A Generalization of the Fractional Stockwell Transform
Abstract
:1. Introduction
2. Preliminaries
- If , then .
- If and , then .
3. Generalized Fractional Stockwell Transform
- 1.
- 2.
- ,where .
- 1.
- If , then is the classical Stockwell transform given in (1).
- 2.
- If , where , then is the fractional Stockwell transform [26], with a constant factor given by
- 3.
- If , where with , then we obtain the linear canonical Stockwell transform [30], which is given below. For ,
- 1.
- Linearity: The generalized fractional Stockwell transform is a linear map on .
- 2.
- Translation:.
- 3.
- Parity: If , then , where ,
- 4.
- Scaling:If and , then
- One can observe that the special affine convolution satisfiesfor all , , and . Using these facts, we obtain that the GFST is a linear map on .Assume that . Since is dense in and the SAFT is continuous on , the results remain true for .
- If , then is a parameter matrix. Using the easy identity , , we have that
- If , then is a parameter matrix. Hence,
- 1.
- , where ,
- 2.
- ,
- 3.
- .
- The proof of the first claim can be found in [18].
- For ,
- Using this result, we can obtain the following. For ,
- 1.
- ,
- 2.
- ,
- 3.
- .
- Applying Lemma 2 with , we obtain
- Note thatTherefore,
4. Uncertainty Principle
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Namias, V. The fractional order Fourier transform and its application to quantum mechanics. IMA J. Appl. Math. 1980, 25, 241–265. [Google Scholar] [CrossRef]
- Ozaktas, H.M.; Mendlovic, D. Fractional fourier optics. J. Opt. Soc. Am. A 1995, 12, 743–751. [Google Scholar] [CrossRef]
- McBride, A.C.; Kerr, F.H. On Namias’s fractional Fourier transforms. IMA J. Appl. Math. 1987, 39, 159–175. [Google Scholar] [CrossRef]
- Sejdić, E.; Djurović, I.; Stanković, L. Fractional Fourier transform as a signal processing tool: An overview of recent developments. Signal Process. 2011, 91, 1351–1369. [Google Scholar] [CrossRef]
- Moshinsky, M.; Quesne, C. Linear canonical transformations and their unitary representations. J. Math. Phys. 1971, 12, 1772–1780. [Google Scholar] [CrossRef]
- Anderson, A. Canonical transformations in quantum mechanics. Ann. Phys. 1994, 232, 292–331. [Google Scholar] [CrossRef]
- Bastiaans, M.J.; Tatiana, A. Classification of lossless first-order optical systems and the linear canonical transformation. J. Opt. Soc. Am. A 2007, 24, 1053–1062. [Google Scholar] [CrossRef] [PubMed]
- Abe, S.; Sheridan, J.T. Generalization of the fractional Fourier transformation to an arbitrary linear lossless transformation an operator approach. J. Phys. 1994, 27, 4179–4187. [Google Scholar] [CrossRef]
- Abe, S.; Sheridan, J.T. Optical operations on wave functions as the Abelian subgroups of the special affine Fourier transformation. Opt. Lett. 1994, 19, 1801–1803. [Google Scholar] [CrossRef]
- Abe, S.; Sheridan, J.T. Almost-Fourier and almost-Fresnel transformations. Opt. Commun. 1995, 113, 385–388. [Google Scholar] [CrossRef]
- Bastiaans, M.J.; Tatiana, A. The Linear Canonical Transformation: Definition and Properties. In Linear Canonical Transforms: Theory and Applications; Healy, J.J., Kutay, M.A., Ozaktas, H.M., Sheridan, J.T., Eds.; Springer: New York, NY, USA, 2015; pp. 29–80. [Google Scholar]
- Mertz, L. Transformation in Optics; Wiley: New York, NY, USA, 1965; pp. 80–102. [Google Scholar]
- Pei, S.C.; Ding, J.J. Eigenfunctions of the offset Fourier, fractional Fourier, and linear canonical transforms. J. Opt. Soc. Am. A 2003, 20, 522–532. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, A.; Zayed, A.I. Shift-invariant and sampling spaces associated with the special affine Fourier transform. Appl. Comput. Harmon. Anal. 2019, 47, 30–52. [Google Scholar] [CrossRef]
