Design, Manufacturing and Mechanical Evaluation of a 3D Printed Customized Wrist-Hand Orthosis for the Treatment of De Quervain Tenosynovitis †
<p>Solution concept.</p> "> Figure 2
<p>Area involved in immobilization [<a href="#B12-engproc-83-00002" class="html-bibr">12</a>]. A: Distal metacarpal area, B: Base of the thumb, C: Central Dorsal Area, D: Wrist Area, E: Distal palmar area.</p> "> Figure 3
<p>Autodesk Fusion 360: Selection of side of application of force (blue arrow).</p> "> Figure 4
<p>Manufacturing process of WHO.</p> "> Figure 5
<p>Mechanical test of WHO.</p> "> Figure 6
<p>Wrist movements, modified of [<a href="#B16-engproc-83-00002" class="html-bibr">16</a>]. (<b>A</b>) Flexion, (<b>B</b>) Extension, (<b>C</b>) Ulnar deviation and (<b>D</b>) Radial deviation.</p> "> Figure 7
<p>FTIR results.</p> "> Figure 8
<p>Manufacturing results: (<b>a</b>) Orthosis printed in 90° degrees. (<b>b</b>) Orthosis printed in 45° to the left. (<b>c</b>) Orthosis printed in 75° to the front.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Solution Concept
2.2. Material and Characterization
2.2.1. Tensile Test of PETG Filaments
2.2.2. Fourier-Transform Infrared Spectroscopy (FTIR)
2.2.3. Differential Scanning Calorimetry (DSC)
2.3. Design of WHO
2.4. Manufacturing Process
2.5. Mechanical Tests of WHO
3. Results and Discussion
3.1. Material Characteriztion
3.1.1. Tensile Test
3.1.2. FTIR
3.1.3. DSC
3.2. Manufacturing Results
3.3. Mechanical Tests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benegas, E.; Ayala, A.; Arce, R.; Morel, Z.; Acosta-Colmán, I.; Stanley, I. Frequency of Tendinitis de De Quervain in medical students and its relationship with the use of smartphones. Rev. Paraguaya Reumatol. 2019, 5, 3–7. [Google Scholar] [CrossRef]
- Kaçmaz, İ.E.; Koca, A.; Basa, C.D.; Zhamilov, V.; Reisoğlu, A. Efficacy of Kinesiologic Taping in de Quervain’s Tenosynovitis: Case Series and Review of Literature. Med. J. Bakirkoy 2019, 15, 27–31. [Google Scholar] [CrossRef]
- Ferrara, P.E.; Codazza, S.; Cerulli, S.; Maccauro, G.; Ferriero, G.; Ronconi, G. Physical modalities for the conservative treatment of wrist and hand’s tenosynovitis: A systematic review. In Seminars in Arthritis and Rheumatism; Elsevier: Amsterdam, The Netherlands, 2020; Volume 50, pp. 1280–1290. [Google Scholar]
- Rodas Velastegui, E.D.; Yánez Moran, A.D. Tratamiento Ortopédico en Tenosinovitis de Quervain. B.S. Thesis, Universidad Nacional de Chimborazo, Riobamba, Ecuador, 2023. [Google Scholar]
- Weng, W. Symptoms, Diagnosis, and Treatments of Stenosing Tenosynovitis. Highlights Sci. Eng. Technol. 2023, 36, 246–253. [Google Scholar] [CrossRef]
- Das, R.; Bimol, N.; Deb, D.; Meethal, S.; Singh, Y. Efficacy of thumb abduction orthosis versus local methylprednisolone acetate injection in De Quervain’s tenosynovitis: A randomized controlled trial. J. Med. Soc. 2021, 35, 35. [Google Scholar] [CrossRef]
- Cavaleri, R.; Schabrun, S.M.; Te, M.; Chipchase, L.S. Hand therapy versus corticosteroid injections in the treatment of de Quervain’s disease: A systematic review and meta-analysis. J. Hand Ther. 2016, 29, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Schlégl, Á.T.; Told, R.; Kardos, K.; Szöke, A.; Ujfalusi, Z.; Maróti, P. Evaluation and Comparison of Traditional Plaster and Fiberglass Casts with 3D-Printed PLA and PLA–CaCO3 Composite Splints for Bone-Fracture Management. Polymers 2022, 14, 3571. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, D.A.; Schofield, K.A. Utilization of 3D printed orthoses for musculoskeletal conditions of the upper extremity: A systematic review. J. Hand Ther. 2021, 36, 166–178. [Google Scholar] [CrossRef] [PubMed]
- León, M.; Marcos-Fernández, Á.; Rodríguez-Hernández, J. 3D Printing of Thermoplastic Elastomers: Role of the Chemical Composition and Printing Parameters in the Production of Parts with Controlled Energy Absorption and Damping Capacity. Polymers 2021, 13, 3551. [Google Scholar] [CrossRef] [PubMed]
- Rivlin, M.; Beredjiklian, P.; Vaccaro, A.R. 3D Printed Splint and Cast (Patent No. US10758396B2); US Patent and Trademark Office: Washington, DC, USA, 2017. [Google Scholar]
- International Committee of the Red Cross (ICRC). Manufacturing Guidelines. Upper Limb Orthoses—Physical Rehabilitation Programme; ICRC: Geneva, Switzerland, 2014. [Google Scholar]
- Filamento PETG: Características y Propiedades. Available online: https://dynapro3d.com/filamento-petg-caracteristicas-y-propiedades/ (accessed on 4 December 2023).
