Critical Geochemical and Microbial Reactions in Underground Hydrogen Storage: Quantifying Hydrogen Loss and Evaluating CO2 as Cushion Gas
<p>Synthetic 2D homogeneous model representing the saline aquifer studied in this paper (grid top map in meters).</p> "> Figure 2
<p>Relative permeability curves applied for this study [<a href="#B45-hydrogen-06-00004" class="html-bibr">45</a>,<a href="#B46-hydrogen-06-00004" class="html-bibr">46</a>].</p> "> Figure 3
<p>Comparison of the H<sub>2</sub>S formation in moles over the years for two cases with different pyrite concentrations (0.5% in black and 2% in red).</p> "> Figure 4
<p>Comparison of the H<sub>2</sub>S formation in moles over the years for two cases with different hydrogen injection rates (1000 m<sup>3</sup>/d in solid blue, and 5000 m<sup>3</sup>/d in solid red).</p> "> Figure 5
<p>Comparison of H<sub>2</sub>S production in moles for three scenarios where the cushion gas was hydrogen, methane, and carbon dioxide.</p> "> Figure 6
<p>Cumulative volume of available H<sub>2</sub> in m<sup>3</sup> in the reservoir over 9 years.</p> "> Figure 7
<p>Cumulative volume of H<sub>2</sub>S generated in m<sup>3</sup> in the reservoir over 9 years.</p> "> Figure 8
<p>H<sub>2</sub>S gas mole fraction captured after an elapsed time of one year and a half from the initiation of the simulation.</p> "> Figure 9
<p>Cumulative produced H<sub>2</sub>S in m<sup>3</sup>.</p> "> Figure 10
<p>Cumulative produced volume of H<sub>2</sub> in m<sup>3</sup> over time.</p> "> Figure 11
<p>Cumulative hydrogen production (in kg) for different cases.</p> "> Figure 12
<p>H<sub>2</sub> volume (in m<sup>3</sup>) in the reservoir with methanation process.</p> "> Figure 13
<p>Hydrogen cumulative production (in kg) with the prolonged producing operation for Case H and base case.</p> "> Figure 14
<p>The minimum and maximum impurity levels for the different gases within UHS.</p> "> Figure 15
<p>Water saturation at the same time point for the base case (on <b>top</b>) and Case H (on <b>bottom</b>).</p> "> Figure 16
<p>Volume of water (in m<sup>3</sup>) in the aquifer for the base case and Case H.</p> "> Figure 17
<p>Cumulative water production (in m<sup>3</sup>) for 2 different cases.</p> "> Figure 18
<p>Average reservoir pressure (in kPa) for 2 different cases.</p> "> Figure 19
<p>H<sub>2</sub> cumulative moles in the reservoir.</p> "> Figure 20
<p>CO<sub>2</sub> cumulative moles in the reservoir.</p> ">
Abstract
:1. Introduction
1.1. Hydrogen Sulfide in Underground Hydrogen Storage
1.2. Methanogenesis: A Biochemical Challenge in Hydrogen Storage
- The caprock was not explicitly modeled, and diffusion into its structure was not accounted for. This assumption is made based on [33], who found minimal to no impact of hydrogen diffusion into the caprock;
- Other microorganism-induced reactions were neglected, since the likelihood of their formation in the temperature and pressure ranges we are dealing with is low;
- No restrictions were imposed on the water production, assuming the facility could handle the water production.
