A Short Overview of the Formulation of Cellulose-Based Hydrogels and Their Biomedical Applications †
<p>The chemical structure of cellulose—a linear polymer composed of β-D-glucopyranose units covalently linked through (1→4) glycosidic bonds. (Reprinted from Chen et al., 2022 [<a href="#B10-engproc-81-00003" class="html-bibr">10</a>]. Copyright © 2022 MDPI under the terms and conditions of the Creative Commons Attribution license.)</p> "> Figure 2
<p>Some properties of the developed chitosan/HPMC/glycerol hydrogel: (<b>A</b>) photographs of the hydrogel in sol (25 °C) and gel state (32 °C); (<b>B</b>) thermogelation properties; (<b>C</b>) in vitro cytotoxicity results after 48 h incubation. * Significant differences compared to the positive control (<span class="html-italic">p</span> < 0.01). (Reprinted and adapted with permission from Wang et al., 2016 [<a href="#B55-engproc-81-00003" class="html-bibr">55</a>]. Copyright © 2016 Elsevier).</p> "> Figure 3
<p>(<b>A</b>) 3D-bioprinted constructs as a function of CMC/alginate hydrogel formulations; (<b>B</b>) comparison of cell viability in alginate and CMC/alginate hydrogels at different times. * Significant differences between alginate and CMC/alginate (<span class="html-italic">p</span> = 0.05); (<b>C</b>) cell-laden scaffold and filament. (Reprinted and adapted from Habib et al., 2018 [<a href="#B60-engproc-81-00003" class="html-bibr">60</a>]. Copyright © 2018 MDPI under the terms and conditions of the Creative Commons Attribution license).</p> "> Figure 4
<p>(<b>A</b>) Photographs of various NFC/gellan gum hydrogel-based inks with different layer counts following crosslinking; (<b>B</b>) micrographs of morphologies of the different freeze-dried printed structures. Red arrows indicate the presence of pores; (<b>C</b>) cell viability of NFC/gellan gum hydrogel-based inks (dotted line: cell viabilities were all well above the 70% cell viability threshold). * Significant differences compared to the control (<span class="html-italic">p</span> < 0.05).(Reprinted and adapted with permission from Lameirinhas et al., 2023 [<a href="#B61-engproc-81-00003" class="html-bibr">61</a>]. Copyright © 2023 Elsevier).</p> ">
Abstract
:1. Introduction
2. Cellulose Derivatives
3. Cellulose Hydrogels
3.1. Key Potential Areas of Exploration for Cellulose Hydrogels
3.2. Cellulose-Based Hydrogel Formulation and Applications
3.2.1. Drug Delivery Systems
3.2.2. Wound Healing
3.2.3. Tissue Engineering
3.2.4. Three-Dimensional Bioprinting
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3D | Three-dimensional |
aHA | Aminated hyaluronic acid |
BC | Bacterial cellulose |
CA | Cellulose acetate |
CAB | Cellulose acetobutyrate |
CMC | Carboxymethylcellulose |
CN | Nitrocellulose |
CS | Cellulose sulfate |
DAC | Cellulose dialdehyde |
DCC | Cellulose dicarboxylic acid |
EC | Ethylcellulose |
EDC | 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide |
HEC | Hydroxyethylcellulose |
HPC | Hydroxypropylcellulose |
HPMC | Hydroxypropylmethylcellulose |
HPMCP | Hydroxypropylmethylcellulose phthalate |
MC | Methylcellulose |
NFC | Nanofibrillated cellulose |
QC | Quaternized chitosan |
TOCNF | 2,2,6,6-Tetramethylpiperidine-1-oxyl-oxidized cellulose nanofibrils |
References
- Vinatier, C.; Gauthier, O.; Fatimi, A.; Merceron, C.; Masson, M.; Moreau, A.; Moreau, F.; Fellah, B.; Weiss, P.; Guicheux, J. An injectable cellulose-based hydrogel for the transfer of autologous nasal chondrocytes in articular cartilage defects. Biotechnol. Bioeng. 2009, 102, 1259–1267. [Google Scholar] [CrossRef] [PubMed]
