Gender Differences in Zinc and Copper Excretion in Response to Co-Exposure to Low Environmental Concentrations of Cadmium and Lead
<p>Relationships of urine zinc, urine Pb-to-Cd ratios and exposure profiles. Scatterplots in (<b>A</b>) relate log ([Zn]<sub>u</sub> × 100), μg/L to log ([Pb]<sub>u</sub>/[Cd]<sub>u</sub> × 100) in women and men. The linear regression coefficients of (R<sup>2</sup>) and <span class="html-italic">p</span>-values are provided. Bar graphs in (<b>B</b>) representing means for log([Zn]<sub>u</sub> × 100) ± standard error of mean (S.E.) in women and men in three exposure profiles. Numbers of subjects are provided for all groups. The means are adjusted for age, [cr]<sub>u</sub><sub>,</sub> serum ferritin, and BUN [<a href="#B32-stresses-01-00002" class="html-bibr">32</a>]. The GM (SD) of E<sub>Cd</sub> in the low-, moderate- and high-exposure groups are 0.23 (0.12), 0.40 (0.38) and 0.86 (0.55) μg/g creatinine. The corresponding GM (SD) of E<sub>Pb</sub> are 0.84 (0.56), 1.48 (1.51) and 2.79 (3.25) μg/g creatinine, respectively.</p> "> Figure 2
<p>Relationships of urine copper, urine Pb-to-Cd ratios and exposure profiles. Scatterplots in panel (<b>A</b>) relate log ([Cu]<sub>u</sub> × 100), μg/L to log ([Pb]<sub>u</sub>/[Cd]<sub>u</sub> × 100) in women and men. The linear regression coefficients of (R<sup>2</sup>) and <span class="html-italic">p</span>-values are provided. Bars in panel (<b>B</b>) represent means for Cu excretion ± standard error of mean (S.E.) in women and men in three exposure profiles. Numbers of subjects are provided for all groups. The means are adjusted for age, [cr]<sub>u</sub>, serum ferritin, and BUN. The GM (SD) of E<sub>Pb</sub> in the low-, moderate- and high-exposure groups are 0.84 (0.56), 1.48 (1.51) and 2.79 (3.25) μg/g creatinine, while the corresponding GM (SD) of E<sub>Cd</sub> 0.23 (0.12), 0.40 (0.38) and 0.86 (0.55) μg/g creatinine, respectively.</p> "> Figure 3
<p>Relationships of urine Zn-to-Cu ratios, urine Pb-to-Cd ratios and exposure profiles. Scatterplots in panel (<b>A</b>) relate log ([Zn]<sub>u</sub>/[Cu]<sub>u</sub> × 100) to log ([Pb]<sub>u</sub>/[Cd]<sub>u</sub> × 100) in women and men. The linear regression coefficients of (R<sup>2</sup>) and <span class="html-italic">p</span>-values are provided. Bars in panel (<b>B</b>) represent adjusted means for urinary Zn-to-Cu ratio ± S.E. in women and men in three exposure profiles. Numbers of subjects are provided for all groups. The means are adjusted for age, [cr]<sub>u</sub>, serum ferritin, and BUN. The GM (SD) of E<sub>Pb</sub> in the low-, moderate- and high-exposure groups are 0.84 (0.56), 1.48 (1.51) and 2.79 (3.25) μg/g creatinine, while the corresponding GM (SD) of E<sub>Cd</sub> 0.23 (0.12), 0.40 (0.38) and 0.86 (0.55) μg/g creatinine, respectively.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Specimen Collection, Blood Chemistry Profiles and eGFR Calculation
