Conducting Polymers in Solar Cells: Insights, Innovations, and Challenges
<p>Comparison of power conversion efficiencies across different generations and types of solar cells. Data for first- and second-generation solar cells are sourced from [<a href="#B17-organics-05-00034" class="html-bibr">17</a>], while the PCE values for perovskite, dye-sensitized, and organic solar cells are obtained from references [<a href="#B14-organics-05-00034" class="html-bibr">14</a>,<a href="#B18-organics-05-00034" class="html-bibr">18</a>,<a href="#B20-organics-05-00034" class="html-bibr">20</a>], respectively.</p> "> Figure 2
<p>Various configurations of perovskite solar cells. (<b>a</b>) Mesoporous structure, (<b>b</b>) standard n-i-p configuration, and (<b>c</b>) p-i-n configuration. Adapted with permission from reference [<a href="#B30-organics-05-00034" class="html-bibr">30</a>]. Copyright (2022) the authors, some rights reserved; exclusive licensee MDPI. Distributed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).</p> "> Figure 3
<p>Working principle of dye-sensitized solar cells. Adapted with permission [<a href="#B38-organics-05-00034" class="html-bibr">38</a>], copyright (2022) Springer Nature.</p> "> Figure 4
<p>Working principle of organic solar cell with (<b>a</b>) conventional and (<b>b</b>) inverted configurations. Adapted with permission [<a href="#B42-organics-05-00034" class="html-bibr">42</a>], copyright (2012) Royal Society of Chemistry.</p> "> Figure 5
<p>Chemical structures of common polymers used in solar cells.</p> "> Figure 6
<p>Common methods for synthesizing and fabricating conducting polymers.</p> "> Figure 7
<p>Chemical structures of the additives and acceptors discussed in this study.</p> "> Figure 8
<p>Chemical structures of PSMA and BCP5.</p> "> Figure 9
<p>Chemical structures of some of the conducting polymers used in dye-sensitized solar cells.</p> "> Figure 10
<p>Chemical structures of some of the conducting polymers used in perovskite solar cells.</p> "> Figure 11
<p>Chemical structures of some of the conducting polymers used in organic solar cells.</p> "> Figure 12
<p>Chemical structures of ProDOT-EDOT and n-PBDF.</p> ">
Abstract
:1. Introduction
2. Fundamentals of Solar Cells
2.1. Perovskite Solar Cells
2.2. Dye-Sensitized Solar Cells
2.3. Organic Solar Cells
2.4. Efficiency of Solar Cells
3. Conducting Polymers and Their Synthesis and Fabrication Techniques
3.1. Chemical Oxidative Polymerization
3.2. Electrochemical Polymerization
3.3. In Situ Polymerization
3.4. Emulsion Polymerization
3.5. Template-Assisted Polymerization
3.6. Controlled Radical Polymerization
3.7. Cross-Coupling Reactions
3.8. Grignard-Type Metathesis Polymerization
4. Optimizing Conducting Polymers for Solar Cells: Performance in Outdoor Conditions
4.1. Conducting Polymers in DSSCs
4.1.1. As Counter Electrodes
4.1.2. As Electrolytes
4.1.3. As Dyes
4.2. Conducting Polymers in PSCs
4.2.1. As Hole Transport Materials
4.2.2. As Electron Transport Materials
4.3. Conducting Polymers in Organic Solar Cells
4.3.1. As Hole Transport Materials
4.3.2. As Active Layers
5. Optimizing Conducting Polymers for Solar Cells: Performance in Indoor Conditions
6. Conducting Polymers in Transparent Conductive Electrodes
7. Challenges and Future Outlook for Conducting Polymers
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chanthakett, A.; Arif, M.T.; Khan, M.M.K.; Subhani, M. Chapter 4—Hydrogen production from municipal solid waste using gasification method. In Hydrogen Energy Conversion and Management; Khan, M.M.K., Azad, A.K., Oo, A.M.T., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 103–131. [Google Scholar]
- Bosch, J.; Staffell, I.; Hawkes, A.D. Temporally explicit and spatially resolved global offshore wind energy potentials. Energy 2018, 163, 766–781. [Google Scholar] [CrossRef]
- Thaker, M.; Zambre, A.; Bhosale, H. Wind farms have cascading impacts on ecosystems across trophic levels. Nat. Ecol. Evol. 2018, 2, 1854–1858. [Google Scholar] [CrossRef] [PubMed]
- Zarfl, C.; Berlekamp, J.; He, F.; Jähnig, S.C.; Darwall, W.; Tockner, K. Future large hydropower dams impact global freshwater megafauna. Sci. Rep. 2019, 9, 18531. [Google Scholar] [CrossRef] [PubMed]
- Idroes, G.M.; Hardi, I.; Hilal, I.S.; Utami, R.T.; Noviandy, T.R.; Idroes, R. Economic growth and environmental impact: Assessing the role of geothermal energy in developing and developed countries. Innov. Green Dev. 2024, 3, 100144. [Google Scholar] [CrossRef]
- Odzijewicz, J.I.; Wołejko, E.; Wydro, U.; Wasil, M.; Jabłońska-Trypuć, A. Utilization of ashes from biomass combustion. Energies 2022, 15, 9653. [Google Scholar] [CrossRef]
- Kabir, E.; Kumar, P.; Kumar, S.; Adelodun, A.A.; Kim, K.-H. Solar energy: Potential and future prospects. Renew. Sust. Energ. Rev. 2018, 82, 894–900. [Google Scholar] [CrossRef]
- Soonmin, H.; Hardani; Nandi, P.; Mwankemwa, B.S.; Malevu, T.D.; Malik, M.I. Overview on different types of solar cells: An update. Appl. Sci. 2023, 13, 2051. [Google Scholar] [CrossRef]
- Pastuszak, J.; Węgierek, P. Photovoltaic cell generations and current research directions for their development. Materials 2022, 15, 5542. [Google Scholar] [CrossRef]