- Caló, E.; Khutoryanskiy, V.V. Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J. 2015, 65, 252–267. [Google Scholar] [CrossRef]
- Weiss, P.; Fatimi, A.; Guicheux, J.; Vinatier, C. Hydrogels for cartilage tissue engineering. In Biomedical Applications of Hydrogels Handbook, Ottenbrite, R.M., Park, K., Okano, T., Eds.; Springer: New York, NY, USA, 2010; pp. 247–268. [Google Scholar]
- Sánchez-Cid, P.; Jiménez-Rosado, M.; Romero, A.; Pérez-Puyana, V. Novel Trends in Hydrogel Development for Biomedical Applications: A Review. Polymers 2022, 14, 3023. [Google Scholar] [CrossRef] [PubMed]
- Bustamante-Torres, M.; Romero-Fierro, D.; Arcentales-Vera, B.; Palomino, K.; Magaña, H.; Bucio, E. Hydrogels Classification According to the Physical or Chemical Interactions and as Stimuli-Sensitive Materials. Gels 2021, 7, 182. [Google Scholar] [CrossRef] [PubMed]
- He, Z.-J.; Chen, K.; Liu, Z.-H.; Li, B.-Z.; Yuan, Y.-J. Valorizing renewable cellulose from lignocellulosic biomass toward functional products. J. Clean. Prod. 2023, 414, 137708. [Google Scholar] [CrossRef]
- Zhong, C. Industrial-Scale Production and Applications of Bacterial Cellulose. Front. Bioeng. Biotechnol. 2020, 8, 605374. [Google Scholar] [CrossRef] [PubMed]
- Pandey, J.K.; Takagi, H.; Nakagaito, A.N.; Saini, D.R.; Ahn, S.-H. An overview on the cellulose based conducting composites. Compos. Part B Eng. 2012, 43, 2822–2826. [Google Scholar] [CrossRef]
- Barzegar, S.; Aryaie Monfared, M.H.; Hubbe, M.A. Cellulose and lignin as propitious candidates for preparation of hydrogels for pharmaceutical applications. Mater. Today Commun. 2022, 33, 104617. [Google Scholar] [CrossRef]
- Chen, C.; Xi, Y.; Weng, Y. Recent Advances in Cellulose-Based Hydrogels for Tissue Engineering Applications. Polymers 2022, 14, 3335. [Google Scholar] [CrossRef]
- Moohan, J.; Stewart, S.A.; Espinosa, E.; Rosal, A.; Rodríguez, A.; Larrañeta, E.; Donnelly, R.F.; Domínguez-Robles, J. Cellulose Nanofibers and Other Biopolymers for Biomedical Applications. A Review. Appl. Sci. 2020, 10, 65. [Google Scholar] [CrossRef]
- Fatimi, A. Cellulose-based hydrogels: Patent analysis. J. Res. Updates Polym. Sci. 2022, 11, 16–24. [Google Scholar] [CrossRef]
- Seddiqi, H.; Oliaei, E.; Honarkar, H.; Jin, J.; Geonzon, L.C.; Bacabac, R.G.; Klein-Nulend, J. Cellulose and its derivatives: Towards biomedical applications. Cellulose 2021, 28, 1893–1931. [Google Scholar] [CrossRef]
- Cheng, W.; Zhu, Y.; Jiang, G.; Cao, K.; Zeng, S.; Chen, W.; Zhao, D.; Yu, H. Sustainable cellulose and its derivatives for promising biomedical applications. Prog. Mater. Sci. 2023, 138, 101152. [Google Scholar] [CrossRef]
- Zainal, S.H.; Mohd, N.H.; Suhaili, N.; Anuar, F.H.; Lazim, A.M.; Othaman, R. Preparation of cellulose-based hydrogel: A review. J. Mater. Res. Technol. 2021, 10, 935–952. [Google Scholar] [CrossRef]
- Aziz, T.; Farid, A.; Haq, F.; Kiran, M.; Ullah, A.; Zhang, K.; Li, C.; Ghazanfar, S.; Sun, H.; Ullah, R.; et al. A Review on the Modification of Cellulose and Its Applications. Polymers 2022, 14, 3206. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Ngai, T. Recent Advances in Chemically Modified Cellulose and Its Derivatives for Food Packaging Applications: A Review. Polymers 2022, 14, 1533. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Mosquera-Giraldo, L.I.; Troutman, J.; Skogstad, B.; Taylor, L.S.; Edgar, K.J. Amphiphilic hydroxyalkyl cellulose derivatives for amorphous solid dispersion prepared by olefin cross-metathesis. Polym. Chem. 2016, 7, 4953–4963. [Google Scholar] [CrossRef]