2. Materials and Methods
2.1. Numerical Simulation of Geochemical and Biochemical Reactions
2.1.1. Chemical Equilibrium Reactions in the Aqueous Phase
2.1.2. Mineral Dissolution and Precipitation: Transition State Theory Approach
2.1.3. Modeling Methanogenesis via the Arrhenius Reaction Framework
2.2. Solubility Modeling in Hydrogen Storage Systems
2.3. Description of the Geological Model
3. Results and Discussion
3.1. Abiotic Reactions: Pyrite Reduction and H2S Generation
3.1.1. The Influence of Pyrite Concentration
3.1.2. The Presence of CO2 Impurities
3.1.3. Quantifying H2S Production: Evaluating Safety Risks in Hydrogen Storage
3.2. Biotic Reactions: Methanogenesis and Its Impact on Hydrogen Storage
3.2.1. Methanogenesis and Its Effects on Hydrogen Recovery
3.2.2. Hydrogen Recovery
3.2.3. Hydrogen Purity
3.2.4. Water Production
3.2.5. CO2 as a Cushion Gas: Evaluation and Assessment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
UHS | underground hydrogen storage |
Sw | water saturation |
Krw | relative permeability to water |
Nm3 | normal cubic meter |
TST | Transition State Theory |
sgn | mathematical operator to return the sign of the expression |
Q | ion activity product (IAP) |
Sw | aqueous phase saturation |
nct | number of reactant components |
A | reactive surface area |
the activity of component i computed with Pitzer’s model | |
activity power | |
ξ, ζ | TST model parameters |
Keq | the chemical equilibrium constant rate |
k25 | the rate constant of the reaction at 25 °C, also referred to as the reference rate |
A | the reactive surface area for the mineral |
reaction rate, (mol/s) | |
F | frequency factor, which is the number of collisions per unit time between reacting molecules in which a reaction did occur |
activation energy required to facilitate the reaction (J/mol) | |
R | universal gas constant |
T | absolute temperature |
the molality of reactants. |
Appendix A
Data Selection of Methanogenesis Rate
References
- Zivar, D.; Kumar, S.; Foroozesh, J. Underground hydrogen storage: A comprehensive review. Int. J. Hydrogen Energy 2021, 46, 23436–23462. [Google Scholar] [CrossRef]
- Ahmed, I.H.; Alakoul, K.A.; Al-Manea, A.; Wetaify, A.R.H.; Saleh, K.; Al-Rbaihat, R.; Alahmer, A. An Overview of Hydrogen Production Techniques: Challenges and Limiting Factors in Achieving Wide-Scale Productivity. In Proceedings of the Transport, Ecology, Sustainable Development: Eko Varna 2023, Varna, Bulgaria, February 2024; p. 050003. [Google Scholar]
- Jafari Raad, S.M.; Leonenko, Y.; Hassanzadeh, H. Hydrogen storage in saline aquifers: Opportunities and challenges. Renew. Sustain. Energy Rev. 2022, 168, 112846. [Google Scholar] [CrossRef]
- Aftab, A.; Hassanpouryouzband, A.; Xie, Q.; Machuca, L.L.; Sarmadivaleh, M. Toward a Fundamental Understanding of Geological Hydrogen Storage. Ind. Eng. Chem. Res. 2022, 61, 3233–3253. [Google Scholar] [CrossRef]
- Henkel, S.; Pudlo, D.; Werner, L.; Enzmann, F.; Reitenbach, V.; Albrecht, D.; Würdemann, H.; Heister, K.; Ganzer, L.; Gaupp, R. Mineral Reactions in the Geological Underground Induced by H2 and CO2 Injections. Energy Procedia 2014, 63, 8026–8035. [Google Scholar] [CrossRef]
