Carbon-Supported Pt-SiO2 Catalysts for Oxygen Reduction Reaction in Low-Temperature Range: Rotating Disk Electrode Study
<p>XPS spectral results of (<b>a</b>) Pt 4f, (<b>b</b>) O 1s, and (<b>c</b>) Si 2p for electrocatalyst samples. Black symbols—raw data, black line—fitted data, red and blue lines—deconvoluted peaks, green line—background.</p> "> Figure 2
<p>Polarization curves of ORR and plots in Koutecky–Levich (K–L) coordinates at 0.9 V vs. RHE.</p> "> Figure 3
<p>Polarization curves of ORR for Pt/C at an electrode rotation speed of 1600 rpm over a temperature range of 1–50 °C.</p> "> Figure 4
<p>Graphs in K–L coordinates and the dependence of the number of transferred electrons (n<sub>e</sub>) on the potential for the electrocatalysts in the ORR at 50 °C.</p> "> Figure 5
<p>Arrhenius plots for electrocatalyst samples in ORR.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Electrocatalysts’ Characterization
3.2. Electrochemical Studies
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, J.; Li, Z.; Liu, T.; Zhao, S.; Guan, D.; Chen, D.; Shao, Z.; Ni, M. Morphology Control and Electronic Tailoring of CoxAy (A = P, S, Se) Electrocatalysts for Water Splitting. Chem. Eng. J. 2023, 460, 141674. [Google Scholar] [CrossRef]
- Chen, R.X.; Long, S.; He, L.; Wang, C.; Chai, F.; Kong, X.; Wan, Z.; Song, X.; Tu, Z. Performance evaluation on thermodynamics-economy-environment of PEMFC vehicle power system under dynamic condition. Energy Convers. Manag. 2022, 269, 116082. [Google Scholar] [CrossRef]
- Bagherabadi, K.M.; Skjong, S.; Pedersen, E. Dynamic modelling of PEM fuel cell system for simulation and sizing of marine power systems. Int. J. Hydrogen Energy 2022, 47, 17699–17712. [Google Scholar] [CrossRef]
- Voloshchenko, G.N.; Zasypkina, A.A.; Spasov, D.D. Model Study of a Cold Start of a Power Plant Based on a Polymer Electrolyte Membrane Fuel Cells in the Conditions of Arctic Temperatures. Nanotechnol. Russ. 2020, 15, 326–332. [Google Scholar] [CrossRef]
- Mensharapov, R.M.; Ivanova, N.A.; Spasov, D.D.; Bakirov, A.V.; Fateev, V.N. PEMFC performance at nonstandard operating conditions: A review. Int. J. Hydrogen Energy 2024, 96, 664–679. [Google Scholar] [CrossRef]
- Lei, L.; He, P.; He, P.; Tao, W.Q. A comparative study: The effect of current loading modes on the cold start-up process of PEMFC stack. Energy Convers. Manag. 2022, 251, 114991. [Google Scholar] [CrossRef]
- Gießgen, T.; Jahnke, T. Assisted cold start of a PEMFC with a thermochemical preheater: A numerical study. Appl. Energy 2023, 331, 120387. [Google Scholar] [CrossRef]
- Jiang, W.; Song, K.; Zheng, B.; Xu, Y.; Fang, R. Study on Fast Cold Start-Up Method of Proton Exchange Membrane Fuel Cell Based on Electric Heating Technology. Energies 2020, 13, 4456. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, H.; Ming, P.; Yang, D.; Li, B.; Zhang, C. Experimental study on rapid cold start-up performance of PEMFC system. Int. J. Hydrogen Energy 2023, 48, 21898–21907. [Google Scholar] [CrossRef]