- Saranya, K.; Rameez, M.; Subramania, A. Developments in conducting polymer based counter electrodes for dye-sensitized solar cells—An overview. Eur. Polym. J. 2015, 66, 207–227. [Google Scholar] [CrossRef]
- Aldamasy, M.; Iqbal, Z.; Li, G.; Pascual, J.; Alharthi, F.; Abate, A.; Li, M. Challenges in tin perovskite solar cells. Phys. Chem. Chem. Phys. 2021, 23, 23413–23427. [Google Scholar] [CrossRef]
- Shi, Z.; Jayatissa, A.H. Perovskites-based solar cells: A review of recent progress, materials and processing methods. Materials 2018, 11, 729. [Google Scholar] [CrossRef] [PubMed]
- Devadiga, D.; Selvakumar, M.; Shetty, P.; Santosh, M.S. Dye-sensitized solar cell for indoor applications: A mini-review. J. Electron. Mater. 2021, 50, 3187–3206. [Google Scholar] [CrossRef]
- Yu, X.; Ding, P.; Yang, D.; Yan, P.; Wang, H.; Yang, S.; Wu, J.; Wang, Z.; Sun, H.; Chen, Z.; et al. Self-assembled molecules with asymmetric backbone for highly stable binary organic solar cells with 19.7 % efficiency. Angew. Chem. Int. Ed. 2024, 63, e202401518. [Google Scholar] [CrossRef] [PubMed]
- Green, M.A.; Dunlop, E.D.; Yoshita, M.; Kopidakis, N.; Bothe, K.; Siefer, G.; Hao, X. Solar cell efficiency tables (Version 63). Prog. Photovoltaics Res. Appl. 2024, 32, 3–13. [Google Scholar] [CrossRef]
- Li, C.; Chen, L.; Jiang, F.; Song, Z.; Wang, X.; Balvanz, A.; Ugur, E.; Liu, Y.; Liu, C.; Maxwell, A.; et al. Diamine chelates for increased stability in mixed Sn–Pb and all-perovskite tandem solar cells. Nat. Energy 2024, 9, 1388–1396. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, D.; Suo, J.; Cao, Y.; Eickemeyer, F.T.; Vlachopoulos, N.; Zakeeruddin, S.M.; Hagfeldt, A.; Grätzel, M. Hydroxamic acid pre-adsorption raises the efficiency of cosensitized solar cells. Nature 2023, 613, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Mozaffari, S.; Nateghi, M.R.; Zarandi, M.B. An overview of the challenges in the commercialization of dye sensitized solar cells. Renew. Sust. Energ. Rev. 2017, 71, 675–686. [Google Scholar] [CrossRef]
- Rahman, S.; Haleem, A.; Siddiq, M.; Hussain, M.K.; Qamar, S.; Hameed, S.; Waris, M. Research on dye sensitized solar cells: Recent advancement toward the various constituents of dye sensitized solar cells for efficiency enhancement and future prospects. RSC Adv. 2023, 13, 19508–19529. [Google Scholar] [CrossRef]
- Park, J.; Kim, J.; Yun, H.-S.; Paik, M.J.; Noh, E.; Mun, H.J.; Kim, M.G.; Shin, T.J.; Seok, S.I. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 2023, 616, 724–730. [Google Scholar] [CrossRef]
- Venkatesan, S.; Hsu, T.-H.; Teng, H.; Lee, Y.-L. Dye-sensitized solar cells with efficiency over 36% under ambient light achieved by cosensitized tandem structure. Solar RRL 2023, 7, 2300220. [Google Scholar] [CrossRef]
- Kim, T.H.; Park, N.W.; Saeed, M.A.; Jeong, S.Y.; Woo, H.Y.; Park, J.; Shim, J.W. Record indoor performance of organic photovoltaics with long-term stability enabled by self-assembled monolayer-based interface management. Nano Energy 2023, 112, 108429. [Google Scholar] [CrossRef]
- Dong, C.; Li, X.-M.; Ma, C.; Yang, W.-F.; Cao, J.-J.; Igbari, F.; Wang, Z.-K.; Liao, L.-S. Lycopene-Based Bionic Membrane for Stable Perovskite Photovoltaics. Adv. Funct. Mater. 2021, 31, 2011242. [Google Scholar] [CrossRef]
- Qiu, C.; Wu, Y.; Song, J.; Wang, W.; Li, Z. Efficient planar perovskite solar cells with ZnO electron transport layer. Coatings 2022, 12, 1981. [Google Scholar] [CrossRef]
- Sum, T.C.; Mathews, N. Advancements in perovskite solar cells: Photophysics behind the photovoltaics. Energy Environ. Sci. 2014, 7, 2518–2534. [Google Scholar] [CrossRef]
- Jung, H.S.; Park, N.-G. Perovskite solar cells: From materials to devices. Small 2015, 11, 10–25. [Google Scholar] [CrossRef]
- Fujiwara, H.; Kato, M.; Tamakoshi, M.; Miyadera, T.; Chikamatsu, M. Optical characteristics and operational principles of hybrid perovskite solar cells. Phys. Status Solidi A 2018, 215, 1700730. [Google Scholar] [CrossRef]
- Gonzalez-Pedro, V.; Juarez-Perez, E.J.; Arsyad, W.-S.; Barea, E.M.; Fabregat-Santiago, F.; Mora-Sero, I.; Bisquert, J. General working principles of CH3NH3PbX3 perovskite solar cells. Nano Lett. 2014, 14, 888–893. [Google Scholar] [CrossRef]
- Hsiao, Y.-C.; Wu, T.; Li, M.; Liu, Q.; Qin, W.; Hu, B. Fundamental physics behind high-efficiency organo-metal halide perovskite solar cells. J. Mater. Chem. A 2015, 3, 15372–15385. [Google Scholar] [CrossRef]
- Ghosh, P.; Sundaram, S.; Nixon, T.P.; Krishnamurthy, S. Influence of nanostructures in perovskite solar cells. In Encyclopedia of Smart Materials; Olabi, A.-G., Ed.; Elsevier: Oxford, UK, 2022; pp. 646–660. [Google Scholar]
- Baptayev, B.; Tashenov, Y.; Balanay, M.P. Conjugated Polymers as Organic Electrodes for Photovoltaics. In Organic Electrodes: Fundamental to Advanced Emerging Applications; Gupta, R.K., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 137–153. [Google Scholar]
- Wei, W.; Wang, H.; Hu, Y.H. A review on PEDOT-based counter electrodes for dye-sensitized solar cells. Int. J. Energy Res. 2014, 38, 1099–1111. [Google Scholar] [CrossRef]
