Power-Yeoh: A Yeoh-Type Hyperelastic Model with Invariant I2 for Rubber-like Materials †
<p>Combined stress–strain fitting results for all three deformation modes obtained using Power-Yeoh model: (<b>a</b>) fitting to Treloar’s data [<a href="#B26-engproc-59-00104" class="html-bibr">26</a>]; (<b>b</b>) relative error variation for Treloar’s data [<a href="#B26-engproc-59-00104" class="html-bibr">26</a>]; (<b>c</b>) fitting to Zhao’s data [<a href="#B27-engproc-59-00104" class="html-bibr">27</a>]; (<b>d</b>) relative error variation with strain for Zhao’s data [<a href="#B27-engproc-59-00104" class="html-bibr">27</a>].</p> "> Figure 2
<p>Fitting results to pressure-inflation test data on an elastomeric thin-walled balloon: (<b>a</b>) description of Beatty’s experimental data [<a href="#B27-engproc-59-00104" class="html-bibr">27</a>] by the Power-Yeoh model; (<b>b</b>) relative error variation with respect to stretch.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Proposed SEDF and Its Stress–Strain Relationships under Typical Homogeneous Deformation Modes
2.2. Genetic Algorithm Approach for Determination of Material Constants
2.3. Application to Experimental Data from Mechanical Loading Tests
3. Results
3.1. Descriptive Capability of Uniaxial Tensile, Biaxial Tensile and Pure Shear Test Data
3.2. Descriptive Capability of Balloon Inflation Test Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Melly, S.K.; Liu, L.; Liu, Y.; Leng, J. A review on material models for isotropic hyperelasticity. Int. J. Mech. Syst. Dyn. 2021, 1, 71–88. [Google Scholar] [CrossRef]
- Holzapfel, G.A. Nonlinear Solid Mechanics: A Continuum Approach for Engineering; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2000. [Google Scholar]
- Adeeb, S. Introduction to Solid Mechanics; University of Alberta: Edmonton, AB, Canada, 2020. [Google Scholar]
- Bhat, S.K.; Sakata, N.; Yamada, H. Identification of uniaxial deformation behavior and its initial tangent modulus for atheromatous intima in the human carotid artery and thoracic aorta using three-parameter isotropic hyperelastic models. J. Mech. Med. Biol. 2020, 20, 2050014. [Google Scholar] [CrossRef]
- Rivlin, R.S. Large elastic deformations of isotropic materials. I. Fundamental concepts. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1948, 240, 459–490. [Google Scholar]
- Yeoh, O.H. Some forms of the strain energy function for rubber. Rubber Chem. Technol. 1993, 66, 754–771. [Google Scholar] [CrossRef]
- Gent, A.N. A new constitutive relation for rubber. Rubber Chem. Technol. 1996, 69, 59–61. [Google Scholar] [CrossRef]
- Knowles, J.K. The finite anti-plane shear field near the tip of a crack for a class of incompressible elastic solids. Int. J. Fracture 1977, 13, 611–639. [Google Scholar] [CrossRef]
- Davies, C.; De, D.K.; Thomas, A. Characterization of the behavior of rubber for engineering design purposes. 1. Stress-strain relations. Rubber Chem. Technol. 1994, 67, 716–728. [Google Scholar] [CrossRef]
- Lopez-Pamies, O. A new I1-based hyperelastic model for rubber elastic materials. CR Mec. 2010, 338, 3–11. [Google Scholar] [CrossRef]
- Hohenberger, T.W.; Windslow, R.J.; Pugno, N.M.; Busfield, J.J. A constitutive model for both low and high strain nonlinearities in highly filled elastomers and implementation with user-defined material subroutines in ABAQUS. Rubber Chem. Technol. 2019, 92, 653–686. [Google Scholar] [CrossRef]
- Fung, Y.C. Elasticity of soft tissues in simple elongation. Am. J. Physiol. 1967, 213, 1532–1544. [Google Scholar] [CrossRef]
- Demiray, H. A note on the elasticity of soft biological tissues. J. Biomech. 1972, 5, 309–311. [Google Scholar] [CrossRef] [PubMed]
- Khajehsaeid, H.; Arghavani, J.; Naghdabadi, R. A hyperelastic constitutive model for rubber-like materials. Eur. J. Mech. A/Solids 2013, 38, 144–151. [Google Scholar] [CrossRef]
- Wineman, A. Some results for generalized neo-Hookean elastic materials. Int. J. Nonlinear Mech. 2005, 40, 271–279. [Google Scholar] [CrossRef]
- Horgan, C.O.; Smayda, M.G. The importance of the second strain invariant in the constitutive modeling of elastomers and soft biomaterials. Mech. Mater. 2012, 51, 43–52. [Google Scholar] [CrossRef]
