding Capacity and Cortisol Concentration in the Pregnant Baboon and Its Fetus during Gestation. Endocrinology 1975, 97, 1024–1029. [Google Scholar] [CrossRef] [PubMed]
- Nenke, M.A.; Zeng, A.; Meyer, E.J.; Lewis, J.G.; Rankin, W.; Johnston, J.; Kireta, S.; Jesudason, S.; Torpy, D.J. Differential Effects of Estrogen on Corticosteroid-Binding Globulin Forms Suggests Reduced Cleavage in Pregnancy. J. Endocrinol. Soc. 2017, 1, 202–210. [Google Scholar] [CrossRef]
- Gardill, B.R.; Vogl, M.R.; Lin, H.-Y.; Hammond, G.L.; Muller, Y.A. Corticosteroid-Binding Globulin: Structure-Function Implications from Species Differences. PLoS ONE 2012, 7, e52759. [Google Scholar] [CrossRef] [PubMed]
- Curtis, J.; Bourne, F.J. Immunoglobulin Quantitation in Sow Serum, Colostrum and Milk and the Serum of Young Pigs. Biochim. Biophys. Acta 1971, 236, 319–332. [Google Scholar] [CrossRef]
- Wines, B.D.; Hogarth, P.M. IgA Receptors in Health and Disease. Tissue Antigens 2006, 68, 103–114. [Google Scholar] [CrossRef]
- Kohanski, K.; Redmond, S.B. The Effects of Psychological and Physical Stressors on the Secretion of Immunoglobulin A in Humans and Mice. Bios 2017, 88, 1–8. [Google Scholar] [CrossRef]
- Jarillo-Luna, A.; Rivera-Aguilar, V.; Garfias, H.R.; Lara-Padilla, E.; Kormanovsky, A.; Campos-Rodríguez, R. Effect of Repeated Restraint Stress on the Levels of Intestinal IgA in Mice. Psychoneuroendocrinology 2007, 32, 681–692. [Google Scholar] [CrossRef]
- Bate, L.A.; Ireland, W.; Connell, B.J.; Grimmelt, B. Development of the Small Intestine of Piglets in Response to Prenatal Elevation of Glucocorticoids. Histol. Histopathol. 1991, 6, 207–216. [Google Scholar]
- Osorio, J.S. Gut Health, Stress, and Immunity in Neonatal Dairy Calves: The Host Side of Host-Pathogen Interactions. J. Anim. Sci. Biotechnol. 2020, 11, 105. [Google Scholar] [CrossRef]
- Rooke, J.A.; Bland, I.M. The Acquisition of Passive Immunity in the New-Born Piglet. Livest. Prod. Sci. 2002, 78, 13–23. [Google Scholar] [CrossRef]
- Coe, C.L.; Lubach, G.R. Prenatal Influences on Neuroimmune Set Points in Infancy. Ann. N. Y. Acad. Sci. 2000, 917, 468–477. [Google Scholar] [CrossRef] [PubMed]
- Coe, C.L.; Kramer, M.; Kirschbaum, C.; Netter, P.; Fuchs, E. Prenatal Stress Diminishes the Cytokine Response of Leukocytes to Endotoxin Stimulation in Juvenile Rhesus Monkeys. J. Clin. Endocrinol. Metab. 2002, 87, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Kanitz, E.; Otten, W.; Tuchscherer, M.; Manteuffel, G. Effects of Prenatal Stress on Corticosteroid Receptors and Monoamine Concentrations in Limbic Areas of Suckling Piglets (Sus Scrofa) at Different Ages. J. Vet. Med. A Physiol. Pathol. Clin. Med. 2003, 50, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Jäättelä, M.; Ilvesmäki, V.; Voutilainen, R.; Stenman, U.H.; Saksela, E. Tumor Necrosis Factor as a Potent Inhibitor of Adrenocorticotropin-Induced Cortisol Production and Steroidogenic P450 Enzyme Gene Expression in Cultured Human Fetal Adrenal Cells. Endocrinology 1991, 128, 623–629. [Google Scholar] [CrossRef]