2.3. Analysis of Urinary Metal Concentrations
2.4. Statistical Analysis
3. Results
3.1. Exposure Profiles and Demographic Data
3.2. Logistic Regression Analysis of Exposure Outcomes
3.3. Regression Modelling and Univariate Analysis of Exposure Outcomes
3.4. Regression Models of Kidney Function as Estimated Glomerular Filtration Rate (eGFR)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Satarug, S.; Gobe, C.G.; Vesey, D.A.; Phelps, K.R. Cadmium and lead exposure, nephrotoxicity, and mortality. Toxics 2020, 8, 86. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Melough, M.M.; Vance, T.M.; Noh, H.; Koo, S.I.; Chun, O.K. Dietary cadmium intake and sources in the US. Nutrients 2018, 11, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gavelek, A.; Spungen, J.; Hoffman-Pennesi, D.; Flannery, B.; Dolan, L.; Dennis, S.; Fitzpatrick, S. Lead exposures in older children (males and females 7–17 years), women of childbearing age (females 16–49 years) and adults (males and females 18+ years): FDA total diet study 2014-16. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2020, 37, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Taylor, A.W.; Riley, M.; Byles, J.; Liu, J.; Noakes, M. Association between dietary patterns, cadmium intake and chronic kidney disease among adults. Clin. Nutr. 2017, 5614, 31366–31368. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations (FAO) World Health Organization (WHO) Summary and Conclusions. In Proceedings of the Joint FAO/WHO Expert Committee on Food Additives Seventy-Third Meeting, Geneva, Switzerland, 8–17 June 2010; Available online: http://www.who.int/foodsafety/publications/chem/summary73.pdf (accessed on 24 November 2020).
- Grau-Perez, M.; Pichler, G.; Galan-Chilet, I.; Briongos-Figuero, L.S.; Rentero-Garrido, P.; Lopez-Izquierdo, R.; Navas-Acien, A.; Weaver, V.; García-Barrera, T.; Gomez-Ariza, J.L.; et al. Urine cadmium levels and albuminuria in a general population from Spain: A gene-environment interaction analysis. Environ. Int. 2017, 106, 27–36. [Google Scholar] [CrossRef]
- Myong, J.P.; Kim, H.R.; Baker, D.; Choi, B. Blood cadmium and moderate-to-severe glomerular dysfunction in Korean adults: Analysis of KNHANES 2005−2008 data. Int. Arch. Occup. Environ. Health 2012, 85, 885–893. [Google Scholar] [CrossRef]
- Navas-Acien, A.; Tellez-Plaza, M.; Guallar, E.; Muntner, P.; Silbergeld, E.; Jaar, B.; Weaver, V. Blood cadmium and lead and chronic kidney disease in US adults: A joint analysis. Am. J. Epidemiol. 2009, 170, 1156–1164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferraro, P.M.; Costanzi, S.; Naticchia, A.; Sturniolo, A.; Gambaro, G. Low level exposure to cadmium increases the risk of chronic kidney disease: Analysis of the NHANES 1999–2006. BMC Public Health 2010, 10, 304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madrigal, J.M.; Ricardo, A.C.; Persky, V.; Turyk, M. Associations between blood cadmium concentration and kidney function in the U.S. population: Impact of sex, diabetes and hypertension. Environ. Res. 2018, 169, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.J.; Wang, J.J.; Mao, J.H.; Shu, Q.; Du, L.Z. Relationships between cadmium, lead and mercury levels and albuminuria: Results from the National Health and Nutrition Examination Survey Database 2009−2012. Am. J. Epidemiol. 2019, 188, 1281–1287. [Google Scholar] [CrossRef]