- Liu, P.; Xu, S. A review of low-temperature proton exchange membrane fuel cell degradation caused by repeated freezing start. Int. J. Hydrogen Energy 2023, 48, 8216–8246. [Google Scholar] [CrossRef]
- Zhang, J.; Yuan, Y.; Gao, L.; Zeng, G.; Li, M.; Huang, H. Stabilizing Pt-Based Electrocatalysts for Oxygen Reduction Reaction: Fundamental Understanding and Design Strategies. Adv. Mater. 2021, 33, 2006494. [Google Scholar] [CrossRef]
- Zasypkina, A.A.; Ivanova, N.A.; Spasov, D.D.; Mensharapov, R.M.; Sinyakov, M.V.; Grigoriev, S.A. Recent Advances in the Development of Nanocarbon-Based Electrocatalytic/Electrode Materials for Proton Exchange Membrane Fuel Cells: A Review. Catalysts 2024, 14, 303. [Google Scholar] [CrossRef]
- Bayan, Y.; Paperzh, K.; Pankov, I.; Alekseenko, A. Influence of a carbon support on the catalytic activity and durability of the Pt-based electrocatalysts. Mater. Lett. 2024, 368, 136670. [Google Scholar] [CrossRef]
- Paperzh, K.; Alekseenko, A.; Pankov, I.; Guterman, V. Accelerated stress tests for Pt/C electrocatalysts: An ap-proach to understanding the degradation mechanisms. J. Electroanal. Chem. 2024, 952, 117972. [Google Scholar] [CrossRef]
- Alekseenko, A.; Belenov, S.; Mauer, D.; Moguchikh, E.; Falina, I.; Bayan, J.; Pankov, I.; Alekseenko, D.; Guterman, V. Activity of Platinum-Based Cathode Electrocatalysts in Oxygen Redaction for Proton-Exchange Membrane Fuel Cells: Influence of the Ionomer Content. Inorganics 2024, 12, 23. [Google Scholar] [CrossRef]
- Mensharapov, R.M.; Spasov, D.D.; Ivanova, N.A.; Zasypkina, A.A.; Smirnov, S.A.; Grigoriev, S.A. Screening of Carbon-Supported Platinum Electrocatalysts Using Frumkin Adsorption Isotherms. Inorganics 2023, 11, 103. [Google Scholar] [CrossRef]
- Hussain, S.; Erikson, H.; Kongi, N.; Sarapuu, A.; Solla-Gullón, J.; Maia, G.; Kannan, A.M.; Alonso-Vante, N.; Tammeveski, K. Oxygen reduction reaction on nanostructured Pt-based electrocatalysts: A review. Int. J. Hydrogen Energy 2020, 45, 31775–31797. [Google Scholar] [CrossRef]
- Jithul, K.P.; Tamilarasi, B.; Pandey, J. Electrocatalyst for the oxygen reduction reaction (ORR): Towards an active and stable electrocatalyst for low-temperature PEM fuel cell. Ionics 2024, 30, 6757–6787. [Google Scholar] [CrossRef]
- Xu, G.; Dong, X.; Xue, B.; Huang, J.; Wu, J.; Cai, W. Recent Approaches to Achieve High Temperature Operation of Nafion Membranes. Energies 2023, 16, 1565. [Google Scholar] [CrossRef]
- Rodríguez-Garnica, P.; Alatorre-Ordaz, A.; Pierna, Á.R.; Guereño, M.S.; Martín, A.L. Silica based hybrid organic-inorganic materials for PEMFC application. Int. J. Hydrogen Energy 2020, 45, 16698–16707. [Google Scholar] [CrossRef]