- Liang, H.; Yin, D.; Shi, L.; Liu, Y.; Hu, X.; Zhu, N.; Guo, K. Surface modification of cellulose via photo-induced click reaction. Carbohydr. Polym. 2023, 301, 120321. [Google Scholar] [CrossRef] [PubMed]
- Shefa, A.A.; Amirian, J.; Kang, H.J.; Bae, S.H.; Jung, H.-I.; Choi, H.-J.; Lee, S.Y.; Lee, B.-T. In vitro and in vivo evaluation of effectiveness of a novel TEMPO-oxidized cellulose nanofiber-silk fibroin scaffold in wound healing. Carbohydr. Polym. 2017, 177, 284–296. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, P.; Musa, S.M.; Mai, C.; Zhang, K. Dialdehyde Cellulose as a Bio-Based Robust Adhesive for Wood Bonding. ACS Sustain. Chem. Eng. 2019, 7, 10452–10459. [Google Scholar] [CrossRef]
- Isogai, A.; Hänninen, T.; Fujisawa, S.; Saito, T. Review: Catalytic oxidation of cellulose with nitroxyl radicals under aqueous conditions. Prog. Polym. Sci. 2018, 86, 122–148. [Google Scholar] [CrossRef]
- Kim, J.; Rackstraw, N.B.; Weinstein, T.J.; Reiner, B.; Leal, L.; Ogawa, K.; Dauenhauer, P.J.; Reineke, T.M. Cellulose Etherification with Glycidol for Aqueous Rheology Modification. ACS Appl. Polym. Mater. 2024, 6, 6714–6725. [Google Scholar] [CrossRef]
- Heinze, T.; Liebert, T. Unconventional methods in cellulose functionalization. Prog. Polym. Sci. 2001, 26, 1689–1762. [Google Scholar] [CrossRef]
- Wan, Y.; Zhang, W.; Chen, R.; Zhang, L.; Zhang, Y. A novel cellulose ether cross-linking modification and its effect mechanism on the properties of cementitious materials. Constr. Build. Mater. 2024, 447, 138150. [Google Scholar] [CrossRef]
- Lee, H.; Nam Kung, D.C.; Kang, S.W. Preparation of Porous Hydroxyethyl Cellulose Materials to Utilize Lactic Acid with Vacuum-Assisted Process. Molecules 2023, 28, 3702. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, X.; Xie, Y.; Zhang, K. Functional nanomaterials through esterification of cellulose: A review of chemistry and application. Cellulose 2018, 25, 3703–3731. [Google Scholar] [CrossRef]
- Xiao, B.; Qian, Y.; Li, X.; Tao, Y.; Yi, Z.; Jiang, Q.; Luo, Y.; Yang, J. Enhancing the stability of planar perovskite solar cells by green and inexpensive cellulose acetate butyrate. J. Energy Chem. 2023, 76, 259–265. [Google Scholar] [CrossRef]
- Jin, H.Y.; Xia, F.; Zhao, Y.P. Preparation of hydroxypropyl methyl cellulose phthalate nanoparticles with mixed solvent using supercritical antisolvent process and its application in co-precipitation of insulin. Adv. Powder Technol. 2012, 23, 157–163. [Google Scholar] [CrossRef]
- Kundu, R.; Mahada, P.; Chhirang, B.; Das, B. Cellulose hydrogels: Green and sustainable soft biomaterials. Curr. Res. Green Sustain. Chem. 2022, 5, 100252. [Google Scholar] [CrossRef]
- Fatimi, A.; Axelos, M.A.V.; Tassin, J.F.; Weiss, P. Rheological Characterization of Self-Hardening Hydrogel for Tissue Engineering Applications: Gel Point Determination and Viscoelastic Properties. Macromol. Symp. 2008, 266, 12–16. [Google Scholar] [CrossRef]
- Fatimi, A.; Tassin, J.F.; Quillard, S.; Axelos, M.A.; Weiss, P. The rheological properties of silated hydroxypropylmethylcellulose tissue engineering matrices. Biomaterials 2008, 29, 533–543. [Google Scholar] [CrossRef]
- Rudich, A.; Sapru, S.; Shoseyov, O. Biocompatible, Resilient, and Tough Nanocellulose Tunable Hydrogels. Nanomaterials 2023, 13, 853. [Google Scholar] [CrossRef] [PubMed]