- Heinemann, N.; Alcalde, J.; Miocic, J.M.; Hangx, S.J.T.; Kallmeyer, J.; Ostertag-Henning, C.; Hassanpouryouzband, A.; Thaysen, E.M.; Strobel, G.J.; Schmidt-Hattenberger, C.; et al. Enabling large-scale hydrogen storage in porous media—The scientific challenges. Energy Environ. Sci. 2021, 14, 853–864. [Google Scholar] [CrossRef]
- Marcogaz. Guidance: Injection of Hydrogen/Natural Gas Admixtures in Underground Gas Storage (UGS); Technical Association of the European Natural Gas Industry: Brussels, Belgium, 2017. [Google Scholar]
- Liebscher, A.; Wackerl, J.; Streibel, M. Geologic Storage of Hydrogen—Fundamentals, Processing, and Projects. In Hydrogen Science and Engineering: Materials, Processes, Systems and Technology; John Wiley & Sons: Hoboken, NJ, USA, 2016; pp. 629–658. ISBN 978-3-527-67426-8. [Google Scholar] [CrossRef]
- Hemme, C.; van Berk, W. Hydrogeochemical Modeling to Identify Potential Risks of Underground Hydrogen Storage in Depleted Gas Fields. Appl. Sci. 2018, 8, 2282. [Google Scholar] [CrossRef]
- Wei, T.Y.; Lim, K.L.; Tseng, Y.S.; Chan, S.L.I. A review on the characterization of hydrogen in hydrogen storage materials. Renew. Sustain. Energy Rev. 2017, 79, 1122–1133. [Google Scholar] [CrossRef]
- Reitenbach, V.; Ganzer, L.; Albrecht, D.; Hagemann, B. Influence of added hydrogen on underground gas storage: A review of key issues. Environ. Earth Sci. 2015, 73, 6927–6937. [Google Scholar] [CrossRef]
- Bourgeois, J.P.; Aupaix, N.; Bloise, R.; Millet, J.L. Formation of hydrogen sulfide in underground storage reservoirs by reduction of sulfurous minerals in reservoir rocks. Rev. Inst. Fr. Pet. 1979, 34. Available online: https://www.osti.gov/etdeweb/biblio/5232712 (accessed on 8 January 2024).
- Bourgeois, J.P.; Aupaix, N.; Bloise, R.; Millet, J.L. Proposition d’explication de la formation d’hydrogène sulfuré dans les stockages souterrains de gaz naturel par réduction des sulfures minéraux de la roche magasin. Rev. Inst. Fr. Pétrol 1979, 34, 371–386. [Google Scholar] [CrossRef]
- Spietz, R.L.; Payne, D.; Kulkarni, G.; Metcalf, W.W.; Roden, E.E.; Boyd, E.S. Investigating Abiotic and Biotic Mechanisms of Pyrite Reduction. Front. Microbiol. 2022, 13, 878387. [Google Scholar] [CrossRef] [PubMed]
- Truche, L.; Berger, G.; Destrigneville, C.; Guillaume, D.; Giffaut, E. Kinetics of pyrite to pyrrhotite reduction by hydrogen in calcite buffered solutions between 90 and 180 °C: Implications for nuclear waste disposal. Geochim. Cosmochim. Acta 2010, 74, 2894–2914. [Google Scholar] [CrossRef]
- Buzek, F.; Onderka, V.; Vancura, P.; Wolf, I. Carbon isotope study of methane production in a town gas storage reservoir. Fuel 1994, 73, 747–752. [Google Scholar] [CrossRef]
- Smigan, P.; Greksák, M.; Kozánková, J.; Buzek, F.; Onderka, V.; Wolf, I. Methanogenic bacteria as a key factor involved in changes of town gas stored in an underground reservoir. FEMS Microbiol. Lett. 1990, 73, 221–224. [Google Scholar] [CrossRef]