- Niu, J.; Zhang, S.; Li, Y.; Li, X.; Zhang, J.; Lu, S.; He, Q. Effects of microstructure on the retention of proton conductivity of Nafion/SiO2 composite membranes at elevated temperatures: An in situ SAXS study. Polymer 2023, 273, 125869. [Google Scholar] [CrossRef]
- Meyer, Q.; Yang, C.; Cheng, Y.; Zhao, C. Overcoming the Electrode Challenges of High-Temperature Proton Exchange Membrane Fuel Cells. Electrochem. Energy Rev. 2023, 6, 16. [Google Scholar] [CrossRef]
- Feng, K.; Tang, B.; Wu, P. Sulfonated graphene oxide–silica for highly selective Nafion-based proton exchange membranes. J. Mater. Chem. A 2014, 2, 16083–16092. [Google Scholar] [CrossRef]
- Liu, S.; Yu, J.; Hao, Y.; Gao, F.; Zhou, M.; Zhao, L. Impact of SiO2 Modification on the Performance of NafionComposite Membrane. Int. J. Polym. Sci. 2024, 1, 6309923. [Google Scholar] [CrossRef]
- Ganesan, A.; Narayanasamy, M.; Shunmugavel, K. Self-humidifying manganese oxide-supported Pt electrocatalysts for highly-durable PEM fuel cells. Electrochim. Acta 2018, 285, 47–59. [Google Scholar] [CrossRef]
- Amiinu, I.S.; Lin, Y.; Tang, H.; Pan, M.; Zhang, H. Metal Oxides as Water Retention Materials For Low Humidity Proton Exchange Membrane Applications. New Dev. Met. Oxides Res. 2013, 2, 81–108. [Google Scholar]
- Blesa, M.A.; Weisz, A.D.; Morando, P.J.; Salfity, J.A.; Magaz, G.E.; Regazzoni, A.E. The interaction of metal oxide surfaces with complexing agents dissolved in water. Coord. Chem. Rev. 2000, 196, 31–63. [Google Scholar] [CrossRef]
- Leão, V.N.S.; Araújo, E.S. Metal Oxide Heteronanostructures Prepared by Electrospinning for the Humidity Detection: Fundamentals and Perspectives: 07. J. Mater. Sci. Chem. Eng. 2019, 7, 43. [Google Scholar] [CrossRef]
- Miao, Z.; Yu, H.; Song, W.; Hao, L.; Shao, Z.; Shen, Q.; Hou, J.; Yi, B. Characteristics of proton exchange membrane fuel cells cold start with silica in cathode catalyst layers. Int. J. Hydrogen Energy 2010, 35, 5552–5557. [Google Scholar] [CrossRef]
- Dhanasekaran, P.; Selvaganesh, S.V.; Rathishkumar, A.; Bhat, S.D. Designing self-humidified platinum anchored silica decorated carbon electrocatalyst for boosting the durability and performance of polymer electrolyte fuel cell stack. Int. J. Hydrogen Energy 2021, 46, 8143–8155. [Google Scholar] [CrossRef]
- Dundar, F.; Uzunoglu, A.; Ata, A.; Wynne, K.J. Durability of carbon–silica supported catalysts for proton exchange membrane fuel cells. J. Power Sources 2012, 202, 184–189. [Google Scholar] [CrossRef]
- Wu, A.; Wei, G.; Min, Y.; Huang, J.; Gao, A.; Wang, L. Enhanced cell performance: Incorporation of hydrophobic mesoporous silica into the triple-phase boundary of catalyst layer. J. Power Sources 2024, 602, 234142. [Google Scholar] [CrossRef]
