Muscle Networks Dynamic in Demanding Postural Tasks and Visual Feedback Privation: A Preliminary Study †
<p>Experimental protocol. (<b>A</b>) Schematic representation of the three postures evaluated and the corresponding base of support. From left to right: standing feet apart (SFA), standing feet together (SFT), and tandem stance (T). (<b>B</b>) EMG electrodes in bipolar configuration were situated over 6 muscles (both sides): tibialis anterior (TA), gastrocnemius medialis (GM), vastus medialis (VM), rectus femoris (RF), biceps femoris (BF), and tensor fasciae latae (TFL). Note that GM, BF, and ESP are located at the back of the subjects’ legs. Reference electrodes (ref) were situated over the heel (both sides).</p> "> Figure 2
<p>Equipment and EMG signals. Images of the equipment used for the experimental protocol and an example of the signals obtained.</p> "> Figure 3
<p>Intermuscular coherence procedure. <b>Left</b> and <b>Middle</b> panels: mean auto-spectrum of TFL muscles. <b>Right</b> panel: cross-spectrum and frequency bands delimited. In white: beta frequency band.</p> "> Figure 4
<p>Connectivity matrix obtained for the 3 participants in beta frequency band. The values inside the colored boxes are IMC corresponding to T-EC posture. The colored scale on the right indicates the connectivity strength between two muscles under this postural condition. From left to right: subjects 1 to 3.</p> "> Figure 5
<p>IMC analysis in beta band. Muscle networks generated during different conditions to stabilize the posture. The human figures were standardized in one posture (SFA) to clearly show the connections. SFA: Standing with feet apart. SFT: Standing with feet together. EO: Eyes open. EC: Eyes closed. Thicker and darker lines represent stronger connections and greater number of connections corresponds to larger size of the nodes (circles).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Protocol
2.2. Pre-Processing
2.3. Muscle Networks Analysis
3. Results
4. Discussion and Conclusions
5. Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- da Silva, D.A.; Branco, N.F.L.C.; Mesquita, L.S.d.A.; Branco, H.M.G.C.; Barreto, G.d.A. Electromyography and dynamometry in the prediction of risk of falls in the elderly using machine learning tools. Biomed. Signal Process. Control. 2024, 88, 105635. [Google Scholar] [CrossRef]
- Nnodim, J.O.; Yung, R.L. Balance and its Clinical Assessment in Older Adults. J. Geriatr. Med. Gerontol. 2015, 1, 003. [Google Scholar] [CrossRef] [PubMed]
- Bizzi, E.; Cheung, V.C.K. The neural origin of muscle synergies. Front. Comput. Neurosci. 2013, 7, 51. [Google Scholar] [CrossRef] [PubMed]
- d’Avella, A.; Saltiel, P.; Bizzi, E. Combinations of muscle synergies in the construction of a natural motor behavior. Nat. Neurosci. 2003, 6, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Torres-Oviedo, G.; Ting, L.H. Muscle synergies characterizing human postural responses. J. Neurophysiol. 2007, 98, 2144–2156. [Google Scholar] [CrossRef] [PubMed]
- Delcamp, C.; Gasq, D.; Cormier, C.; Amarantini, D. Corticomuscular and intermuscular coherence are correlated after stroke: A simplified motor control? Brain Commun. 2023, 5, fcad187. [Google Scholar] [CrossRef] [PubMed]
- Laine, C.M.; Valero-Cuevas, F.J. Intermuscular coherence reflects functional coordination. J. Neurophysiol. 2017, 118, 1775–1783. [Google Scholar] [CrossRef]
- Dideriksen, J.L.; Negro, F.; Falla, D.; Kristensen, S.R.; Mrachacz-Kersting, N.; Farina, D. Coherence of the surface EMG and common synaptic input to motor neurons. Front. Hum. Neurosci. 2018, 12, 207. [Google Scholar] [CrossRef]
- Farmer, S.F.; Bremner, F.D.; Halliday, D.M.; Rosenberg, J.R.; A Stephens, J. The frequency content of common synaptic inputs to motoneurones studied during voluntary isometric contraction in man. J. Physiol. 1993, 470, 127–155. [Google Scholar] [CrossRef] [PubMed]
- Boonstra, T.W.; Roerdink, M.; Daffertshofer, A.; van Vugt, B.; van Werven, G.; Beek, P.J. Low-alcohol doses reduce common 10- to 15-Hz input to bilateral leg muscles during quiet standing. J. Neurophysiol. 2008, 100, 2158–2164. [Google Scholar] [CrossRef] [PubMed]
- Boonstra, T.W.; Daffertshofer, A.; Roerdink, M.; Flipse, I.; Groenewoud, K.; Beek, P.J. Bilateral motor unit synchronization of leg muscles during a simple dynamic balance task. Eur. J. Neurosci. 2009, 29, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Walker, S.; Piitulainen, H.; Manlangit, T.; Avela, J.; Baker, S.N. Older adults show elevated intermuscular coherence in eyes-open standing but only young adults increase coherence in response to closing the eyes. Exp. Physiol. 2020, 105, 1000–1011. [Google Scholar] [CrossRef] [PubMed]