- Shim, Y.K.; Lewin, M.D.; Ruiz, P.; Eichner, J.E.; Mumtaz, M.M. Prevalence and associated demographic characteristics of exposure to multiple metals and their species in human populations: The United States NHANES, 2007–2012. J. Toxicol. Environ. Health A 2017, 80, 502–512. [Google Scholar] [CrossRef] [PubMed]
- Buser, M.C.; Ingber, S.Z.; Raines, N.; Fowler, D.A.; Scinicariello, F. Urinary and blood cadmium and lead and kidney function: NHANES 2007–2012. Int. J. Hyg. Environ. Health 2016, 219, 261–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Schaumberg, D.A.; Park, S.K. Cadmium and lead exposure and risk of cataract surgery in U.S. adults. Int. J. Hyg. Environ. Health 2016, 219, 850–856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, R.; Zhu, X.; Shrubsole, M.J.; Yu, C.; Xia, Z.; Dai, Q. Associations of renal function with urinary excretion of metals: Evidence from NHANES 2003–2012. Environ. Int. 2018, 121, 1355–1362. [Google Scholar] [CrossRef] [PubMed]
- Saravanabhavan, G.; Werry, K.; Walker, M.; Haines, D.; Malowany, M.; Khoury, C. Human biomonitoring reference values for metals and trace elements in blood and urine derived from the Canadian Health Measures Survey 2007–2013. Int. J. Hyg. Environ. Health 2017, 220, 189–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, K.W.; Pan, W.H.; Liou, S.H.; Sun, C.W.; Huang, P.C.; Wang, S.L. Levels and temporal variations of urinary lead, cadmium, cobalt, and copper exposure in the general population of Taiwan. Environ. Sci. Pollut. Res. Int. 2019, 26, 6048–6064. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.S.; Ahn, J.; Lee, B.K.; Park, J.; Kim, Y. Environmental exposures to lead, mercury, and cadmium among South Korean teenagers (KNHANES 2010–2013): Body burden and risk factors. Environ. Res. 2017, 156, 468–476. [Google Scholar] [CrossRef]
- Lim, H.; Lim, J.A.; Choi, J.H.; Kwon, H.J.; Ha, M.; Kim, H.; Park, J.D. Associations of low environmental exposure to multiple metals with renal tubular impairment in Korean adults. Toxicol. Res. 2016, 32, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Hambach, R.; Lison, D.; D’Haese, P.C.; Weyler, J.; De Graef, E.; De Schryver, A.; Lamberts, L.V.; van Sprundel, M. Co-exposure to lead increases the renal response to low levels of cadmium in metallurgy workers. Toxicol. Lett. 2013, 222, 233–238. [Google Scholar] [CrossRef] [Green Version]
- King, J.C.; Shames, D.M.; Woodhouse, L.R. Zinc homeostasis in humans. J. Nutr. 2000, 130, 1360S–1366S. [Google Scholar] [CrossRef] [Green Version]