- Theerthagiri, J.; Senthil, A.R.; Madhavan, J.; Maiyalagan, T. Recent progress in non-platinum counter electrode materials for dye-sensitized solar cells. ChemElectroChem 2015, 2, 928–945. [Google Scholar] [CrossRef]
- Noman, M.; Khan, Z.; Jan, S.T. A comprehensive review on the advancements and challenges in perovskite solar cell technology. RSC Adv. 2024, 14, 5085–5131. [Google Scholar] [CrossRef] [PubMed]
- Prajapat, K.; Dhonde, M.; Sahu, K.; Bhojane, P.; Murty, V.V.S.; Shirage, P.M. The evolution of organic materials for efficient dye-sensitized solar cells. J. Photochem. Photobiol. C 2023, 55, 100586. [Google Scholar] [CrossRef]
- Fu-Quan, B.; Wei, L.; Hong-Xing, Z. Theoretical studies of titanium dioxide for dye-sensitized solar cell and photocatalytic reaction. In Titanium Dioxide; Magdalena, J., Ed.; IntechOpen: Rijeka, Croatia, 2017; Chapter 10. [Google Scholar]
- Schuster, C.S.; Morawiec, S.; Mendes, M.J.; Patrini, M.; Martins, E.R.; Lewis, L.; Crupi, I.; Krauss, T.F. Plasmonic and diffractive nanostructures for light trapping—An experimental comparison. Optica 2015, 2, 194–200. [Google Scholar] [CrossRef]
- Ding, S.; Yang, C.; Yuan, J.; Li, H.; Yuan, X.; Li, M. An overview of the preparation and application of counter electrodes for DSSCs. RSC Adv. 2023, 13, 12309–12319. [Google Scholar] [CrossRef]
- Yip, H.-L.; Jen, A.K.Y. Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells. Energy Environ. Sci. 2012, 5, 5994–6011. [Google Scholar] [CrossRef]
- Duan, L.; Uddin, A. Progress in stability of organic solar cells. Adv. Sci. 2020, 7, 1903259. [Google Scholar] [CrossRef]
- Sudhakar, Y.N.; Selvakumar, M.; Bhat, D.K. Chapter 4—Biopolymer electrolytes for solar cells and electrochemical cells. In Biopolymer Electrolytes; Sudhakar, Y.N., Selvakumar, M., Bhat, D.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 117–149. [Google Scholar]
- Abdulrazzaq, O.A.; Saini, V.; Bourdo, S.; Dervishi, E.; Biris, A.S. Organic solar cells: A review of materials, limitations, and possibilities for improvement. Part. Sci. Technol. 2013, 31, 427–442. [Google Scholar] [CrossRef]
- Hou, W.; Xiao, Y.; Han, G.; Lin, J.-Y. The applications of polymers in solar cells: A review. Polymers 2019, 11, 143. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.; Jeong, S.-H.; Han, T.-H.; Lee, T.-W. Conducting polymers as anode buffer materials in organic and perovskite optoelectronics. Adv. Opt. Mater. 2017, 5, 1600512. [Google Scholar] [CrossRef]
- Girish, K.H.; Vishnumurthy, K.A.; Roopa, T.S. Role of conducting polymers in enhancing the stability and performance of perovskite solar cells: A brief review. Mater. Today Sustain. 2022, 17, 100090. [Google Scholar] [CrossRef]
- Jiang, X.; Yu, Z.; Zhang, Y.; Lai, J.; Li, J.; Gurzadyan, G.G.; Yang, X.; Sun, L. High-performance regular perovskite solar cells employing low-cost poly(ethylenedioxythiophene) as a hole-transporting material. Sci. Rep. 2017, 7, 42564. [Google Scholar] [CrossRef]
- Kumar, V.; Jule, L.T.; Ramaswamy, K. Conducting Polymers for Organic Solar Cell Applications. In Conducting Polymers for Advanced Energy Applications, 1st ed.; Gupta, R.K., Ed.; CRC Press: Boca Raton, FL, USA, 2021; pp. 139–151. [Google Scholar]
- Machida, K.; Koseki, K.; Takeuchi, S. Electrochemical investigation of PEDOT counter electrode for dye-sensitized solar cells. Electrochemistry 2022, 90, 017003. [Google Scholar] [CrossRef]
- das Neves, M.F.F.; Damasceno, J.P.V.; Junior, O.D.L.; Zarbin, A.J.G.; Roman, L.S. Conductive ink based on PEDOT nanoparticles dispersed in water without organic solvents, passivant agents or metallic residues. Synth. Met. 2021, 272, 116657. [Google Scholar] [CrossRef]
- Pradhan, S.C.; Soman, S. Effect of thickness on charge transfer properties of conductive polymer based PEDOT counter electrodes in DSSC. Results Surf. Interfaces 2021, 5, 100030. [Google Scholar] [CrossRef]
- Erazo, E.A.; Ortiz, P.; Cortés, M.T. Tailoring the PEDOT:PSS hole transport layer by electrodeposition method to improve perovskite solar cells. Electrochim. Acta 2023, 439, 141573. [Google Scholar] [CrossRef]
- Li, X.; Zhao, Z.; Zhou, J.; Wang, C.; Wu, Y.; Tan, S. An all-solid-state lamellar-nanostructured polymer electrolyte in-situ-prepared from smectic liquid crystal for thermally stable dye-sensitized solar cells. Chem. Eng. Sci. 2020, 221, 115710. [Google Scholar] [CrossRef]
- Yasmeen, S.; Gill, Y.Q.; Nazar, R.; Mehmood, U.; Iqbal, F.; Qaswar, H.; Ahmed, Z. Quasi-solid polyaniline/poly(vinyl pyrrolidone) blend electrolytes for dye-sensitized solar cells. Mater. Chem. Phys. 2023, 305, 128025. [Google Scholar] [CrossRef]
- Gu, W.-M.; Jiang, K.-J.; Zhang, Y.; Yu, G.-H.; Gao, C.-Y.; Fan, X.-H.; Yang, L.-M. In-Situ polymerization of PEDOT in perovskite thin films for efficient and stable photovoltaics. Chem. Eng. J. 2022, 430, 133109. [Google Scholar] [CrossRef]
- Zhang, L.; Xing, X.; Zheng, L.; Chen, Z.; Xiao, L.; Qu, B.; Gong, Q. Vertical phase separation in bulk heterojunction solar cells formed by in situ polymerization of fulleride. Sci. Rep. 2014, 4, 5071. [Google Scholar] [CrossRef]