- Molíková, A.; Vítězová, M.; Vítěz, T.; Buriánková, I.; Huber, H.; Dengler, L.; Hanišáková, N.; Onderka, V.; Urbanová, I. Underground gas storage as a promising natural methane bioreactor and reservoir? J. Energy Storage 2022, 47, 103631. [Google Scholar] [CrossRef]
- Dworkin, M.; Falkow, S.; Rosenberg, E.; Schleifer, K.-H.; Stackebrandt, E. (Eds.) The Prokaryotes; Springer: New York, NY, USA, 2006; ISBN 978-0-387-25493-7. [Google Scholar]
- Zinder, S.H.; Anguish, T.; Cardwell, S.C. Effects of Temperature on Methanogenesis in a Thermophilic (58 °C) Anaerobic Digestor. Appl. Environ. Microbiol. 1984, 47, 808–813. [Google Scholar] [CrossRef] [PubMed]
- Pichler, M. Assesment of Hydrogen—Rock Interactions During Geological Storage of CH4—H2 Mixtures. In Proceedings of the Second EAGE Sustainable Earth Sciences (SES) Conference and Exhibition, Pau, France, 30 September–4 October 2013. [Google Scholar]
- Pan, X.; Angelidaki, I.; Alvarado-Morales, M.; Liu, H.; Liu, Y.; Huang, X.; Zhu, G. Methane production from formate, acetate and H2/CO2; focusing on kinetics and microbial characterization. Bioresour. Technol. 2016, 218, 796–806. [Google Scholar] [CrossRef] [PubMed]
- Hagemann, B. Numerical and Analytical Modeling of Gas Mixing and Bio-Reactive Transport During Underground Hydrogen Storage; Cuvillier: Göttingen, Germany, 2018. [Google Scholar]
- Panfilov, M. Underground and Pipeline Hydrogen Storage. In Compendium of Hydrogen Energy; Gupta, R.B., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 91–115. ISBN 978-1-78242-362-1. [Google Scholar] [CrossRef]
- Vogt, C.; Monai, M.; Kramer, G.J.; Weckhuysen, B.M. The renaissance of the Sabatier reaction and its applications on Earth and in space. Nat. Catal. 2019, 2, 188–197. [Google Scholar] [CrossRef]
- Tremosa, J.; Jakobsen, R.; Le Gallo, Y. Assessing and modeling hydrogen reactivity in underground hydrogen storage: A review and models simulating the Lobodice town gas storage. Front. Energy Res. 2023, 11, 1145978. [Google Scholar] [CrossRef]
- Wu, L.; Hou, Z.; Luo, Z.; Huang, L.; Xiong, Y.; Mehmood, F.; Liu, J.; Sun, W.; Xie, Y. Efficiency assessment of underground biomethanation with hydrogen and carbon dioxide in depleted gas reservoirs: A biogeochemical simulation. Energy 2023, 283, 128539. [Google Scholar] [CrossRef]
- Sambo, C.; Dudun, A.; Samuel, S.A.; Esenenjor, P.; Muhammed, N.S.; Haq, B. A review on worldwide underground hydrogen storage operating and potential fields. Int. J. Hydrogen Energy 2022, 47, 22840–22880. [Google Scholar] [CrossRef]
- Zhan, S.; Zeng, L.; Al-Yaseri, A.; Sarmadivaleh, M.; Xie, Q. Geochemical modelling on the role of redox reactions during hydrogen underground storage in porous media. Int. J. Hydrogen Energy 2024, 50, 19–35. [Google Scholar] [CrossRef]
- Saeed, M.; Jadhawar, P.; Bagala, S. Geochemical Effects on Storage Gases and Reservoir Rock during Underground Hydrogen Storage: A Depleted North Sea Oil Reservoir Case Study. Hydrogen 2023, 4, 323–337. [Google Scholar] [CrossRef]