- Kong, Z.; Wu, J.; Liu, Z.; Yan, D.; Wu, Z.; Zhong, C. Advanced electrocatalysts for fuel cells: Evolution of active sites and synergistic properties of catalysts and carrier materials. Exploration 2023. [Google Scholar] [CrossRef]
- Lee, D.W.; Yuk, S.; Choi, S.; Lee, D.-H.; Doo, G.; Hyun, J.; Kwen, J.; Kim, J.Y.; Kim, H.-T. Preferential Protection of Low Coordinated Sites in Pt Nanoparticles for Enhancing Durability of Pt/C Catalyst. Energies 2021, 14, 1419. [Google Scholar] [CrossRef]
- Seselj, N.; Alfaro, S.M.; Bompolaki, E.; Cleemann, J.N.; Torres, T.; Azizi, K. Catalyst Development for High-Temperature Polymer Electrolyte Membrane Fuel Cell (HT-PEMFC) Applications. Adv. Mater. 2023, 35, 2302207. [Google Scholar] [CrossRef]
- Park, K.; Ohnishi, T.; Goto, M.; So, M.; Takenaka, S.; Tsuge, Y.; Inoue, G. Improvement of cell performance in catalyst layers with silica-coated Pt/carbon catalysts for polymer electrolyte fuel cells. Int. J. Hydrogen Energy 2020, 45, 1867–1877. [Google Scholar] [CrossRef]
- Park, K.; Goto, M.; So, M.; Takenaka, S.; Tsuge, Y.; Inoue, G. Influence of Cathode Catalyst Layer with SiO2-Coated Pt/Ketjen Black Catalysts on Performance for Polymer Electrolyte Fuel Cells. Catalysts 2021, 11, 1517. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, T.; Zhang, R.; Gan, Z. Effect of freeze–thaw cycles on membrane electrodeassembly of proton exchange membrane fuel cells and itsfault diagnosis method. Fuel Cells 2024, 24, 78–89. [Google Scholar] [CrossRef]
- Lin, R.; Zhong, D.; Lan, S.; Guo, R.; Ma, Y.; Cai, X. Experimental validation for enhancement of PEMFC cold start performance: Based on the optimization of micro porous layer. Appl. Energy 2021, 300, 117306. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, S.; Dong, F. Study on ice-melting performance of gradient gas diffusion layer in proton exchange membrane fuel cell. Int. J. Hydrogen Energy 2022, 47, 22981–22992. [Google Scholar] [CrossRef]
- Inaba, M.; Suzuki, T.; Hatanaka, T.; Morimoto, Y. Fabrication and Cell Analysis of a Pt/SiO2 Platinum Thin Film Electrode. J. Electrochem. Soc. 2015, 162, F634–F638. [Google Scholar] [CrossRef]
- Sarapuu, A.; Lilloja, J.; Akula, S.; Zagal, J.H.; Specchia, S.; Tammeveski, K. Recent Advances in Non-Precious Metal Single-Atom Electrocatalysts for Oxygen Reduction Reaction in Low-Temperature Polymer-Electrolyte Fuel Cells. ChemCatChem 2023, 15, e202300849. [Google Scholar] [CrossRef]
- Spasov, D.D.; Ivanova, N.A.; Mensharapov, R.M.; Zasypkina, A.A.; Seregina, E.A.; Grigoriev, S.A.; Fateev, V.N. Nanostructured Pt20/SiO2x/C Electrocatalysts for Water-Balance Stabilization in a Proton Exchange Membrane Fuel Cell. Nanotechnol Russ. 2022, 17, 320–327. [Google Scholar] [CrossRef]
- Mensharapov, R.M.; Ivanova, N.A.; Spasov, D.D.; Kukueva, E.V.; Zasypkina, A.A.; Seregina, E.A.; Grigoriev, S.A.; Fateev, V.N. Carbon-Supported Pt-SnO2 Catalysts for Oxygen Reduction Reaction over a Wide Temperature Range: Rotating Disk Electrode Study. Catalysts 2021, 11, 1469. [Google Scholar] [CrossRef]