- Nandi, T.; Hortobágyi, T.; van Keeken, H.G.; Salem, G.J.; Lamoth, C.J.C. Standing task difficulty related increase in agonist-agonist and agonist-antagonist common inputs are driven by corticospinal and subcortical inputs respectively. Sci. Rep. 2019, 9, 2439. [Google Scholar] [CrossRef] [PubMed]
- Nojima, I.; Suwa, Y.; Sugiura, H.; Noguchi, T.; Tanabe, S.; Mima, T.; Watanabe, T. Smaller muscle mass is associated with increase in EMG–EMG coherence of the leg muscle during unipedal stance in elderly adults. Hum. Mov. Sci. 2020, 71, 102614. [Google Scholar] [CrossRef] [PubMed]
- Boonstra, T.W.; Danna-Dos-Santos, A.; Xie, H.-B.; Roerdink, M.; Stins, J.F.; Breakspear, M. Muscle networks: Connectivity analysis of EMG activity during postural control. Sci. Rep. 2016, 5, 17830. [Google Scholar] [CrossRef] [PubMed]
- A Conway, B.; Halliday, D.M.; Farmer, S.F.; Shahani, U.; Maas, P.; I Weir, A.; Rosenberg, J.R. Synchronization between motor cortex and spinal motoneuronal pool during the performance of a maintained motor task in man. J. Physiol. 1995, 489, 917–924. [Google Scholar] [CrossRef]
- Farmer, S.F. Rhythmicity, synchronization and binding in human and primate motor systems. J. Physiol. 1998, 509, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Grosse, P.; Cassidy, M.; Brown, P. EEG–EMG, MEG–EMG and EMG–EMG frequency analysis: Physiological principles and clinical applications. Clin. Neurophysiol. 2002, 113, 1523–1531. [Google Scholar] [CrossRef]
- Degani, A.M.; Leonard, C.T.; Danna-Dos-Santos, A. The effects of aging on the distribution and strength of correlated neural inputs to postural muscles during unperturbed bipedal stance. Exp. Brain Res. 2020, 238, 1537–1553. [Google Scholar] [CrossRef]
- Watanabe, T.; Saito, K.; Ishida, K.; Tanabe, S.; Nojima, I. Coordination of plantar flexor muscles during bipedal and unipedal stances in young and elderly adults. Exp. Brain Res. 2018, 236, 1229–1239. [Google Scholar] [CrossRef]
- Watanabe, T.; Saito, K.; Ishida, K.; Tanabe, S.; Nojima, I. Agerelated declines in the ability to modulate common input to bilateral and unilateral plantar flexors during forward postural lean. Front. Hum. Neurosci. 2018, 12, 254. [Google Scholar] [CrossRef]
- Watanabe, T.; Saito, K.; Ishida, K.; Tanabe, S.; Nojima, I. Fatigue-induced decline in low-frequency common input to bilateral and unilateral plantar flexors during quiet standing. Neurosci. Lett. 2018, 686, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Minamisawa, T.; Chiba, N.; Suzuki, E. Intra- and intermuscular coherence and body acceleration control in older adults during bipedal stance. Geriatrics 2021, 6, 114. [Google Scholar] [CrossRef] [PubMed]
- Formaggio, E.; Masiero, S.; Volpe, D.; Demertzis, E.; Gallo, L.; Del Felice, A. Lack of inter-muscular coherence of axial muscles in Pisa syndrome. Neurol. Sci. 2019, 40, 1465–1468. [Google Scholar] [CrossRef] [PubMed]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G.G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Christou, E.; Neto, O. Identification of Oscillations in Muscle Activity From Surface EMG: Reply to Halliday and Farmer. J. Neurophysiol. 2010, 103, 3548–3549. [Google Scholar] [CrossRef]
- Jonsson, E.; Henriksson, M.; Hirschfeld, H. Age-related differences in postural adjustments in connection with different tasks involving weight transfer while standing. Gait Posture 2007, 26, 508–515. [Google Scholar] [CrossRef] [PubMed]
- Bigot, J.; Longcamp, M.; Dal Maso, F.; Amarantini, D. A new statistical test based on the wavelet cross-spectrum to detect time–frequency dependence between non-stationary signals: Application to the analysis of cortico-muscular interactions. NeuroImage 2011, 55, 1504–1518. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albarracín, A.L.; Farfán, F.D.; Cano, L.A.; Romero-Ante, J.D.; Montenegro-Bravo, J.S.; Fernandez-Jover, E. Muscle Networks Dynamic in Demanding Postural Tasks and Visual Feedback Privation: A Preliminary Study. Eng. Proc. 2024, 81, 6. https://doi.org/10.3390/engproc2024081006
Albarracín AL, Farfán FD, Cano LA, Romero-Ante JD, Montenegro-Bravo JS, Fernandez-Jover E. Muscle Networks Dynamic in Demanding Postural Tasks and Visual Feedback Privation: A Preliminary Study. Engineering Proceedings. 2024; 81(1):6. https://doi.org/10.3390/engproc2024081006
Chicago/Turabian StyleAlbarracín, Ana Lía, Fernando Daniel Farfán, Leonardo Ariel Cano, Juan D. Romero-Ante, Juan S. Montenegro-Bravo, and Eduardo Fernandez-Jover. 2024. "Muscle Networks Dynamic in Demanding Postural Tasks and Visual Feedback Privation: A Preliminary Study" Engineering Proceedings 81, no. 1: 6. https://doi.org/10.3390/engproc2024081006
APA StyleAlbarracín, A. L., Farfán, F. D., Cano, L. A., Romero-Ante, J. D., Montenegro-Bravo, J. S., & Fernandez-Jover, E. (2024). Muscle Networks Dynamic in Demanding Postural Tasks and Visual Feedback Privation: A Preliminary Study. Engineering Proceedings, 81(1), 6. https://doi.org/10.3390/engproc2024081006