- Thévenod, F.; Lee, W.-K.; Garrick, M.D. Iron and cadmium entry into renal mitochondria: Physiological and toxicological implications. Front. Cell Develop. Biol. 2020, 8, 848. [Google Scholar] [CrossRef] [PubMed]
- Boonprasert, K.; Ruengweerayut, R.; Aunpad, R.; Satarug, S.; Na-Bangchang, K. Expression of metallothionein isoforms in peripheral blood leukocytes from Thai population residing in cadmium-contaminated areas. Environ. Toxicol. Pharmacol. 2012, 34, 935–940. [Google Scholar] [CrossRef] [PubMed]
- Boonprasert, K.; Satarug, S.; Morais, C.; Gobe, G.C.; Johnson, D.W.; Na-Bangchang, K.; Vesey, D.A. The stress response of human proximal tubule cells to cadmium involves up-regulation of haemoxygenase 1 and metallothionein but not cytochrome P450 enzymes. Toxicol. Lett. 2016, 249, 5–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tohyama, C.; Mitane, Y.; Kobayashi, E.; Sugihira, N.; Nakano, A.; Saito, H. The relationships of urinary metallothionein with other indicators of renal dysfunction in people living in a cadmium-polluted area in Japan. J. Appl. Toxicol. 1988, 8, 15–21. [Google Scholar] [CrossRef]
- Nogawa, K.; Yamada, Y.; Honda, R.; Tsuritani, I.; Kobayashi, E.; Ishizaki, M. Copper and zinc levels in serum and urine of cadmium-exposed people with special reference to renal tubular damage. Environ. Res. 1984, 33, 29–38. [Google Scholar] [CrossRef]
- Nakajima, M.; Kobayashi, E.; Suwazono, Y.; Uetani, M.; Oishi, M.; Inaba, T.; Kido, T.; Shaikh, Z.A.; Nogawa, K. Excretion of urinary cadmium, copper, and zinc in cadmium-exposed and non-exposed subjects, with special reference to urinary excretion of beta2-microglobulin and metallothionein. Biol. Trace Elem. Res. 2005, 108, 17–31. [Google Scholar] [CrossRef]
- Satarug, S.; Baker, J.R.; Reilly, P.E.; Moore, M.R.; Williams, D.J. Changes in zinc and copper homeostasis in human livers and kidneys associated with exposure to environmental cadmium. Hum. Exp. Toxicol. 2001, 20, 205–213. [Google Scholar] [CrossRef]
- Satarug, S.; Nishijo, M.; Ujjin, P.; Moore, M.R. Chronic exposure to low-level cadmium induced zinc-copper dysregulation. J. Trace Elem. Med. Biol. 2018, 46, 32–38. [Google Scholar] [CrossRef]
- Eom, S.Y.; Yim, D.H.; Huang, M.; Park, C.H.; Kim, G.B.; Yu, S.D.; Choi, B.S.; Park, J.D.; Kim, Y.D.; Kim, H. Copper-zinc imbalance induces kidney tubule damage and oxidative stress in a population exposed to chronic environmental cadmium. Int. Arch. Occup. Environ. Health 2020, 93, 337–344. [Google Scholar] [CrossRef] [Green Version]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.; Castro, A.F., III; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Barr, D.B.; Wilder, L.C.; Caudill, S.P.; Gonzalez, A.J.; Needham, L.L.; Pirkle, J.L. Urinary creatinine concentrations in the U.S. population: Implications for urinary biologic monitoring measurements. Environ. Health Perspect. 2004, 113, 192–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crinnion, W.J. The CDC fourth national report on human exposure to environmental chemicals: What it tells us about our toxic burden and how it assists environmental medicine physicians. Altern. Med. Rev. 2010, 15, 101–108. [Google Scholar] [PubMed]