- Nazarzadeh Zare, E.; Mansour Lakouraj, M.; Najafi Moghadam, P.; Hasanzadeh, R. Novel conducting nanocomposite based on polypyrrole and modified poly(styrene-alt-maleic anhydride) via emulsion polymerization: Synthesis, Characterization, Antioxidant, and heavy metal sorbent activity. Polym. Compos. 2015, 36, 138–144. [Google Scholar] [CrossRef]
- Zappia, S.; Scavia, G.; Ferretti, A.M.; Giovanella, U.; Vohra, V.; Destri, S. Water-processable amphiphilic low band gap block copolymer:fullerene blend nanoparticles as alternative sustainable approach for organic solar cells. Adv. Sustain. Syst. 2018, 2, 1700155. [Google Scholar] [CrossRef]
- Valtera, S.; Prokeš, J.; Kopecká, J.; Vrňata, M.; Trchová, M.; Varga, M.; Stejskal, J.; Kopecký, D. Dye-stimulated control of conducting polypyrrole morphology. RSC Adv. 2017, 7, 51495–51505. [Google Scholar] [CrossRef]
- Maity, N.; Dawn, A. Conducting polymer grafting: Recent and key developments. Polymers 2020, 12, 709. [Google Scholar] [CrossRef] [PubMed]
- Truong, N.P.; Jones, G.R.; Bradford, K.G.E.; Konkolewicz, D.; Anastasaki, A. A comparison of RAFT and ATRP methods for controlled radical polymerization. Nat. Rev. Chem. 2021, 5, 859–869. [Google Scholar] [CrossRef] [PubMed]
- Koizumi, T.-a.; Kanbara, T. Cross-Coupling Polymerization. In Organometallic Reactions and Polymerization; Osakada, K., Ed.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 271–301. [Google Scholar]
- Chakraborty, B.; Luscombe, C.K. Cross-Dehydrogenative Coupling Polymerization via C−H Activation for the Synthesis of Conjugated Polymers. Angew. Chem. Int. Ed. 2023, 62, e202301247. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.; Zhang, L.; Zhao, Y.; Lin, J.; Chen, M. Palladium-catalyzed cross-coupling polymerization: A new access to cross-conjugated polymers with modifiable structure and tunable optical/conductive properties. Macromolecules 2018, 51, 9662–9668. [Google Scholar] [CrossRef]
- Amna, B.; Ateş, A.; Ozturk, T. Pd/Cu-catalyzed sonogashira cross-coupling polycondensation: A promising approach for synthesizing conjugated polymers with useful applications. Eur. Polym. J. 2023, 196, 112275. [Google Scholar] [CrossRef]
- Howe, D.H.; McDaniel, R.M.; Magenau, A.J.D. From click chemistry to cross-coupling: Designer polymers from one efficient reaction. Macromolecules 2017, 50, 8010–8018. [Google Scholar] [CrossRef]
- Pouliot, J.-R.; Grenier, F.; Blaskovits, J.T.; Beaupré, S.; Leclerc, M. Direct (hetero)arylation polymerization: Simplicity for conjugated polymer synthesis. Chem. Rev. 2016, 116, 14225–14274. [Google Scholar] [CrossRef]
- Bura, T.; Blaskovits, J.T.; Leclerc, M. Direct (hetero)arylation polymerization: Trends and perspectives. J. Am. Chem. Soc. 2016, 138, 10056–10071. [Google Scholar] [CrossRef]
- Yang, Z.-K.; Xu, N.-X.; Takita, R.; Muranaka, A.; Wang, C.; Uchiyama, M. Cross-coupling polycondensation via C–O or C–N bond cleavage. Nat. Commun. 2018, 9, 1587. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Kim, E.H.; Wei, A.; Negishi, E.-i. Pd- and Ni-catalyzed cross-coupling reactions in the synthesis of organic electronic materials. Sci. Technol. Adv. Mater. 2014, 15, 044201. [Google Scholar] [CrossRef] [PubMed]
- Schroot, R.; Schubert, U.S.; Jäger, M. Poly(n-alkyl-3,6-carbazole)s via Kumada catalyst transfer polymerization: Impact of metal–halogen exchange. Macromolecules 2016, 49, 8801–8811. [Google Scholar] [CrossRef]
- Cheng, S.; Ye, S.; Apte, C.N.; Yudin, A.K.; Seferos, D.S. Improving the Kumada catalyst transfer polymerization with water-scavenging grignard reagents. ACS Macro Lett. 2021, 10, 697–701. [Google Scholar] [CrossRef] [PubMed]
- Hardeman, T.; Koeckelberghs, G. Synthesis of conjugated copolymers by combining different coupling reactions. Polym. Chem. 2017, 8, 3999–4004. [Google Scholar] [CrossRef]
- Stefan, M.C.; Bhatt, M.P.; Sista, P.; Magurudeniya, H.D. Grignard metathesis (GRIM) polymerization for the synthesis of conjugated block copolymers containing regioregular poly(3-hexylthiophene). Polym. Chem. 2012, 3, 1693–1701. [Google Scholar] [CrossRef]
- Wu, J.; Lan, Z.; Lin, J.; Huang, M.; Huang, Y.; Fan, L.; Luo, G.; Lin, Y.; Xie, Y.; Wei, Y. Counter electrodes in dye-sensitized solar cells. Chem. Soc. Rev. 2017, 46, 5975–6023. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Feng, Q.; Gong, F.; Li, Y.; Zhou, G.; Wang, Z.-S. In situ growth of oriented polyaniline nanowires array for efficient cathode of Co(III)/Co(II) mediated dye-sensitized solar cell. J. Mater. Chem. A 2013, 1, 97–104. [Google Scholar] [CrossRef]
- Lee, J.H.; Jang, Y.J.; Kim, D.W.; Cheruku, R.; Thogiti, S.; Ahn, K.-S.; Kim, J.H. Application of polypyrrole/sodium dodecyl sulfate/carbon nanotube counter electrode for solid-state dye-sensitized solar cells and dye-sensitized solar cells. Chem. Pap. 2019, 73, 2749–2755. [Google Scholar] [CrossRef]
- Chen, G.-F.; Su, Y.-Z.; Kuang, P.-Y.; Liu, Z.-Q.; Chen, D.-Y.; Wu, X.; Li, N.; Qiao, S.-Z. Polypyrrole Shell@3D-Ni metal core structured electrodes for high-performance supercapacitors. Chem.-A Eur. J. 2015, 21, 4614–4621. [Google Scholar] [CrossRef]