- Bo, Z.; Zeng, L.; Chen, Y.; Xie, Q. Geochemical reactions-induced hydrogen loss during underground hydrogen storage in sandstone reservoirs. Int. J. Hydrogen Energy 2021, 46, 19998–20009. [Google Scholar] [CrossRef]
- Al-Yaseri, A.; Fatah, A.; Alsaif, B.; Sakthivel, S.; Amao, A.; Al-Qasim, A.S.; Yousef, A.A. Subsurface Hydrogen Storage in Limestone Rocks: Evaluation of Geochemical Reactions and Gas Generation Potential. Energy Fuels 2024, 38, 9923–9932. [Google Scholar] [CrossRef]
- Khanal, A.; Khan, M.I.; Shahriar, M.F. Numerical Investigation of Hydrogen Storage Loss in Saline Aquifers. In Proceedings of the SPE Western Regional Meeting, Palo Alto, CA, USA, 16–18 April 2024; p. D021S011R003. [Google Scholar] [CrossRef]
- Wolery, T.J. EQ3/6 A Software Package for Geochemical Modeling; Lawrence Livermore National Laboratory (LLNL): Livermore, CA, USA, 2010. [Google Scholar]
- Lasaga, A.C. Chemical kinetics of water-rock interactions. J. Geophys. Res. Solid Earth 1984, 89, 4009–4025. [Google Scholar] [CrossRef]
- Pechukas, P. Transition State Theory. Annu. Rev. Phys. Chem. 1981, 32, 159–177. [Google Scholar] [CrossRef]
- Xu, T.; Apps, J.A.; Pruess, K. Analysis of Mineral Trapping for CO2 Disposal in Deep Aquifers; Lawrence Berkeley National Laboratory (LBNL): Berkeley, CA, USA, 2001; p. 789133. [Google Scholar]
- Mackenziei, A.S.; Mckenzie, D.P. Estimation of the kinetics of geochemical reactions with geophysical models of sedimentary basins and applications. Org. Geochem. 1984, 5, 875–884. [Google Scholar] [CrossRef]
- Nelabhotla, A.B.T.; Pant, D.; Dinamarca, C. Power-to-gas for methanation. In Emerging Technologies and Biological Systems for Biogas Upgrading; Elsevier: Amsterdam, The Netherlands, 2021; pp. 187–221. ISBN 978-0-12-822808-1. [Google Scholar] [CrossRef]
- Thauer, R.K.; Shima, S. Methane as Fuel for Anaerobic Microorganisms. Ann. N. Y. Acad. Sci. 2008, 1125, 158–170. [Google Scholar] [CrossRef]
- Li, Y.-K.; Nghiem, L.X. Phase equilibria of oil, gas and water/brine mixtures from a cubic equation of state and henry’s law. Can. J. Chem. Eng. 1986, 64, 486–496. [Google Scholar] [CrossRef]
- Harvey, A.H. Semiempirical correlation for Henry’s constants over large temperature ranges. AIChE J. 1996, 42, 1491–1494. [Google Scholar] [CrossRef]
- Machado, M.V.B.; Khanal, A.; Delshad, M. Unveiling the Essential Parameters Driving Mineral Reactions during CO2 Storage in Carbonate Aquifers through Proxy Models. Appl. Sci. 2024, 14, 1465. [Google Scholar] [CrossRef]
- Barbosa Machado, M.V.; Delshad, M.; Sepehrnoori, K. Modeling Self-Sealing Mechanisms in Fractured Carbonates Induced by CO2 Injection in Saline Aquifers. ACS Omega 2023, 8, 48925–48937. [Google Scholar] [CrossRef]
- Yekta, A.E.; Manceau, J.-C.; Gaboreau, S.; Pichavant, M.; Audigane, P. Determination of Hydrogen–Water Relative Permeability and Capillary Pressure in Sandstone: Application to Underground Hydrogen Injection in Sedimentary Formations. Transp. Porous Media 2018, 122, 333–356. [Google Scholar] [CrossRef]
- Krevor, S.C.M.; Pini, R.; Zuo, L.; Benson, S.M. Relative permeability and trapping of CO2 and water in sandstone rocks at reservoir conditions. Water Resour. Res. 2012, 48, W02532. [Google Scholar] [CrossRef]