- Heacox, H.N.; Gillman, P.L.; Zwart, S.R.; Smith, S.M. Excretion of zinc and copper increases in men during 3 weeks of bed rest, with or without artificial gravity. J. Nutr. 2017, 147, 1113–1120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gray, L.W.; Peng, F.; Molloy, S.A.; Pendyala, V.S.; Muchenditsi, A.; Muzik, O.; Lee, J.; Kaplan, J.H.; Lutsenko, S. Urinary copper elevation in a mouse model of Wilson’s disease is a regulated process to specifically decrease the hepatic copper load. PLoS ONE 2012, 7, e38327. [Google Scholar] [CrossRef]
- Pizent, A.; Jurasović, J.; Telisman, S. Serum calcium, zinc, and copper in relation to biomarkers of lead and cadmium in men. J. Trace Elem. Med. Biol. 2003, 17, 199–205. [Google Scholar] [CrossRef]
- Thijs, L.; Staessen, J.; Amery, A.; Bruaux, P.; Buchet, J.P.; Claeys, F.; De Plaen, P.; Ducoffre, G.; Lauwerys, R.; Lijnen, P. Determinants of serum zinc in a random population sample of four Belgian towns with different degrees of environmental exposure and body burden. Environ. Health Perspect. 1993, 98, 251–258. [Google Scholar] [CrossRef]
- Clark, N.A.; Teschke, K.; Rideout, K.; Copes, R. Trace element levels in adults from the west coast of Canada and associations with age, gender, diet, activities, and levels of other trace elements. Chemosphere 2007, 70, 155–164. [Google Scholar] [CrossRef]
- Petering, D.H. Reactions of the Zn proteome with Cd2+ and other xenobiotics: Trafficking and toxicity. Chem. Res. Toxicol. 2017, 30, 189–202. [Google Scholar] [CrossRef]
- Krężel, A.; Maret, W. The functions of metamorphic metallothioneins in zinc and copper metabolism. Int. J. Mol. Sci. 2017, 18, 1237. [Google Scholar] [CrossRef] [Green Version]
- Takeda, K.; Fujita, H.; Shibahara, S. Differential control of the metal-mediated activation of the human heme oxygenase-1 and metallothionein IIA genes. Biochem. Biophys. Res. Commun. 1995, 207, 160–167. [Google Scholar] [CrossRef]
- Yu, J.; Fujishiro, H.; Miyataka, H.; Oyama, T.M.; Hasegawa, T.; Seko, Y.; Miura, N.; Himeno, S. Dichotomous effects of lead acetate on the expression of metallothionein in the liver and kidney of mice. Biol. Pharm. Bull. 2009, 32, 1037–1042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carpenter, M.C.; Shami Shah, A.; DeSilva, S.; Gleaton, A.; Su, A.; Goundie, B.; Croteau, M.L.; Stevenson, M.J.; Wilcox, D.E.; Austin, R.N. Thermodynamics of Pb(ii) and Zn(ii) binding to MT-3, a neurologically important metallothionein. Metallomics 2016, 8, 605–617. [Google Scholar] [CrossRef] [PubMed]
- Garrett, S.H.; Sens, M.A.; Todd, J.H.; Somji, S.; Sens, D.A. Expression of MT-3 protein in the human kidney. Toxicol. Lett. 1999, 105, 207–214. [Google Scholar] [CrossRef]