- Hwang, D.K.; Song, D.; Jeon, S.S.; Han, T.H.; Kang, Y.S.; Im, S.S. Ultrathin polypyrrole nanosheets doped with HCl as counter electrodes in dye-sensitized solar cells. J. Mater. Chem. A 2014, 2, 859–865. [Google Scholar] [CrossRef]
- Torabi, N.; Behjat, A.; Jafari, F. Dye-sensitized solar cells based on porous conjugated polymer counter electrodes. Thin Solid Films 2014, 573, 112–116. [Google Scholar] [CrossRef]
- Bora, C.; Sarkar, C.; Mohan, K.J.; Dolui, S. Polythiophene/graphene composite as a highly efficient platinum-free counter electrode in dye-sensitized solar cells. Electrochim. Acta 2015, 157, 225–231. [Google Scholar] [CrossRef]
- Zhang, R.; Li, Z.; Xu, J.; Xia, J. Synthesis and application of poly(bis-3,4-ethylenedioxythiophene methine)s as novel counter electrodes in dye-sensitized solar cells. Sol. Energy 2018, 173, 1189–1196. [Google Scholar] [CrossRef]
- Naresh, V.; Elias, L.; Martha, S.K. Poly(3,4-ethylenedioxythiophene) coated lead negative plates for hybrid energy storage systems. Electrochim. Acta 2019, 301, 183–191. [Google Scholar] [CrossRef]
- Zhang, J.; Long, H.; Miralles, S.G.; Bisquert, J.; Fabregat-Santiago, F.; Zhang, M. The combination of a polymer–carbon composite electrode with a high-absorptivity ruthenium dye achieves an efficient dye-sensitized solar cell based on a thiolate–disulfide redox couple. Phys. Chem. Chem. Phys. 2012, 14, 7131–7136. [Google Scholar] [CrossRef]
- Chamatam Kasi Reddy, A.; Neeraja, V.; Meenakshamma, A.; Gurulakshmi, M.; Gurubhasker, M.; Raghavender, M.; Pedda Venkata Subbaiah, Y. Efficient counter electrode of MoS2-GO/PEDOT:PSS for platinum-free, high performance dye sensitized solar cells. ChemistrySelect 2024, 9, e202305200. [Google Scholar] [CrossRef]
- Vlachopoulos, N.; Grätzel, M.; Hagfeldt, A. Solid-state dye-sensitized solar cells using polymeric hole conductors. RSC Adv. 2021, 11, 39570–39581. [Google Scholar] [CrossRef] [PubMed]
- Sangwan, B.; Kumar, S.; Singh, A.; Pandey, S.P.; Singh, P.K.; Singh, R.C.; Tomar, R. Modified poly(vinyl alcohol) based polymer electrolyte for dye sensitized solar cells (DSSCs). Macromol. Symp. 2023, 407, 2100462. [Google Scholar] [CrossRef]
- Raut, P.; Kishnani, V.; Mondal, K.; Gupta, A.; Jana, S.C. A review on gel polymer electrolytes for dye-sensitized solar cells. Micromachines 2022, 13, 680. [Google Scholar] [CrossRef]
- Chowdhury, F.I.; Buraidah, M.H.; Arof, A.K.; Mellander, B.E.; Noor, I.M. Impact of tetrabutylammonium, iodide and triiodide ions conductivity in polyacrylonitrile based electrolyte on DSSC performance. Sol. Energy 2020, 196, 379–388. [Google Scholar] [CrossRef]
- Manikandan, K.; Yelilarasi, A.; Saravanakumar, S.; Althomali, R.H.; Khan, A.; Abualnaja, K.M.; Alhashmialameer, D.; Hussein, M. The effect of plasticizers on the polypyrrole-poly(vinyl alcohol)-based conducting polymer electrolyte and its application in semi-transparent dye-sensitized solar cells. Membranes 2021, 11, 791. [Google Scholar] [CrossRef]
- Tarannum, N.; Varishetty, M.M. Synthesis of organic sulfobetaine-based polymer gel electrolyte for dye-sensitized solar cell application. Polym. Adv. Technol. 2017, 28, 1504–1509. [Google Scholar] [CrossRef]
- Fang, Z.; Eshbaugh, A.A.; Schanze, K.S. Low-bandgap donor−acceptor conjugated polymer sensitizers for dye-sensitized solar cells. J. Am. Chem. Soc. 2011, 133, 3063–3069. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhu, R.; Zhang, Y.; Liu, B.; Ramakrishna, S. Anionic benzothiadiazole containing polyfluorene and oligofluorene as organic sensitizers for dye-sensitized solar cells. Chem. Commun. 2008, 32, 3789–3791. [Google Scholar] [CrossRef] [PubMed]
- Giri, D.; Raut, S.K.; Patra, S.K. Diketopyrrolopyrrole/perylene-diimide and thiophene based D-π-A low bandgap polymer sensitizers for application in dye sensitized solar cells. Dyes Pigm. 2020, 174, 108032. [Google Scholar] [CrossRef]
- Kim, Y.-G.; Walker, J.; Samuelson, L.A.; Kumar, J. Efficient light harvesting polymers for nanocrystalline TiO2 photovoltaic cells. Nano Lett. 2003, 3, 523–525. [Google Scholar] [CrossRef]
- Senadeera, G.K.R.; Kitamura, T.; Wada, Y.; Yanagida, S. Photosensitization of nanocrystalline TiO2 films by a polymer with two carboxylic groups, poly (3-thiophenemalonic acid). Sol. Energy Mater. Sol. Cells 2005, 88, 315–322. [Google Scholar] [CrossRef]
- Senadeera, G.K.R.; Nakamura, K.; Kitamura, T.; Wada, Y.; Yanagida, S. Fabrication of highly efficient polythiophene-sensitized metal oxide photovoltaic cells. Appl. Phys. Lett. 2003, 83, 5470–5472. [Google Scholar] [CrossRef]
- Ohshita, J.; Matsukawa, J.; Hara, M.; Kunai, A.; Kajiwara, S.; Ooyama, Y.; Harima, Y.; Kakimoto, M. Attachment of disilanylene–oligothienylene polymers on TiO2 surface by photochemical cleavage of the Si–Si bonds. Chem. Lett. 2008, 37, 316–317. [Google Scholar] [CrossRef]
- Mwaura, J.K.; Zhao, X.; Jiang, H.; Schanze, K.S.; Reynolds, J.R. Spectral broadening in nanocrystalline TiO2 solar cells based on poly(p-phenylene ethynylene) and polythiophene sensitizers. Chem. Mater. 2006, 18, 6109–6111. [Google Scholar] [CrossRef]
- Marques, A.S.; Szostak, R.; Marchezi, P.E.; Nogueira, A.F. Perovskite solar cells based on polyaniline derivatives as hole transport materials. J. Phys. Energy 2019, 1, 015004. [Google Scholar] [CrossRef]