- Mills, K.H.G. IL-17 and IL-17-Producing Cells in Protection versus Pathology. Nat. Rev. Immunol. 2023, 23, 38–54. [Google Scholar] [CrossRef]
- Shahrara, S.; Pickens, S.R.; Dorfleutner, A.; Pope, R.M. IL-17 Induces Monocyte Migration in Rheumatoid Arthritis. J. Immunol. 2009, 182, 3884–3891. [Google Scholar] [CrossRef]
- Collier, C.T.; Carroll, J.A.; Ballou, M.A.; Starkey, J.D.; Sparks, J.C. Oral Administration of Saccharomyces Cerevisiae Boulardii Reduces Mortality Associated with Immune and Cortisol Responses to Escherichia Coli Endotoxin in Pigs. J. Anim. Sci. 2011, 89, 52–58. [Google Scholar] [CrossRef]
- Ison, S.H.; D’Eath, R.B.; Robson, S.K.; Baxter, E.M.; Ormandy, E.; Douglas, A.J.; Russell, J.A.; Lawrence, A.B.; Jarvis, S. ‘Subordination Style’ in Pigs? The Response of Pregnant Sows to Mixing Stress Affects Their Offspring’s Behaviour and Stress Reactivity. Appl. Anim. Behav. Sci. 2010, 124, 16–27. [Google Scholar] [CrossRef]
Measures 1 | M-HCA 2 | L-HCA 2 | CON 2 | p-Value |
---|---|---|---|---|
Immunoglobulin A, ng/mL | 15.32 ± 0.11 a1 | 15.70 ± 0.11 ab2 | 16.00 ± 0.11 b | 0.01 |
Immunoglobulin G, ng/mL | 19.04 ± 0.34 | 19.45 ± 0.34 | 18.84 ± 0.34 | 0.48 |
Immunoglobulin E, ng/mL | 0.00 ± 5.23 | 9.05 ± 5.23 | 0.00 ± 5.23 | 0.42 |
Immunoglobulin M, ng/mL | 15.05 ± 0.31 | 15.02 ± 0.31 | 14.68 ± 0.31 | 0.66 |
Cortisol, pg/mL | 10.97 ± 0.06 | 10.96 ± 0.07 | 10.97 ± 0.06 | 0.99 |
Interleukin-10, pg/mL | 2.39 ± 0.89 | 2.34 ± 0.89 | 2.42 ± 1.09 | 1.00 |
Interleukin-4, pg/mL | 1.97 ± 1.45 | 3.68 ± 1.45 | 6.90 ± 1.78 | 0.19 |
Interleukin-17, pg/mL | 1.72 ± 1.95 | 2.04 ± 1.95 | 2.69 ± 2.39 | 0.95 |
Measures | M-HCA 3 | L-HCA 3 | CON 3 | p-Value |
---|---|---|---|---|
Neutrophil, % 1 | 14.88 ± 4.24 a1 | 34.11 ± 3.00 b | 27.21 ± 2.56 ab2 | <0.01 |
Lymphocyte, % 1 | 77.98 ± 4.96 a1 | 57.54 ± 3.51 b | 63.95 ± 2.99 ab2 | 0.01 |
Neutrophil to lymphocyte ratio 1 | 0.19 ± 0.12 a | 0.66 ± 0.08 b | 0.45 ± 0.07 ab | 0.01 |
Immunoglobulin-G, ng/mL 2 | 12.13 ± 0.75 | 11.93 ± 0.62 | 12.51 ± 0.67 | 0.82 |
Immunoglobulin-A, ng/mL 2 | 9.68 ± 0.33 | 9.90 ± 0.27 | 10.46 ± 0.29 | 0.22 |
Interleukin-10, pg/mL 1 | 7.11 ± 1.34 | 7.31 ± 1.09 | 7.39 ± 1.20 | 0.99 |
Tumor necrosis factor-α, pg/mL 1 | 156.01 ± 93.4 | 64.99 ± 76.26 | 0 | 0.48 |
Interferon-ɣ, pg/mL 1 | 1.78 ± 1.94 | 3.19 ± 1.94 | 1.46 ± 1.59 | 0.79 |
Cortisol, pg/mL 2 | 10.97 ± 0.16 ab | 11.25 ± 0.13 b | 10.59 ± 0.15 a | 0.02 |
Corticotropin-releasing hormone, pg/mL 1 | 41.61 ± 22.46 | 45.97 ± 10.05 | 31.96 ± 11.23 | 0.66 |
Adrenocorticotropic hormone, pg/mL 1 | 7.68 ± 10.63 | 14.59 ± 4.76 | 11.17 ± 5.32 | 0.80 |
11β-Hydroxysteroid dehydrogenase-2, ng/mL 1 | 38.56 ± 6.74 | 45.70 ± 6.03 | 39.60 ± 6.03 | 0.69 |
Measures 1 | M-HCA 3 | L-HCA 3 | CON 3 | p-Value |
---|---|---|---|---|
Neutrophil, % | 38 ± 2.0 1 | 44 ± 2.0 2 | 40 ± 2.0 12 | 0.09 |
Lymphocyte, % | 55 ± 2.0 | 49 ± 2.0 | 52 ± 2.0 | 0.17 |
Neutrophil to lymphocyte ratio | 0.77 ± 0.09 1 | 1.06 ± 0.09 2 | 0.91 ± 0.09 12 | 0.09 |
Immunoglobulin-A, ng/mL 2 | 12.19 ± 0.13 1 | 12.45 ± 0.13 12 | 12.63 ± 0.13 2 | 0.08 |