- Sabolić, I.; Skarica, M.; Ljubojevic, M.; Breljak, D.; Herak-Kramberger, C.M.; Crljen, V.; Ljubešić, N. Expression and immunolocalization of metallothioneins MT1, MT2 and MT3 in rat nephron. J. Trace Elem. Med. Biol. 2018, 46, 62–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vašák, M.; Meloni, G. Mammalian metallothionein-3: New functional and structural insights. Int. J. Mol. Sci. 2017, 18, 1117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, S.V.; Barrick, B.; Freney, E.P.; Shafer, M.M.; Makar, K.; Song, X.; Lampe, J.; Vilchis, H.; Ulery, A.; Newcomb, P.A. Genetic variation in metallothionein and metal-regulatory transcription factor 1 in relation to urinary cadmium, copper, and zinc. Toxicol. Appl. Pharmacol. 2015, 289, 381–388. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Gao, J.; Zhang, K.; Liu, X.; Li, J. Effects of cadmium poisoning on Zn, Cu, Fe, Ca and metallothionein in liver and kidney of rats. Biol. Trace Elem. Res. 2012, 149, 57–63. [Google Scholar] [CrossRef]
- Prozialeck, W.C.; Lamar, P.C.; Edwards, J.R. Effects of sub-chronic Cd exposure on levels of copper, selenium, zinc, iron and other essential metals in rat renal cortex. Toxicol. Rep. 2016, 3, 740–746. [Google Scholar] [CrossRef] [Green Version]
- Phillips, J.D. Heme biosynthesis and the porphyrias. Mol. Genet. Metab. 2019, 128, 164–177. [Google Scholar] [CrossRef]
- Barregard, L.; Fabricius-Lagging, E.; Lundh, T.; Mölne, J.; Wallin, M.; Olausson, M.; Modigh, C.; Sallsten, G. Cadmium, mercury, and lead in kidney cortex of living kidney donors: Impact of different exposure sources. Environ. Res. 2010, 110, 47–54. [Google Scholar] [CrossRef]
- Satarug, S.; Ujjin, P.; Vanavanitkun, Y.; Baker, J.R.; Moore, M.R. Influence of body iron store status and cigarette smoking on cadmium body burden of healthy Thai women and men. Toxicol. Lett. 2004, 148, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Kippler, M.; Ekström, E.C.; Lönnerdal, B.; Goessler, W.; Åkesson, A.; El Arifeen, S.; Persson, L.Å.; Vahter, M. Influence of iron and zinc status on cadmium accumulation in Bangladeshi women. Toxicol. Appl. Pharmacol. 2007, 222, 221–226. [Google Scholar] [CrossRef] [PubMed]
Parameters | All Subjects | a Cd and Pb Co-Exposure Profiles | p-Values | ||
---|---|---|---|---|---|
N 392 | Low, n 114 | Moderate, n 167 | High, n 111 | ||
% Men | 49.7 | 74.6 | 44.3 | 32.4 | <0.001 |
% Smoking | 24.7 | 29.8 | 22.8 | 22.5 | 0.328 |
% b Low body iron stores | 13.0 | 8.8 | 14.4 | 15.3 | 0.272 |
Age, years | 33.6 ± 9.6 | 29.9 ± 7.9 | 33.8 ± 9.7 | 37.4 ± 9.6 | <0.001 |
c Body mass index, kg/m2 | 22.9 ± 3.66 | 22.7 ± 3.13 | 22.7 ± 3.64 | 23.5 ± 4.19 | 0.647 |
d eGFR, mL/min/1.73 m2 | 105 ± 14 | 105 ± 12 | 105 ± 14 | 105 ±14 | 0.909 |
Serum ferritin, μg/L | 89 ± 134 | 108 ± 131 | 86 ± 141 | 77 ± 126 | 0.020 |
BUN, mg/dL | 11.1 ± 2.85 | 11.7 ± 2.83 | 11.0 ± 2.88 | 10.6 ± 2.76 | 0.021 |