- Jha, P.; Koiry, S.P.; Sridevi, C.; Gupta, D.; Putta, V.; Lenka, R.K.; Chauhan, A.K. Solution processable polypyrrole nanotubes as an alternative hole transporting material in perovskite solar cells. Mater. Today Commun. 2023, 35, 105994. [Google Scholar] [CrossRef]
- Kegelmann, L.; Tockhorn, P.; Wolff, C.M.; Márquez, J.A.; Caicedo-Dávila, S.; Korte, L.; Unold, T.; Lövenich, W.; Neher, D.; Rech, B.; et al. Mixtures of dopant-free Spiro-OMeTAD and water-free PEDOT as a passivating hole contact in perovskite solar cells. ACS Appl. Mater. Interfaces 2019, 11, 9172–9181. [Google Scholar] [CrossRef]
- Lim, K.-G.; Ahn, S.; Kim, H.; Choi, M.-R.; Huh, D.H.; Lee, T.-W. Self-doped conducting polymer as a hole-extraction layer in organic–inorganic hybrid perovskite solar cells. Adv. Mater. Interfaces 2016, 3, 1500678. [Google Scholar] [CrossRef]
- Rai, N.; Reddy, S.S.; Scully, A.D.; Weerarathna, K.L.J.; Bach, U.; Simonov, A.N. Ester-functionalized polythiophene interlayers for enhanced performance and stability of perovskite solar cells. Adv. Mater. Technol. 2024, 9, 2301539. [Google Scholar] [CrossRef]
- Gatti, T.; Casaluci, S.; Prato, M.; Salerno, M.; Di Stasio, F.; Ansaldo, A.; Menna, E.; Di Carlo, A.; Bonaccorso, F. Boosting perovskite solar cells performance and stability through doping a poly-3(hexylthiophene) hole transporting material with organic functionalized carbon nanostructures. Adv. Funct. Mater. 2016, 26, 7443–7453. [Google Scholar] [CrossRef]
- Nia, N.Y.; Matteocci, F.; Cina, L.; Di Carlo, A. High-efficiency perovskite solar cell based on poly(3-hexylthiophene): Influence of molecular weight and mesoscopic scaffold layer. ChemSusChem 2017, 10, 3854–3860. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Liu, Y.; Wu, Y.; Sun, Q.; Cui, Y.; Hao, Y. Interface modification of an electron transport layer using europium acetate for enhancing the performance of P3HT-based inorganic perovskite solar cells. Phys. Chem. Chem. Phys. 2021, 23, 23818–23826. [Google Scholar] [CrossRef]
- Duan, C.; Tang, A.; Guo, Q.; Zhang, W.; Yang, L.; Ding, Y.; Dai, Z.; Zhou, E. DTBDT-based polymer hole transport materials for low voltage loss CsPbI2Br perovskite solar cells. Adv. Funct. Mater. 2024, 34, 2313462. [Google Scholar] [CrossRef]
- Zhang, Z.; Fu, J.; Chen, Q.; Zhang, J.; Huang, Z.; Cao, J.; Ji, W.; Zhang, L.; Wang, A.; Zhou, Y.; et al. Dopant-free polymer hole transport materials for highly stable and efficient CsPbI3 perovskite solar cells. Small 2023, 19, 2206952. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Zong, X.; Chen, Y.; Liu, P.; Xiong, Y.; Zhang, W.; He, J.; Wang, Z.; Xue, S. Flexible backbone-assisted green-solvent processable polymer hole transport material in perovskite solar cells. ACS Sustain. Chem. Eng. 2024, 12, 1941–1950. [Google Scholar] [CrossRef]
- Fu, Q.; Liu, H.; Gao, Y.; Cao, X.; Li, Y.; Yang, Y.; Wang, J.; Chen, Y.; Yao, Z.; Liu, Y. Tunable molecular packing of dopant-free hole-transport polymers for perovskite solar cells. ACS Energy Lett. 2023, 8, 2878–2885. [Google Scholar] [CrossRef]
- Wang, W.; Yuan, J.; Shi, G.; Zhu, X.; Shi, S.; Liu, Z.; Han, L.; Wang, H.-Q.; Ma, W. Inverted planar heterojunction perovskite solar cells employing polymer as the electron conductor. ACS Appl. Mater. Interfaces 2015, 7, 3994–3999. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Sato, W.; Inoue, K.; Zhang, W.; Yu, G.; Nakamura, E. n-Type doping for efficient polymeric electron-transporting layers in perovskite solar cells. J. Mater. Chem. A 2016, 4, 18852–18856. [Google Scholar] [CrossRef]
- Guo, Q.; Xu, Y.; Xiao, B.; Zhang, B.; Zhou, E.; Wang, F.; Bai, Y.; Hayat, T.; Alsaedi, A.; Tan, Z. Effect of energy alignment, electron mobility, and film morphology of perylene diimide based polymers as electron transport layer on the performance of perovskite solar cells. ACS Appl. Mater. Interfaces 2017, 9, 10983–10991. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Wu, Z.; Yip, H.-L.; Zhang, H.; Jiang, X.-F.; Xue, Q.; Hu, Z.; Hu, Z.; Shen, Y.; Wang, M.; et al. Amino-functionalized conjugated polymer as an efficient electron transport layer for high-performance planar-heterojunction perovskite solar cells. Adv. Energy Mater. 2016, 6, 1501534. [Google Scholar] [CrossRef]
- Hoang Huy, V.P.; Bark, C.-W. Polymer-doped SnO2 as an electron transport layer for highly efficient and stable perovskite solar cells. Polymers 2024, 16, 199. [Google Scholar] [CrossRef]
- Kranthiraja, K.; He, W.; Yu, H.-W.; Feng, Z.; Nozaki, N.; Matsumoto, H.; Yu, M.-H.; Li, Y.; Manzhos, S.; Andersson, M.R.; et al. Diketopyrrolopyrrole-dioxo-benzodithiophene-based multifunctional conjugated polymers for organic field-effect transistors and perovskite solar cells. Solar RRL 2024, 8, 2400185. [Google Scholar] [CrossRef]
- Anrango-Camacho, C.; Pavón-Ipiales, K.; Frontana-Uribe, B.A.; Palma-Cando, A. Recent advances in hole-transporting layers for organic solar cells. Nanomaterials 2022, 12, 443. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Musumeci, C.; Ajjan, F.N.; Bao, Q.; Ma, Z.; Tang, Z.; Inganäs, O. Self-doped conjugated polyelectrolyte with tuneable work function for effective hole transport in polymer solar cells. J. Mater. Chem. A 2016, 4, 15670–15675. [Google Scholar] [CrossRef]