- Ciolacu, D.E.; Nicu, R.; Ciolacu, F. Cellulose-Based Hydrogels as Sustained Drug-Delivery Systems. Materials 2020, 13, 5270. [Google Scholar] [CrossRef]
- Barman, A.; Das, M. Cellulose-Based Hydrogels for Pharmaceutical and Biomedical Applications. In Cellulose-Based Superabsorbent Hydrogels; Mondal, M.I.H., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–28. [Google Scholar]
- Tavakoli, N.; Minaiyan, M.; Heshmatipour, M.; Musavinasab, R. Transdermal iontophoretic delivery of celecoxib from gel formulation. Res. Pharm. Sci. 2015, 10, 419–428. [Google Scholar]
- Koivuniemi, R.; Hakkarainen, T.; Kiiskinen, J.; Kosonen, M.; Vuola, J.; Valtonen, J.; Luukko, K.; Kavola, H.; Yliperttula, M. Clinical Study of Nanofibrillar Cellulose Hydrogel Dressing for Skin Graft Donor Site Treatment. Adv. Wound Care 2019, 9, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Collaud, S.; Warloe, T.; Jordan, O.; Gurny, R.; Lange, N. Clinical evaluation of bioadhesive hydrogels for topical delivery of hexylaminolevulinate to Barrett’s esophagus. J. Control. Release 2007, 123, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Zhong, C. Transdermal Drug Delivery System. Granted Patent CN103330699B, 25 March 2015. [Google Scholar]
- Trexler, M.M.; Elisseeff, J.H.; Mulreany, D.; Guo, Q.; Breidenich, J.L.; Maranchi, J.P.; Graham, J.L.; Patrone, J.B.; Patchan, M.W.; Calderon-Colon, X. Wound Healing Compositions Comprising Biocompatible Cellulose Hydrogel Membranes and Methods of Use Thereof. Granted Patent US9314531B2, 19 April 2016. [Google Scholar]
- Zhou, Y.; Li, S.; Wan, T.; Fan, P.; Yang, H.; Gu, S.; Ye, D.; Tao, Y.; Xu, W. Cellulose Nanocrystal Enhanced Efficient Self-Healing Hydrogel and Preparation Method Thereof. Granted Patent CN113150319B, 5 July 2022. [Google Scholar]
- Zhong, C.; Zhao, X.; Zhang, Y.; Fazli, W.; Xie, Y.; Jia, S. Cellulose Antibacterial Hydrogel and Preparation Method Thereof. Patent Application CN110804192A, 18 February 2020. [Google Scholar]
- Gatenholm, P.; Martinez, H.; Schettino, M.; Gatenholm, E. Preparation and Applications of 3D Bioprinting Bioinks for Repair of Bone Defects, Based on Cellulose Nanofibrils Hydrogels with Natural or Synthetic Calcium Phosphate Particles. Granted Patent EP3532117B1, 2 August 2023. [Google Scholar]
- Liu, J.; Cheng, L.; Yu, S.; Sun, J. Preparation Method of Nanocellulose Bio-Printing Gel Ink. Patent Application CN110028840A, 19 July 2019. [Google Scholar]
- Fatimi, A. Exploring the patent landscape and innovation of hydrogel-based bioinks used for 3D bioprinting. Recent Adv. Drug Deliv. Formul. 2022, 16, 145–163. [Google Scholar] [CrossRef] [PubMed]
- Hachimi Alaoui, C.; Fatimi, A. A 20-year patent review and innovation trends on hydrogel-based coatings used for medical device biofabrication. J. Biomater. Sci. Polym. Ed. 2023, 34, 1255–1273. [Google Scholar] [CrossRef] [PubMed]
- Saadan, R.; Hachimi Alaoui, C.; Quraishi, K.S.; Afridi, F.; Chigr, M.; Fatimi, A. Recent Progress in Hydrogel-Based Bioinks for 3D Bioprinting: A Patent Landscape Analysis and Technology Updates. J. Res. Updates Polym. Sci. 2024, 13, 130–146. [Google Scholar] [CrossRef]
- Fatimi, A. Trends and recent patents on cellulose-based biosensors. Eng. Proc. 2022, 16, 12. [Google Scholar] [CrossRef]
- Damiri, F.; Fatimi, A.; Santos, A.C.P.; Varma, R.S.; Berrada, M. Smart stimuli-responsive polysaccharide nanohydrogels for drug delivery: A review. J. Mater. Chem. B 2023, 11, 10538–10565. [Google Scholar] [CrossRef] [PubMed]