- Spasov, D.D.; Ivanova, N.A.; Pushkarev, A.S.; Pushkareva, I.V.; Presnyakova, N.N.; Chumakov, R.G.; Presnyakov, M.Y.; Grigoriev, S.A.; Fateev, V.N. On the Influence of Composition and Structure of Carbon-Supported Pt-SnO2 Hetero-Clusters onto Their Electrocatalytic Activity and Durability in PEMFC. Catalysts 2019, 9, 803. [Google Scholar] [CrossRef]
- Wang, Z.; Jin, X.; Chen, F.; Kuang, X.; Min, J.; Duan, H.; Li, J.; Chen, J. Oxygen Vacancy Induced Interaction between Pt and TiO2 to Improve the Oxygen Reduction Performance. J. Colloid Interface Sci. 2023, 650, 901–912. [Google Scholar] [CrossRef]
- Dai, J.; Zhu, Y.; Tahini, H.A.; Lin, Q.; Chen, Y.; Guan, D.; Zhou, C.; Hu, Z.; Lin, H.-J.; Chan, T.-S.; et al. Single-Phase Perovskite Oxide with Super-Exchange Induced Atomic-Scale Synergistic Active Centers Enables Ultrafast Hydrogen Evolution. Nat. Commun. 2020, 11, 5657. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Ma, P.; Wang, R.; Cao, H.; Bao, J. A Janus Platinum/Tin Oxide Heterostructure for Durable Oxygen Reduction Reaction. Small 2024, 20, 2405234. [Google Scholar] [CrossRef]
- Katrib, A.; Stanislaus, A.; Yousef, R.M. XPS Investigations of Metal—Support Interactions in Pt/SiO2, Ir/SiO2 and Ir/Al2O3 Systems. J. Mol. Struct. 1985, 129, 151–163. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, G.; Geng, D.; Chen, Y.; Li, R.; Cai, M.; Sun, X. A Highly Durable Platinum Nanocatalyst for Proton Exchange Membrane Fuel Cells: Multiarmed Starlike Nanowire Single Crystal. Angew. Chem. 2011, 123, 442–446. [Google Scholar] [CrossRef]
- Paperzh, K.O.; Alekseenko, A.A.; Volochaev, V.A.; Pankov, I.V.; Safronenko, O.A.; Guterman, V.E. Stability and Activity of Platinum Nanoparticles in the Oxygen Electroreduction Reaction: Is Size or Uniformity of Primary Importance? Beilstein J. Nanotechnol. 2021, 12, 593–606. [Google Scholar] [CrossRef] [PubMed]
- Pinchuk, O.A.; Dundar, F.; Ata, A.; Wynne, K.J. Improved Thermal Stability, Properties, and Electrocatalytic Activity of Sol-Gel Silica Modified Carbon Supported Pt Catalysts. Int. J. Hydrogen Energy 2012, 37, 2111–2120. [Google Scholar] [CrossRef]
- Markovic, N.; Gasteiger, H.; Ross, P.N. Kinetics of Oxygen Reduction on Pt (Hkl) Electrodes: Implications for the Crystallite Size Effect with Supported Pt Electrocatalysts. J. Electrochem. Soc. 1997, 144, 1591. [Google Scholar] [CrossRef]
- Esfahani, R.A.M.; Moghaddam, R.B.; Ebralidze, I.I.; Easton, E.B. A Hydrothermal Approach to Access Active and Durable Sulfonated Silica-Ceramic Carbon Electrodes for PEM Fuel Cell Applications. Appl. Catal. B Environ. 2018, 239, 125–132. [Google Scholar] [CrossRef]
- Jäger, R.; Härk, E.; Steinberg, V.; Lust, E. Influence of Temperature on the Oxygen Electroreduction Activity at Nanoporous Carbon Support. ECS Trans. 2015, 66, 47. [Google Scholar] [CrossRef]