- Kumar, R.; Sharma, H.; Saran, C.; Tripathy, T.S.; Sangwan, K.S.; Herrmann, C. A Comparative Study on the Life Cycle Assessment of a 3D Printed Product with PLA, ABS & PETG Materials. Procedia CIRP 2022, 107, 15–20. [Google Scholar]
- Vlah, D.; Žavbi, R.; Vukašinovic’, N. Evaluation of topology optimization and generative design tools as support for conceptual design. Proc. Des. Soc. DESIGN Conf. 2020, 1, 451–460. [Google Scholar] [CrossRef]
- Maurad, W.U.C.; Tenesaca, C.I.C. Desarrollo de un Mecanismo De muñeca con dos grados de Libertad para una Prótesis Biomecánica de Mano. Bachelor’s thesis, Universidad Politécnica Salesiana, Cuenca, Ecuador, 2018. [Google Scholar]
- Sepahi, M.T.; Abusalma, H.; Jovanovic, V.; Eisazadeh, H. Mechanical properties of 3D-printed parts made of polyethylene terephthalate glycol. J. Mater. Eng. Perform 2021, 30, 6851–6861. [Google Scholar] [CrossRef]
- Plewa, K.; Potvin, J.R.; Dickey, J.P. Wrist rotations about one or two axes affect maximum wrist strength. Appl. Ergon. 2016, 53, 152–160. [Google Scholar] [CrossRef] [PubMed]
PETG | PETG vs. PLA | PETG vs. ABS |
---|---|---|
Resistance and durability | Greater flexibility | Greater ease of printing |
Glass-like transparency | and mechanical resistance | (lower printing temperature) |
UV resistance | ||
Recyclable material | ||
Waterproof Material |
Parameter | Unit | Value |
---|---|---|
Layer height | mm | 0.2 |
Nozzle temperature | °C | 232 |
Printing speed | mm/s | 40 |
Walls | Lines | 3 |
Infill | % | 5 |
Mechanical Properties | Value | Std. Dev | Unit |
---|---|---|---|
Young’s modulus | 1900 | 128 | MPa |
Tensile strength | 44.2 | 8.3 | MPa |
Wavelength (cm−1) | Possible Assignment |
---|---|
2927–2854 | C-H stretching (methylene and methyl) |
11714 | C=O stretching (ester) |
1407 | CH2 flexion |
1241 | Ester group |
792 | Benzene ring |
Inclination | 90° | 45° | 75° |
---|---|---|---|
Printing time | 21:44 h | 24:10 h | 22:05 h |
Material consumed | 142.8 g | 144.6 g | 143.2 g |
3D Printing Orientation | Force (N) | Force (kgf) |
---|---|---|
75° | 344.7 | 35.1 |
45° | 399.0 | 40.7 |
90° | 407.5 | 41.5 |
Movement | Force (N) | Force (kgf) |
---|---|---|
Flexion | 407.5 | 41.5 |
Extension | 217.7 | 22.2 |
Ulnar | 235.9 | 24.1 |
Radial | 345.5 | 35.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franco, S.; Ramos, M.; Cordova, R.; Ochoa, E.; Ccama, G.; Molina, A. Design, Manufacturing and Mechanical Evaluation of a 3D Printed Customized Wrist-Hand Orthosis for the Treatment of De Quervain Tenosynovitis. Eng. Proc. 2025, 83, 2. https://doi.org/10.3390/engproc2025083002
Franco S, Ramos M, Cordova R, Ochoa E, Ccama G, Molina A. Design, Manufacturing and Mechanical Evaluation of a 3D Printed Customized Wrist-Hand Orthosis for the Treatment of De Quervain Tenosynovitis. Engineering Proceedings. 2025; 83(1):2. https://doi.org/10.3390/engproc2025083002
Chicago/Turabian StyleFranco, Sofia, Mauricio Ramos, Renzo Cordova, Emilio Ochoa, Gianella Ccama, and Andoni Molina. 2025. "Design, Manufacturing and Mechanical Evaluation of a 3D Printed Customized Wrist-Hand Orthosis for the Treatment of De Quervain Tenosynovitis" Engineering Proceedings 83, no. 1: 2. https://doi.org/10.3390/engproc2025083002
APA StyleFranco, S., Ramos, M., Cordova, R., Ochoa, E., Ccama, G., & Molina, A. (2025). Design, Manufacturing and Mechanical Evaluation of a 3D Printed Customized Wrist-Hand Orthosis for the Treatment of De Quervain Tenosynovitis. Engineering Proceedings, 83(1), 2. https://doi.org/10.3390/engproc2025083002