- Damiri, F.; Fatimi, A.; Liu, Y.; Musuc, A.M.; Fajardo, A.R.; Gowda, B.H.J.; Vora, L.K.; Shavandi, A.; Okoro, O.V. Recent advances in 3D bioprinted polysaccharide hydrogels for biomedical applications: A comprehensive review. Carbohydr. Polym. 2025, 348, 122845. [Google Scholar] [CrossRef]
- Su, J.; Li, J.; Liang, J.; Zhang, K.; Li, J. Hydrogel Preparation Methods and Biomaterials for Wound Dressing. Life 2021, 11, 1016. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; He, J.; Song, K.; Guo, J.; Zhou, X.; Liu, S. Functionalization and Antibacterial Applications of Cellulose-Based Composite Hydrogels. Polymers 2022, 14, 769. [Google Scholar] [CrossRef]
- Fatimi, A.; Okoro, O.V.; Podstawczyk, D.; Siminska-Stanny, J.; Shavandi, A. Natural hydrogel-based bio-Inks for 3D bioprinting in tissue engineering: A review. Gels 2022, 8, 179. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Chen, J.; Hu, Y.; Zhang, N.; Fu, Y.; Chen, X. Tuning complexation of carboxymethyl cellulose/ cationic chitosan to stabilize Pickering emulsion for curcumin encapsulation. Food Hydrocoll. 2021, 110, 106135. [Google Scholar] [CrossRef]
- Wang, T.; Chen, L.; Shen, T.; Wu, D. Preparation and properties of a novel thermo-sensitive hydrogel based on chitosan/hydroxypropyl methylcellulose/glycerol. Int. J. Biol. Macromol. 2016, 93, 775–782. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.; Liu, L.; Xu, W.; Fan, L.; Nie, M. Preparation and characterization of aminated hyaluronic acid/oxidized hydroxyethyl cellulose hydrogel. Carbohydr. Polym. 2018, 199, 170–177. [Google Scholar] [CrossRef] [PubMed]
- El Fawal, G.F.; Abu-Serie, M.M.; Hassan, M.A.; Elnouby, M.S. Hydroxyethyl cellulose hydrogel for wound dressing: Fabrication, characterization and in vitro evaluation. Int. J. Biol. Macromol. 2018, 111, 649–659. [Google Scholar] [CrossRef] [PubMed]
- Saska, S.; Teixeira, L.N.; Tambasco de Oliveira, P.; Minarelli Gaspar, A.M.; Lima Ribeiro, S.J.; Messaddeq, Y.; Marchetto, R. Bacterial cellulose-collagen nanocomposite for bone tissue engineering. J. Mater. Chem. 2012, 22, 22102–22112. [Google Scholar] [CrossRef]
- Maharjan, B.; Park, J.; Kaliannagounder, V.K.; Awasthi, G.P.; Joshi, M.K.; Park, C.H.; Kim, C.S. Regenerated cellulose nanofiber reinforced chitosan hydrogel scaffolds for bone tissue engineering. Carbohydr. Polym. 2021, 251, 117023. [Google Scholar] [CrossRef] [PubMed]
- Habib, A.; Sathish, V.; Mallik, S.; Khoda, B. 3D Printability of Alginate-Carboxymethyl Cellulose Hydrogel. Materials 2018, 11, 454. [Google Scholar] [CrossRef] [PubMed]
- Lameirinhas, N.S.; Teixeira, M.C.; Carvalho, J.P.F.; Valente, B.F.A.; Pinto, R.J.B.; Oliveira, H.; Luís, J.L.; Pires, L.; Oliveira, J.M.; Vilela, C.; et al. Nanofibrillated cellulose/gellan gum hydrogel-based bioinks for 3D bioprinting of skin cells. Int. J. Biol. Macromol. 2023, 229, 849–860. [Google Scholar] [CrossRef] [PubMed]
Chemical Method | Cellulose Derivatives | Ref. |
---|---|---|
Oxidation | DAC, DCC, TOCNF | [20,21,22] |
Etherification | MC, EC, CMC, HPC, HEC, HPMC | [23,24,25,26] |
Esterification | CN, CA, CS, CAB, HPMCP | [13,27,28,29] |
Category | Focus Area | Highlights | Ref. |
---|---|---|---|
In vitro studies | Cell viability and proliferation | Cellulose hydrogels enhance fibroblast viability and proliferation. | [33] |
Drug release mechanisms | Demonstrated controlled drug release, suitable for sustained drug delivery systems. | [34] | |
Wound healing applications | Promote keratinocyte proliferation, aiding in skin regeneration. | [35] | |
In vivo studies | Tissue engineering | Effective in regenerating cardiac and neural tissues in animal models. | [35] |