- Paulus, U.A.; Schmidt, T.J.; Gasteiger, H.A.; Behm, R.J. Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: A thin-film rotating ring-disk electrode study. J. Electroanal. Chem. 2001, 495, 134–145. [Google Scholar] [CrossRef]
jk, mA cm−2 | Sa, mA cm−2 | Ma, mA mg−1 | |
---|---|---|---|
Pt/C | 4.6 ± 0.1 | 0.14 ± 0.01 | 56 ± 1 |
Pt/C [50] | – | 0.21 | 90 |
Pt/C [51] | – | 0.19 | 122 |
Pt20/SiO23/C | 6.9 ± 0.3 | 0.25 ± 0.01 | 223 ± 9 |
Pt20/SiO27/C | 6.5 ± 0.1 | 0.21 ± 0.01 | 170 ± 3 |
Pt46.4/SiO24.4/C [52] | – | 0.14 | 50 |
Pt41.5/SiO26/C [52] | – | 0.14 | 60 |
T, K | 274 | 283 | 293 | 303 | 323 |
---|---|---|---|---|---|
Pt/C (ESA = 42 m2 g−1) | |||||
jk, mA cm−2 | 3.7 ± 0.2 | 4.3 ± 0.3 | 4.6 ± 0.1 | 5.2 ± 0.2 | 5.7 ± 0.2 |
Sa, mA cm−2 | 0.12 ± 0.01 | 0.13 ± 0.01 | 0.14 ± 0.01 | 0.16 ± 0.01 | 0.17 ± 0.01 |
Ma, mA mg−1 | 47 ± 2 | 51 ± 4 | 56 ± 1 | 62 ± 2 | 69 ± 2 |
Pt20/SiO23/C (ESA = 88 m2 g−1) | |||||
jk, mA cm−2 | 3.2 ± 0.1 | 4.6 ± 0.02 | 6.9 ± 0.27 | 8.7 ± 0.1 | 12.5 ± 0.3 |
Sa, mA cm−2 | 0.12 ± 0.01 | 0.17 ± 0.01 | 0.25 ± 0.01 | 0.32 ± 0.01 | 0.46 ± 0.01 |
Ma, mA mg−1 | 104 ± 3 | 150 ± 5 | 223 ± 9 | 280 ± 3 | 402 ± 9 |
Pt20/SiO27/C (ESA = 81 m2 g−1) | |||||
jk, mA cm−2 | 3.3 ± 0.1 | 4.5 ± 0.1 | 6.4 ± 0.1 | 9.3 ± 0.4 | 13.6 ± 0.6 |
Sa, mA cm−2 | 0.11 ± 0.01 | 0.15 ± 0.01 | 0.21 ± 0.01 | 0.31 ± 0.01 | 0.44 ± 0.02 |
Ma, mA mg−1 | 88 ± 2 | 118 ± 3 | 170 ± 3 | 248 ± 10 | 359 ± 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mensharapov, R.M.; Spasov, D.D.; Sinyakov, M.V.; Grineva, D.E.; Nagorny, S.V.; Chumakov, R.G.; Bakirov, A.V.; Ivanova, N.A. Carbon-Supported Pt-SiO2 Catalysts for Oxygen Reduction Reaction in Low-Temperature Range: Rotating Disk Electrode Study. Hydrogen 2025, 6, 5. https://doi.org/10.3390/hydrogen6010005
Mensharapov RM, Spasov DD, Sinyakov MV, Grineva DE, Nagorny SV, Chumakov RG, Bakirov AV, Ivanova NA. Carbon-Supported Pt-SiO2 Catalysts for Oxygen Reduction Reaction in Low-Temperature Range: Rotating Disk Electrode Study. Hydrogen. 2025; 6(1):5. https://doi.org/10.3390/hydrogen6010005
Chicago/Turabian StyleMensharapov, Ruslan M., Dmitry D. Spasov, Matvey V. Sinyakov, Darya E. Grineva, Seraphim V. Nagorny, Ratibor G. Chumakov, Artem V. Bakirov, and Nataliya A. Ivanova. 2025. "Carbon-Supported Pt-SiO2 Catalysts for Oxygen Reduction Reaction in Low-Temperature Range: Rotating Disk Electrode Study" Hydrogen 6, no. 1: 5. https://doi.org/10.3390/hydrogen6010005
APA StyleMensharapov, R. M., Spasov, D. D., Sinyakov, M. V., Grineva, D. E., Nagorny, S. V., Chumakov, R. G., Bakirov, A. V., & Ivanova, N. A. (2025). Carbon-Supported Pt-SiO2 Catalysts for Oxygen Reduction Reaction in Low-Temperature Range: Rotating Disk Electrode Study. Hydrogen, 6(1), 5. https://doi.org/10.3390/hydrogen6010005