- Morad, S. Pyrite-chlorite and pyrite-biotite relations in sandstones. Sediment. Geol. 1986, 49, 177–192. [Google Scholar] [CrossRef]
- Dimadis, M.G. Impact of CO2 on mechanical properties of sandstone during sequestration for climate change mitigation. In Proceedings of the 10th International Conference on Energy and Climate Change, Athens, Greece, 11–13 October 2017. [Google Scholar]
- Li, S.; Wu, Y.; Huo, R.; Song, Z.; Fujii, Y.; Shen, Y. Mechanical Properties of Acid-corroded Sandstone Under Uniaxial Compression. Rock Mech. Rock Eng. 2021, 54, 289–302. [Google Scholar] [CrossRef]
- Adnan, A.I.; Ong, M.Y.; Nomanbhay, S.; Show, P.L. Determination of Dissolved CO2 Concentration in Culture Media: Evaluation of pH Value and Mathematical Data. Processes 2020, 8, 1373. [Google Scholar] [CrossRef]
- Al Homoud, R.; Barbosa Machado, M.V.; Daigle, H.; Sepehrnoori, K.; Ates, H. Enhancing Hydrogen Recovery from Saline Aquifers: Quantifying Wettability and Hysteresis Influence and Minimizing Losses with a Cushion Gas. Hydrogen 2024, 5, 327–351. [Google Scholar] [CrossRef]
- Al Homoud, R.; Machado, M.V.B.; Daigle, H.; Sepehrnoori, K.; Ates, H. Investigation on the Impact of Cushion Gases in Saline Aquifer: Implication for Underground H2 Storage. In Proceedings of the SPE Western Regional Meeting, Palo Alto, CA, USA, 16–18 April 2024; p. D021S011R001. [Google Scholar] [CrossRef]
- Al Homoud, R.; Machado, M.V.B.; Daigle, H. Assessing Hydrogen Sulfide Generation from Pyrite Reduction: Implications for Underground Hydrogen Storage; OnePetro: Houston, TX, USA, 2024. [Google Scholar]
- Williams, A.F.; Lom, W.L. H2S in natural gas: Tolerance of some national acceptance tests. J. Appl. Chem. 1967, 17, 179–184. [Google Scholar] [CrossRef]
- Tyne, R.L.; Barry, P.H.; Lawson, M.; Byrne, D.J.; Warr, O.; Xie, H.; Hillegonds, D.J.; Formolo, M.; Summers, Z.M.; Skinner, B.; et al. Rapid microbial methanogenesis during CO2 storage in hydrocarbon reservoirs. Nature 2021, 600, 670–674. [Google Scholar] [CrossRef] [PubMed]
- Thaysen, E.M.; McMahon, S.; Strobel, G.J.; Butler, I.B.; Ngwenya, B.T.; Heinemann, N.; Wilkinson, M.; Hassanpouryouzband, A.; McDermott, C.I.; Edlmann, K. Estimating microbial growth and hydrogen consumption in hydrogen storage in porous media. Renew. Sustain. Energy Rev. 2021, 151, 111481. [Google Scholar] [CrossRef]
- Wang, G.; Pickup, G.; Sorbie, K.; De Rezende, J.R.; Zarei, F.; Mackay, E. Bioreaction coupled flow simulations: Impacts of methanogenesis on seasonal underground hydrogen storage. Int. J. Hydrogen Energy 2024, 55, 921–931. [Google Scholar] [CrossRef]
- Rivolta, G.; Maniglio, M.; Elgendy, A.; Panfili, P.; Cominelli, A. Evaluating the Impact of Biochemical Reactions on H2 Storage in Depleted Gas Fields. SPE J. 2024, 29, 1–16. [Google Scholar] [CrossRef]
- Wickham, D.; Hawkes, A.; Jalil-Vega, F. Hydrogen supply chain optimisation for the transport sector—Focus on hydrogen purity and purification requirements. Appl. Energy 2022, 305, 117740. [Google Scholar] [CrossRef]