Wound dressing efficacy | Improve wound-healing rates significantly in animal models. | [30] | |
Clinical trials | Skin regeneration | Trials assessing cellulose hydrogels for treating severe burns and skin injuries. | [36,37] |
Drug delivery systems | Ongoing trials evaluating cellulose hydrogels for targeted drug delivery. | [38] | |
Patents | Biodegradable hydrogels | Patents filed for cellulose hydrogels in drug delivery and wound care. | [39,40] |
Self-healing hydrogels | Patent applications for innovations in self-healing cellulose hydrogels for biomedical applications. | [41,42] | |
Hydrogel-based bioinks | Patents concerning the formulation of cellulose hydrogel inks for 3D bioprinting based on their ability to form 3D networks with controlled printability. | [43,44] |
Biomedical Applications | Cellulose-Based Hydrogel Formulation | Preparation | Ref. |
---|---|---|---|
Drug delivery | CMC/QC | Dissolving anionic CMC in dilute HCl solutions, followed by the addition of QC to form complexes through phase separation and subsequent neutralization. | [54] |
Chitosan/HPMC/glycerol | Blending chitosan and HPMC powders in 0.1 M AcOH, adjusting the pH to 6.8, and adding glycerol to prepare sample solutions. | [55] | |
Wound healing | Oxidized HEC/aHA | HA-HEC hydrogels were prepared by dissolving aHA and oxidized HEC in NaOH, adding a crosslinker, incubating for 24 h, and soaking in distilled water for neutralization. | [56] |
HEC/tungsten trioxide | HEC hydrogel membranes were prepared by dissolving HEC in water, crosslinking with citric acid, adding WO3, and drying the mixture in Petri dishes. | [57] | |
Tissue engineering | BC/collagen | The BC–collagen composites were prepared by incorporating collagen into BC hydrogels via esterification with Fmoc–glycine, followed by crosslinking with collagen and EDC and drying and sterilization by gamma radiation. | [58] |
CA nanofibers/chitosan | Chitosan was dissolved in AcOH, mixed with CA nanofibers, frozen, lyophilized, neutralized with NaOH, washed, and freeze-dried for scaffold preparation. | [59] | |
3D bioprinting | CMC/sodium alginate | Cellulose hydrogel-based bioinks were prepared by mixing sodium alginate and CMC solutions, followed by a gelation process to form a stable network. | [60] |
Nanofibrillated cellulose (NFC)/gellan gum | Hydrogel prepared by concentrating NFC through centrifugation, mixing it with gellan gum, and then crosslinking the mixture with CaCl2. | [61] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saadan, R.; Ihammi, A.; Chigr, M.; Fatimi, A. A Short Overview of the Formulation of Cellulose-Based Hydrogels and Their Biomedical Applications. Eng. Proc. 2024, 81, 3. https://doi.org/10.3390/engproc2024081003
Saadan R, Ihammi A, Chigr M, Fatimi A. A Short Overview of the Formulation of Cellulose-Based Hydrogels and Their Biomedical Applications. Engineering Proceedings. 2024; 81(1):3. https://doi.org/10.3390/engproc2024081003
Chicago/Turabian StyleSaadan, Raja, Aziz Ihammi, Mohamed Chigr, and Ahmed Fatimi. 2024. "A Short Overview of the Formulation of Cellulose-Based Hydrogels and Their Biomedical Applications" Engineering Proceedings 81, no. 1: 3. https://doi.org/10.3390/engproc2024081003
APA StyleSaadan, R., Ihammi, A., Chigr, M., & Fatimi, A. (2024). A Short Overview of the Formulation of Cellulose-Based Hydrogels and Their Biomedical Applications. Engineering Proceedings, 81(1), 3. https://doi.org/10.3390/engproc2024081003