- Hamui, L.; Sánchez-Vergara, M.E.; Corona-Sánchez, R.; Jiménez-Sandoval, O.; Álvarez-Toledano, C. Innovative incorporation of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) as hole carrier transport layer and as anode for organic solar cells performance improvement. Polymers 2020, 12, 2808. [Google Scholar] [CrossRef] [PubMed]
- Pietsch, M.; Bashouti, M.Y.; Christiansen, S. The role of hole transport in hybrid inorganic/organic silicon/poly(3,4-ethylenedioxy-thiophene):Poly(styrenesulfonate) heterojunction solar cells. J. Phys. Chem. C 2013, 117, 9049–9055. [Google Scholar] [CrossRef]
- Li, Y.; Hong, N. An efficient hole transport material based on PEDOT dispersed with lignosulfonate: Preparation, characterization and performance in polymer solar cells. J. Mater. Chem. A 2015, 3, 21537–21544. [Google Scholar] [CrossRef]
- Xu, J.; Heumüller, T.; Le Corre, V.M.; Barabash, A.; Félix, R.; Frisch, J.; Bär, M.; Brabec, C.J. A polymer bilayer hole transporting layer architecture for high-efficiency and stable organic solar cells. Joule 2024, 8, 2570–2584. [Google Scholar] [CrossRef]
- Jiang, Y.; Dong, X.; Sun, L.; Liu, T.; Qin, F.; Xie, C.; Jiang, P.; Hu, L.; Lu, X.; Zhou, X.; et al. An alcohol-dispersed conducting polymer complex for fully printable organic solar cells with improved stability. Nat. Energy 2022, 7, 352–359. [Google Scholar] [CrossRef]
- Moon, S.; Khadtare, S.; Wong, M.; Han, S.-H.; Bazan, G.C.; Choi, H. Hole transport layer based on conjugated polyelectrolytes for polymer solar cells. J. Colloid Interface Sci. 2018, 518, 21–26. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, Y.; Mai, C.-K.; Collins, S.D.; Nguyen, T.-Q.; Bazan, G.C.; Heeger, A.J. Conductive Conjugated Polyelectrolyte as Hole-Transporting Layer for Organic Bulk Heterojunction Solar Cells. Adv. Mater. 2014, 26, 780–785. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Fu, X.; Cheng, X.; Huang, L.; Zhou, D.; Chen, L.; Chen, Y. Highly and homogeneously conductive conjugated polyelectrolyte hole transport layers for efficient organic solar cells. J. Mater. Chem. A 2017, 5, 14689–14696. [Google Scholar] [CrossRef]
- Liu, S.; You, P.; Li, J.; Li, J.; Lee, C.-S.; Ong, B.S.; Surya, C.; Yan, F. Enhanced efficiency of polymer solar cells by adding a high-mobility conjugated polymer. Energy Environ. Sci. 2015, 8, 1463–1470. [Google Scholar] [CrossRef]
- Al-Azzawi, A.G.S.; Aziz, S.B.; Dannoun, E.M.A.; Iraqi, A.; Nofal, M.M.; Murad, A.R.; Hussein, A.M. A mini review on the development of conjugated polymers: Steps towards the commercialization of organic solar cells. Polymers 2023, 15, 164. [Google Scholar] [CrossRef] [PubMed]
- Tetreault, A.R.; Dang, M.-T.; Bender, T.P. PTB7 and PTB7-Th as universal polymers to evaluate materials development aspects of organic solar cells including interfacial layers, new fullerenes, and non-fullerene electron acceptors. Synth. Met. 2022, 287, 117088. [Google Scholar] [CrossRef]
- Ohori, Y.; Fujii, S.; Kataura, H.; Nishioka, Y. Improvement of bulk heterojunction organic solar cells based on PTB7:PC61BM with small amounts of P3HT. Jpn. J. Appl. Phys. 2015, 54, 04DK09. [Google Scholar] [CrossRef]
- Shaban, M.; Benghanem, M.; Almohammedi, A.; Rabia, M. Optimization of the active layer P3HT:PCBM for organic solar cell. Coatings 2021, 11, 863. [Google Scholar] [CrossRef]
- Tang, Y.; Liu, L.; Deng, J.; Sun, P.; Yan, D.; Peng, W.; Huang, X.; Xiao, M.; Tao, Q.; Yu, D. Incorporating a weak acceptor unit into PTB7-Th to tune the open circuit voltage for non-fullerene polymer solar cells. Tetrahedron 2023, 131, 133214. [Google Scholar] [CrossRef]
- Ko, S.-J.; Walker, B.; Nguyen, T.L.; Choi, H.; Seifter, J.; Uddin, M.A.; Kim, T.; Kim, S.; Heo, J.; Kim, G.-H.; et al. Photocurrent extraction efficiency near unity in a thick polymer bulk heterojunction. Adv. Funct. Mater. 2016, 26, 3324–3330. [Google Scholar] [CrossRef]
- Lin, Q.; Stoltzfus, D.M.; Armin, A.; Burn, P.L.; Meredith, P. An hydrophilic anode interlayer for solution processed organohalide perovskite solar cells. Adv. Mater. Interfaces 2016, 3, 1500420. [Google Scholar] [CrossRef]
- Freitag, M.; Teuscher, J.; Saygili, Y.; Zhang, X.; Giordano, F.; Liska, P.; Hua, J.; Zakeeruddin, S.M.; Moser, J.-E.; Grätzel, M.; et al. Dye-sensitized solar cells for efficient power generation under ambient lighting. Nat. Photonics 2017, 11, 372–378. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, Y.; Zakeeruddin, S.M.; Hagfeldt, A.; Grätzel, M. Direct contact of selective charge extraction layers enables high-efficiency molecular photovoltaics. Joule 2018, 2, 1108–1117. [Google Scholar] [CrossRef]
- Venkatesan, S.; Lin, W.-H.; Hsu, T.-H.; Teng, H.; Lee, Y.-L. Indoor dye-sensitized solar cells with efficiencies surpassing 26% using polymeric counter electrodes. ACS Sustain. Chem. Eng. 2022, 10, 2473–2483. [Google Scholar] [CrossRef]