- Prigmore, S.; Okon-Akan, O.A.; Egharevba, I.P.; Ogbaga, C.C.; Okoye, P.U.; Epelle, E.; Okolie, J.A. Cushion Gas Consideration for Underground Hydrogen Storage. Encyclopedia 2024, 4, 847–863. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, Y.; Chen, C. Numerical simulation of the impact of different cushion gases on underground hydrogen storage in aquifers based on an experimentally-benchmarked equation-of-state. Int. J. Hydrogen Energy 2024, 50, 495–511. [Google Scholar] [CrossRef]
- Moore, M.T.; Vinson, D.S.; Whyte, C.J.; Eymold, W.K.; Walsh, T.B.; Darrah, T.H. Differentiating between biogenic and thermogenic sources of natural gas in coalbed methane reservoirs from the Illinois Basin using noble gas and hydrocarbon geochemistry. Geol. Soc. Lond. Spec. Publ. 2018, 468, 151–188. [Google Scholar] [CrossRef]
- Stolper, D.A.; Martini, A.M.; Clog, M.; Douglas, P.M.; Shusta, S.S.; Valentine, D.L.; Sessions, A.L.; Eiler, J.M. Distinguishing and understanding thermogenic and biogenic sources of methane using multiply substituted isotopologues. Geochim. Cosmochim. Acta 2015, 161, 219–247. [Google Scholar] [CrossRef]
Parameter | Pyrite | Calcite |
---|---|---|
Log10(k25) | −8.19 mol/m2 s | −5.81 mol/m2 s |
Ea | 90,900 J/mol | 23,500 J/mol |
A | 5011.15 m2/m3 | 2709.95 m2/m3 |
Property | Value |
---|---|
Initial pressure | 20,500 kPa @ 1000 |
Temperature | 80 °C |
Porosity | 30% |
Horizontal permeability | 100 mD |
Rock compressibility | 5.8 × 10−7 kPa−1 |
Pyrite, volumetric fraction | 0.5–2% |
Calcite, volumetric fraction | 3% |
Ions | Molality (mol/kg) |
---|---|
H+ | 1.00102 × 10−9 |
Ca++ | 0.00249526 |
Na+ | 3.73896 |
SO42− | 0.0104208 |
Fe++ | 0.00179079 |
Cl− | 1.88916 |
Case Number | Cushion Gas Type | Pyrite Concentration | Injection Rate |
---|---|---|---|
A | Hydrogen | 0.5% | 5000 m3/day |
B | Hydrogen | 2% | 5000 m3/day |
C | Hydrogen | 2% | 1000 m3/day |
D | Carbon dioxide | 2% | 5000 m3/day |
E | Methane | 2% | 5000 m3/day |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Homoud, R.; Machado, M.V.B.; Daigle, H.; Ates, H. Critical Geochemical and Microbial Reactions in Underground Hydrogen Storage: Quantifying Hydrogen Loss and Evaluating CO2 as Cushion Gas. Hydrogen 2025, 6, 4. https://doi.org/10.3390/hydrogen6010004
Al Homoud R, Machado MVB, Daigle H, Ates H. Critical Geochemical and Microbial Reactions in Underground Hydrogen Storage: Quantifying Hydrogen Loss and Evaluating CO2 as Cushion Gas. Hydrogen. 2025; 6(1):4. https://doi.org/10.3390/hydrogen6010004
Chicago/Turabian StyleAl Homoud, Rana, Marcos Vitor Barbosa Machado, Hugh Daigle, and Harun Ates. 2025. "Critical Geochemical and Microbial Reactions in Underground Hydrogen Storage: Quantifying Hydrogen Loss and Evaluating CO2 as Cushion Gas" Hydrogen 6, no. 1: 4. https://doi.org/10.3390/hydrogen6010004
APA StyleAl Homoud, R., Machado, M. V. B., Daigle, H., & Ates, H. (2025). Critical Geochemical and Microbial Reactions in Underground Hydrogen Storage: Quantifying Hydrogen Loss and Evaluating CO2 as Cushion Gas. Hydrogen, 6(1), 4. https://doi.org/10.3390/hydrogen6010004