[Creatinine]s, mg/dL | 0.82 ± 0.16 | 0.89 ± 0.15 | 0.81 ± 0.16 | 0.76 ± 0.16 | <0.001 |
[Creatinine]u, mg/dL | 59.5 ± 68.4 | 73.5 ±79.8 | 56.5 ± 65.7 | 51.7 ± 54.8 | 0.004 |
[Zn]u, μM | 2.50 ± 4.36 | 2.83 ± 4.27 | 2.47 ± 4.73 | 2.25 ± 3.85 | 0.121 |
[Cu]u, μM | 0.09 ± 0.13 | 0.08 ± 0.11 | 0.09 ± 0.15 | 0.10 ± 0.12 | 0.183 |
[Zn]u/[Cu]u ratio | 28.6 ± 21.8 | 36.1 ± 25.1 | 28.8 ± 20.9 | 22.3 ± 16.5 | <0.001 |
[Pb]u, nM | 4.31 ± 8.36 | 2.99 ± 5.18 | 4.02 ± 5.87 | 6.96 ± 12.5 | 0.001 |
[Cd]u, nM | 2.25 ± 6.09 | 1.51 ± 2.59 | 2.03 ± 4.96 | 3.95 ± 9.02 | <0.001 |
[Pb]u/[Cd]u | 1.92 ± 4.56 | 1.98 ± 2.77 | 1.99 ± 6.33 | 1.76 ± 1.22 | 0.058 |
EPb/Ecr, μg/g creatinine | 1.50 ± 2.16 | 0.84 ± 0.56 | 1.48 ± 1.51 | 2.79 ± 3.25 | <0.001 |
ECd/Ecr, μg/g creatinine | 0.42 ± 0.47 | 0.23 ± 0.12 | 0.40 ± 0.38 | 0.86 ± 0.55 | <0.001 |
Independent Variables | [Zn]u > 9 μM | [Cu]u > 0.28 μM | [Zn]u/[Cu]u Ratios < 20 | |||
---|---|---|---|---|---|---|
POR (95%CI) | p | POR (95%CI) | p | POR (95%CI) | p | |
Age, years | 1.00 (0.95, 1.05) | 0.939 | 1.04 (0.98, 1.09) | 0.161 | 0.98 (0.96, 1.01) | 0.276 |
[Ferritin]s, μg/L | 0.80 (0.25, 2,64) | 0.720 | 0.43 (0.12, 1.48) | 0.179 | 0.95 (0.49, 1.84) | 0.880 |
BUN, mg/dL | 3.60 (0.06, 223) | 0.543 | 0.06 (0.001, 4.44) | 0.196 | 0.34 (0.03, 4.04) | 0.393 |
[cr]u, mg/dL | 0.002 (0.000, 0.02) | <0.001 | 0.001 (0.000, 0.01) | <0.001 | 1.28 (0.59, 2.80) | 0.535 |
Gender | 0.30 (0.07, 1.24) | 0.096 | 1.42 (0.35, 5.70) | 0.620 | 67.2 (8.81, 513) | <0.001 |
Smoking | 1.72 (0.63, 4.68) | 0.288 | 1.17 (0.38, 3.57) | 0.782 | 13.6 (1.72, 107) | 0.013 |
Exposure profiles | ||||||
Low | Referent | Referent | Referent | |||
Moderate | 0.98 (0.35, 2.73) | 0.967 | 3.47 (1.22, 9.84) | 0.020 | 1.90 (1.07, 3.35) | 0.028 |
High | 3.92 (1.09, 14.1) | 0.036 | 8.61 (2.31, 32.2) | 0.001 | 2.59 ((1.17, 5.75) | 0.019 |
Independent Variables | Log [Zn]u, µM | Log [Cu]u, µM | Log [Zn]u/[Cu]u Molar Ratio | |||
---|---|---|---|---|---|---|
a β (95%CI) | p | β (95%CI) | p | β (95%CI) | p | |
Age (years) | 0.000 (−0.003, 0.002) | 0.786 | 0.002 (0.000, 0.004) | 0.149 | −0.002 (−0.005, 0.001) | 0.147 |
[Ferritin]s, µg/L | −0.012 (−0.08, 0.05) | 0.700 | 0.041 (−0.01, 0.09) | 0.117 | −0.053 (−0.12, 0.01) | 0.095 |
BUN, mg/dL | 0.095 (−0.13, 0.32) | 0.414 | 0.227 (0.04, 0.41) | 0.015 | −0.132 (−0.36, 0.09) | 0.249 |
Log [cr]u, mg/dL | 0.684 (0.56, 0.80) | <0.001 | 0.560 (0.46, 0.66) | <0.001 | 0.123 (0.004, 0.24) | 0.043 |
Log [Pb]u, nM | 0.118 (0.06, 0.18) | <0.001 | 0.208 (0.16, 0.26) | <0.001 | −0.090 (−0.15, −0.03) | 0.005 |
Log [Cd]u, nM | 0.074 (0.004, 0.14) | 0.040 | 0.154 (0.10, 0.21) | <0.001 | −0.080 (−0.15, −0.01) | 0.023 |
Gender | 0.177 (0.10, 0.25) | <0.001 | −0.067 (−0.13, −0.01) | 0.024 | 0.244 (0.17, 0.32) | <0.001 |
Smoking | −0.041 (−0.11, 0.03) | 0.237 | −0.051 (−0.10, 0.003) | 0.066 | 0.010 (−0.06, 0.08) | 0.768 |
Models Covariates/Factors | eGFR, mL/min/1.73m2 | |||||
---|---|---|---|---|---|---|