- Guo, Z.; Jena, A.K.; Takei, I.; Ikegami, M.; Ishii, A.; Numata, Y.; Shibayama, N.; Miyasaka, T. Dopant-free polymer HTM-based CsPbI2Br solar cells with efficiency over 17% in sunlight and 34% in indoor light. Adv. Funct. Mater. 2021, 31, 2103614. [Google Scholar] [CrossRef]
- Ding, Z.; Zhao, R.; Yu, Y.; Liu, J. All-polymer indoor photovoltaics with high open-circuit voltage. J. Mater. Chem. A 2019, 7, 26533–26539. [Google Scholar] [CrossRef]
- Jiang, F.; Liu, T.; Zeng, S.; Zhao, Q.; Min, X.; Li, Z.; Tong, J.; Meng, W.; Xiong, S.; Zhou, Y. Metal electrode–free perovskite solar cells with transfer-laminated conducting polymer electrode. Opt. Express 2015, 23, A83–A91. [Google Scholar] [CrossRef]
- Jiang, Y.; Luo, B.; Jiang, F.; Jiang, F.; Fuentes-Hernandez, C.; Liu, T.; Mao, L.; Xiong, S.; Li, Z.; Wang, T.; et al. Efficient Colorful Perovskite Solar Cells Using a Top Polymer Electrode Simultaneously as Spectrally Selective Antireflection Coating. Nano Lett. 2016, 16, 7829–7835. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Liu, T.; Zhou, Y. Recent advances of synthesis, properties, film fabrication methods, modifications of poly(3,4-ethylenedioxythiophene), and applications in solution-processed photovoltaics. Adv. Funct. Mater. 2020, 30, 2006213. [Google Scholar] [CrossRef]
- Kim, Y.; Ryu, T.I.; Ok, K.-H.; Kwak, M.-G.; Park, S.; Park, N.-G.; Han, C.J.; Kim, B.S.; Ko, M.J.; Son, H.J.; et al. Inverted layer-by-layer fabrication of an ultraflexible and transparent Ag nanowire/conductive polymer composite electrode for use in high-performance organic solar cells. Adv. Funct. Mater. 2015, 25, 4580–4589. [Google Scholar] [CrossRef]
- Xu, Y.; Lin, Z.; Wei, W.; Hao, Y.; Liu, S.; Ouyang, J.; Chang, J. Recent progress of electrode materials for flexible perovskite solar cells. Nano-Micro Lett. 2022, 14, 117. [Google Scholar] [CrossRef]
- Bu, L.; Liu, Z.; Zhang, M.; Li, W.; Zhu, A.; Cai, F.; Zhao, Z.; Zhou, Y. Semitransparent fully air processed perovskite solar cells. ACS Appl. Mater. Interfaces 2015, 7, 17776–17781. [Google Scholar] [CrossRef]
- Aivali, S.; Beaumont, C.; Leclerc, M. Conducting polymers: Towards printable transparent electrodes. Prog. Polym. Sci. 2024, 148, 101766. [Google Scholar] [CrossRef]
- Ponder, J.F., Jr.; Österholm, A.M.; Reynolds, J.R. Conjugated polyelectrolytes as water processable precursors to aqueous compatible redox active polymers for diverse applications: Electrochromism, charge storage, and biocompatible organic electronics. Chem. Mater. 2017, 29, 4385–4392. [Google Scholar] [CrossRef]
- Ke, Z.; Abtahi, A.; Hwang, J.; Chen, K.; Chaudhary, J.; Song, I.; Perera, K.; You, L.; Baustert, K.N.; Graham, K.R.; et al. Highly conductive and solution-processable n-doped transparent organic conductor. J. Am. Chem. Soc. 2023, 145, 3706–3715. [Google Scholar] [CrossRef]
- Chen, X.; Liu, J.; Qian, K.; Wang, J. Ternary composites of Ni–polyaniline–graphene as counter electrodes for dye-sensitized solar cells. RSC Adv. 2018, 8, 10948–10953. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Zhao, Q.; Chen, L.; Ruan, B.; Wu, M. Impact of electrocatalytic activities of doping surfactants on polyaniline as Pt-free counter electrode in DSSCs. Int. J. Electrochem. Sci. 2018, 13, 4868–4875. [Google Scholar] [CrossRef]
- Lee, K.-M.; Chen, P.-Y.; Hsu, C.-Y.; Huang, J.-H.; Ho, W.-H.; Chen, H.-C.; Ho, K.-C. A high-performance counter electrode based on poly(3,4-alkylenedioxythiophene) for dye-sensitized solar cells. J. Power Sources 2009, 188, 313–318. [Google Scholar] [CrossRef]
- Duan, C.; Willems, R.E.M.; van Franeker, J.J.; Bruijnaers, B.J.; Wienk, M.M.; Janssen, R.A.J. Effect of side chain length on the charge transport, morphology, and photovoltaic performance of conjugated polymers in bulk heterojunction solar cells. J. Mater. Chem. A 2016, 4, 1855–1866. [Google Scholar] [CrossRef]
- Chen, L.; Liu, W.; Yan, Y.; Su, X.; Xiao, S.; Lu, X.; Uher, C.; Tang, X. Fine-tuning the solid-state ordering and thermoelectric performance of regioregular P3HT analogues by sequential oxygen-substitution of carbon atoms along the alkyl side chains. J. Mater. Chem. C 2019, 7, 2333–2344. [Google Scholar] [CrossRef]
- Li, Y.; Sha, M.; Huang, S. A review on transparent electrodes for flexible organic solar cells. Coatings 2024, 14, 1031. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yelshibay, A.; Bukari, S.D.; Baptayev, B.; Balanay, M.P. Conducting Polymers in Solar Cells: Insights, Innovations, and Challenges. Organics 2024, 5, 640-669. https://doi.org/10.3390/org5040034
Yelshibay A, Bukari SD, Baptayev B, Balanay MP. Conducting Polymers in Solar Cells: Insights, Innovations, and Challenges. Organics. 2024; 5(4):640-669. https://doi.org/10.3390/org5040034
Chicago/Turabian StyleYelshibay, Aliya, Sherif Dei Bukari, Bakhytzhan Baptayev, and Mannix P. Balanay. 2024. "Conducting Polymers in Solar Cells: Insights, Innovations, and Challenges" Organics 5, no. 4: 640-669. https://doi.org/10.3390/org5040034
APA StyleYelshibay, A., Bukari, S. D., Baptayev, B., & Balanay, M. P. (2024). Conducting Polymers in Solar Cells: Insights, Innovations, and Challenges. Organics, 5(4), 640-669. https://doi.org/10.3390/org5040034