- Yaya, K.; Bechir, H.; Bremand, F. Implementation of new strain-energy density function for a grade of carbon black-filled natural rubber in finite element code. In Proceedings of the 6th International Conference on Advances in Mechanical Engineering and Mechanics (ICAMEM2015), Hammamet, Tunisia, 20–22 December 2015. [Google Scholar]
- Zhao, Z.; Mu, X.; Du, F. Modeling and Verification of a New Hyperelastic Model for Rubber-like Materials. Math. Probl. Eng. 2019, 2019, 2832059. [Google Scholar] [CrossRef]
- He, H.; Zhang, Q.; Zhang, Y.; Chen, J.; Zhang, L.; Li, F. A comparative study of 85 hyperelastic constitutive models for both unfilled rubber and highly filled rubber nanocomposite material. Nano Mater. Sci. 2022, 4, 64–82. [Google Scholar] [CrossRef]
- Beda, T. Modeling Hyperelastic Behavior of Rubber: A Novel Invariant-Based and a Review of Constitutive Models. J. Polym. Sci. B Polym. Phys. 2007, 45, 1713–1732. [Google Scholar] [CrossRef]
- Melly, S.K.; Liu, L.; Liu, Y.; Leng, J. Modified Yeoh model with improved equibiaxial loading predictions. Acta Mech. 2022, 233, 437–453. [Google Scholar] [CrossRef]
- Lateefi, M.M.; Kumar, D.; Sarangi, S. An alternative form of energy density demonstrating the severe strain-stiffening in thin spherical and cylindrical shells. Theor. Appl. Mech. Lett. 2022, 12, 100361. [Google Scholar] [CrossRef]
- Ogden, R.W.; Saccomandi, G.; Sgura, I. Fitting hyperelastic models to experimental data. Comput. Mech. 2004, 34, 484–502. [Google Scholar] [CrossRef]
- Bhat, S.K.; Yamada, H. Mechanical characterization of dissected and dilated human ascending aorta using Fung-type hyperelastic models with pre-identified initial tangent moduli for low-stress distensibility. J. Mech. Behav. Biomed. Mater. 2022, 125, 104959. [Google Scholar] [CrossRef] [PubMed]
- Blaise, B.B.; Betchewe, G.; Beda, T. Optimization of the model of Ogden energy by the genetic algorithm method. Appl. Rheol. 2019, 29, 21–29. [Google Scholar] [CrossRef]
- Treloar, L.R.G. Stress-strain data for vulcanized rubber under various types of deformation. Rubber Chem. Technol. 1944, 17, 813–825. [Google Scholar] [CrossRef]
- Zhao, F. Continuum constitutive modeling for isotropic hyperelastic materials. Adv. Pure Math. 2016, 6, 571–582. [Google Scholar] [CrossRef]
- Beatty, M.F. Topics in finite elasticity: Hyperelasticity of rubber, elastomers, and biological tissues—With examples. Appl. Mech. Rev. 1987, 40, 1699–1734. [Google Scholar] [CrossRef]
- Anssari-Benam, A.; Bucchi, A.; Saccomandi, G. Modelling the Inflation and Elastic Instabilities of Rubber-like Spherical and Cylindrical Shells Using a New Generalised Neo-Hookean Strain Energy Function. J. Elast. 2022, 151, 15–45. [Google Scholar] [CrossRef]
- WebPlotDigitizer. Available online: https://apps.automeris.io/wpd/ (accessed on 27 July 2023).
- Mangan, R.; Destrade, M. Gent models for the inflation of spherical balloons. Int. J. Nonlinear Mech. 2015, 68, 52–58. [Google Scholar] [CrossRef]
- Rugsaj, R.; Suvanjumrat, C. Finite element analysis of hyperelastic material model for non-pneumatic tire. Key Eng. Mater. 2018, 775, 554–559. [Google Scholar] [CrossRef]
- Cheng, C.; Li, S.; Wang, Y.; Jiang, X. Force and displacement transmissibility of a quasi-zero stiffness vibration isolator with geometric nonlinear damping. Nonlinear Dyn. 2017, 87, 2267–2279. [Google Scholar] [CrossRef]
- Li, L.P. Experiment analysis about mechanical properties of rubber bushing for suspension telescopic shock absorber. Appl. Mech. Mater. 2014, 670–671, 1008–1011. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhat, S.K.; A., K. Power-Yeoh: A Yeoh-Type Hyperelastic Model with Invariant I2 for Rubber-like Materials. Eng. Proc. 2023, 59, 104. https://doi.org/10.3390/engproc2023059104
Bhat SK, A. K. Power-Yeoh: A Yeoh-Type Hyperelastic Model with Invariant I2 for Rubber-like Materials. Engineering Proceedings. 2023; 59(1):104. https://doi.org/10.3390/engproc2023059104
Chicago/Turabian StyleBhat, Subraya Krishna, and Keerthan A. 2023. "Power-Yeoh: A Yeoh-Type Hyperelastic Model with Invariant I2 for Rubber-like Materials" Engineering Proceedings 59, no. 1: 104. https://doi.org/10.3390/engproc2023059104
APA StyleBhat, S. K., & A., K. (2023). Power-Yeoh: A Yeoh-Type Hyperelastic Model with Invariant I2 for Rubber-like Materials. Engineering Proceedings, 59(1), 104. https://doi.org/10.3390/engproc2023059104