Measures | M-HCA | L-HCA | CON | SEM | p-Value |
---|---|---|---|---|---|
Initiator of aggressive encounter, no. | 12.60 | 11.60 | 16.60 | 4.52 | 0.77 |
Receiver of aggressive encounter, no. | 13.20 | 12.00 | 16.80 | 4.35 | 0.73 |
Total number of aggressive encounters | 25.80 | 24.60 | 33.40 | 8.53 | 0.74 |
Total duration of aggressive encounters, sec | 1149.20 | 772.80 | 1392.20 | 378.03 | 0.52 |
Total number of oral-nasal-facial events | 10.20 a | 2.60 b1 | 9.40 ab2 | 2.04 | 0.04 |
Total duration of oral-nasal-facial events, sec | 176.00 1 | 49.20 2 | 164.00 | 37.87 | 0.07 |
Measures | M-HCA | L-HCA | CON | p-Value |
---|---|---|---|---|
CRH, pg/mL | 0.34 | |||
1 h | 58.00 ± 6.79 | 43.59 ± 5.99 | 66.95 ± 5.54 | |
2 h | 47.07 ± 5.54 | 47.41 ± 5.99 | 47.68 ± 5.99 | |
4 h | 28.37 ± 5.99 | 34.63 ± 5.99 | 39.34 ± 5.99 | |
24 h | 28.65 ± 5.99 | 34.64 ± 5.99 | 32.62 ± 6.79 | |
ACTH, pg/mL | 0.22 | |||
1 h | 1.30 ± 6.28 | 8.39 ± 5.92 | 0.00 | |
2 h | 8.53 ± 5.13 | 9.34 ± 5.54 | 0.00 | |
4 h | 5.11 ± 5.54 | 8.24 ± 5.54 | 4.92 ± 5.54 | |
24 h | 0.05 ± 5.54 | 9.46 ± 5.54 | 2.42 ± 6.28 | |
11β-HSD2, ng/mL | 0.25 | |||
1 h | 133.45 ± 20.30 | 200.48 ± 20.30 | 194.74 ± 18.80 | |
2 h | 141.69 ± 18.80 | 157.56 ± 20.30 | 143.09 ± 21.70 | |
4 h | 83.85 ± 20.30 | 71.03 ± 20.30 | 65.76 ± 20.30 | |
24 h | 153.98 ± 18.80 | 158.53 ± 20.30 | 114.99 ± 24.27 | |
CBG, ng/mL | 0.043 | |||
1 h | 177.23 ± 35.06 a | 399.77 ± 35.06 b1 | 300.60 ± 32.46 ab | |
2 h | 268.95 ± 32.46 | 314.36 ± 35.06 | 315.97 ± 35.06 | |
4 h | 215.59 ± 35.06 | 241.80 ± 35.06 | 226.04 ± 35.06 | |
24 h | 223.64 ± 32.46 | 217.12 ± 35.06 2 | 187.79 ± 41.91 |
M-HCA | L-HCA | CON | p-Value | ||||
---|---|---|---|---|---|---|---|
Measures | ACTH | SAL | ACTH | SAL | ACTH | SAL | |
Neutrophil, % | 33.04 ± 2.40 * | 44.16 ± 2.32 * | 37.14 ± 2.40 | 37.75 ± 2.40 | 29.49 ± 2.40 * | 39.75 ± 2.47 * | 0.06 |
Lymphocyte, % | 57.90 ± 2.30 * | 45.38 ± 2.23 * | 52.84 ± 2.30 | 50.95 ± 2.30 | 59.93 ± 2.30 * | 48.68 ± 2.37 * | 0.05 |
Neutrophil-to-lymphocyte ratio | 0.65 ± 0.10 * | 1.09 ± 0.09 * | 0.77 ± 0.10 | 0.78 ± 0.10 | 0.51 ± 0.10 * | 0.91 ± 0.10 * | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reddout-Beam, C.; Hernandez, L.P.; Salak-Johnson, J.L. Timing of Maternal Stress Differentially Affects Immune and Stress Phenotypes in Progeny. Animals 2024, 14, 3074. https://doi.org/10.3390/ani14213074
Reddout-Beam C, Hernandez LP, Salak-Johnson JL. Timing of Maternal Stress Differentially Affects Immune and Stress Phenotypes in Progeny. Animals. 2024; 14(21):3074. https://doi.org/10.3390/ani14213074
Chicago/Turabian StyleReddout-Beam, Cassidy, Lily P. Hernandez, and Janeen L. Salak-Johnson. 2024. "Timing of Maternal Stress Differentially Affects Immune and Stress Phenotypes in Progeny" Animals 14, no. 21: 3074. https://doi.org/10.3390/ani14213074
APA StyleReddout-Beam, C., Hernandez, L. P., & Salak-Johnson, J. L. (2024). Timing of Maternal Stress Differentially Affects Immune and Stress Phenotypes in Progeny. Animals, 14(21), 3074. https://doi.org/10.3390/ani14213074