All Subjects, N 392 | Women, n 197 | Men, n 195 | ||||
a β (95% CI) | p-Value | β (95% CI) | p-Value | β (95% CI) | p-Value | |
Model A | ||||||
Age (years) | −0.70 (−0.83, −0.57) | <0.001 | −0.58 (−0.76, −0.41) | <0.001 | −0.87 (−1.06, −0.68) | <0.001 |
[Ferritin]s, µg/L | 1.43 (−1.67, 4.54) | 0.366 | −0.77 (−4.82, 3.28) | 0.709 | 4.97 (0.21, 9.73) | 0.041 |
BUN, mg/dL | −17.7 (−28.7, −6.67) | 0.002 | −21 (−36.3, −5.82) | 0.007 | −11.5 (−27.4, 4.38) | 0.155 |
Log [cr]u, mg/dL | −7.44 (14.0, −0.92) | 0.025 | −2.37 (−11.4, 6.66) | 0.607 | −12.9 (−22.3, −3.47) | 0.007 |
Log [Zn]u | −4.65 (−9.95, 0.65) | 0.086 | −7.04 (−14.1, 0.01) | 0.050 | −1.06 (−9.36, 7.25) | 0.803 |
Log [Cu]u | 9.33 (3.29, 15.4) | 0.002 | 8.88 (0.79, 17.0) | 0.031 | 9.52 (−0.02, 19.1) | 0.050 |
Log ([Pb]u/[Cd]u) | 0.58 (−1.85, 3.02) | 0.640 | 2.36 (−1.87, 6.60) | 0.274 | −0.26 (−3.32, 2.80) | 0.867 |
Smoking | −1.07 (−4.36, 2.22) | 0.523 | n/a | n/a | −0.69 (−3.90, 2.53) | 0.675 |
Gender | −2.85 (−6.53, 0.82) | 0.128 | n/a | n/a | n/a | n/a |
Model B | ||||||
Age (years) | −0.69 (−0.82, −0.56) | <0.001 | −0.58 (−0.75, −0.40) | <0.001 | −0.84 (−1.04, −0.65) | <0.001 |
Serum ferritin, µg/L | 1.58 (−1.53, 4.69) | 0.318 | −0.73 (−4.77, 3.32) | 0.725 | 5.32 (0.53, 10.1) | 0.030 |
BUN, mg/dL | −17.3 (−28.3, −6.24) | 0.002 | −20.5 (−35.6, −5.49) | 0.007 | −12.8 (−28.8, 3.19) | 0.117 |
Log [cr]u, mg/dL | −3.04 (−6.47, −0.38) | 0.081 | −0.75 (−5.87, 4.37) | 0.773 | −4.46 (−9.10, 0.18) | 0.060 |
Log ([Zn]u/[Cu]u) | −6.43 (−11.2, −1.62) | 0.009 | −7.76 (−14.0, −1.52) | 0.015 | −3.92 (−11.8, 3.98) | 0.331 |
Log ([Pb]u/[Cd]u) | 0.78 (−1.65, 3.21) | 0.528 | 2.44 (−1.79, 6.66) | 0.258 | 0.05 (−3.03, 3.13) | 0.975 |
Smoking | −1.46 (−4.72, 1.80) | 0.379 | n/a | n/a | −1.37 (−4.54, 1.81) | 0.399 |
Gender | −3.08 (−6.75, 0.60) | 0.101 | n/a | n/a | n/a | n/a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Satarug, S.; Gobe, G.C.; Ujjin, P.; Vesey, D.A. Gender Differences in Zinc and Copper Excretion in Response to Co-Exposure to Low Environmental Concentrations of Cadmium and Lead. Stresses 2021, 1, 3-15. https://doi.org/10.3390/stresses1010002
Satarug S, Gobe GC, Ujjin P, Vesey DA. Gender Differences in Zinc and Copper Excretion in Response to Co-Exposure to Low Environmental Concentrations of Cadmium and Lead. Stresses. 2021; 1(1):3-15. https://doi.org/10.3390/stresses1010002
Chicago/Turabian StyleSatarug, Soisungwan, Glenda C. Gobe, Pailin Ujjin, and David A. Vesey. 2021. "Gender Differences in Zinc and Copper Excretion in Response to Co-Exposure to Low Environmental Concentrations of Cadmium and Lead" Stresses 1, no. 1: 3-15. https://doi.org/10.3390/stresses1010002
APA StyleSatarug, S., Gobe, G. C., Ujjin, P., & Vesey, D. A. (2021). Gender Differences in Zinc and Copper Excretion in Response to Co-Exposure to Low Environmental Concentrations of Cadmium and Lead. Stresses, 1(1), 3-15. https://doi.org/10.3390/stresses1010002