- Roopkumar, R. One-dimensional quaternionic special affine Fourier transform. Adv. Appl. Clifford Algebras. 2021, 31, 1–13. [Google Scholar] [CrossRef]
- Bhat, M.Y.; Dar, A.H.; Zayed, M.; Araci, S. Octonion Special Affine Fourier Transform: Pitt’s Inequality and the Uncertainty Principles. Fractal Fract. 2023, 7, 356. [Google Scholar] [CrossRef]
- Shah, F.A.; Teali, A.A.; Tantary, A.Y. Windowed special affine Fourier transform. J. Pseudo-Differ. Oper. Appl. 2024, 11, 1389–1420. [Google Scholar] [CrossRef]
- Lakshmanan, S.; Roopkumar, R.; Zayed, A.I. A Novel Special Affine Convolution and Short Special Affine Fourier Transform. Integral Transform. Spec. Funct. 2024; submitted. [Google Scholar]
- Shah, F.A.; Tantary, A.Y.; Zayed, A.I. A convolution-based special affine wavelet transform. Integral Transforms Spec. Funct. 2021, 32, 780–800. [Google Scholar] [CrossRef]
- Dar, A.H.; Bhat, M.Y. Special affine Stockwell transform: Theory, uncertainty principles and applications. Int. J. Wavelets Multiresolut. Inf. Process. 2024, 22, 2350057. [Google Scholar] [CrossRef]
- Stockwell, R.G.; Mansinha, L.; Lowe, R.P. Localization of the complex spectrum: The S transform. IEEE Trans. Signal Process. 1996, 44, 998–1001. [Google Scholar] [CrossRef]
- Du, J.; Wong, M.W.; Zhu, H. Continuous and discrete inversion formulas for the Stockwell transform. Integral Transform. Spec. Funct. 2007, 18, 537–543. [Google Scholar] [CrossRef]
- Stockwell, R.G.; Lowe, R.P. Airglow imaging of gravity waves: 1. Results from a small network of OH nightglow scanning images. J. Geophys. Res. Atmos. 2001, 106, 17185–17203. [Google Scholar] [CrossRef]
- Xu, D.P.; Guo, K. Fractional S transform part 1: Theory. Appl. Geophys. 2012, 9, 73–79. [Google Scholar] [CrossRef]
- Du, Z.C.; Xu, D.P.; Zhang, J.M. Fractional S-transform-part 2: Application to reservoir prediction and fluid identification. Appl. Geophys. 2016, 13, 343–352. [Google Scholar] [CrossRef]
- Wei, D.; Zhang, Y. Fractional Stockwell transform: Theory and applications. Digit. Signal Process. 2021, 115, 103090. [Google Scholar] [CrossRef]
- Kamalakkannan, R.; Roopkumar, R. Two-dimensional fractional Stockwell transform. Circuits Syst. Signal Process. 2022, 41, 1735–1750. [Google Scholar] [CrossRef]
- Subbiah, L.; Rajakumar, R. Multidimensional Generalized Fractional S Transform. Adv. Appl. Clifford Algebr. 2024, 34, 17. [Google Scholar] [CrossRef]
- Zhang, W.; Tao, R.; Wang, Y. Linear canonical S transform. Chin. J. Electron. 2011, 20, 63–66. [Google Scholar]
- Wei, D.; Zhang, Y.; Li, Y.M. Linear canonical Stockwell transform: Theory and applications. IEEE Trans. Signal Process. 2022, 70, 1333–1347. [Google Scholar] [CrossRef]
- Gupta, B.; Verma, A.K. Linear canonical Stockwell transform and the associated multiresolution analysis. Math. Methods Appl. Sci. 2024, 47, 9287–9312. [Google Scholar] [CrossRef]
- Shah, F.A.; Tantary, A.Y. Linear canonical Stockwell transform. J. Math. Anal. Appl. 2020, 484, 123673. [Google Scholar] [CrossRef]
- Kaur, N.; Gupta, B.; Verma, A.K.; Agarwal, R.P. Offset Linear Canonical Stockwell Transform for Boehmians. Mathematics 2024, 12, 2379. [Google Scholar] [CrossRef]
- Rudin, W. Real and Complex Analysis, 3rd ed.; McGraw-Hill Inc.: New York, NY, USA, 1987; pp. 178–188. [Google Scholar]
- Xiang, Q.; Qin, K. Convolution, correlation, and sampling theorems for the offset linear canonical transform. Signal Image Video Process. 2014, 8, 433–442. [Google Scholar] [CrossRef]
- Zhi, X.; Wei, D.; Zhang, W. A generalized convolution theorem for the special affine Fourier transform and its application to filtering. Optik 2016, 127, 2613–2616. [Google Scholar] [CrossRef]
- Gröchenig, K. Foundations of Time-Frequency Analysis; Birkhäuser: Boston, MA, USA, 2001; pp. 37–49. [Google Scholar]
- Folland, G.B.; Sitaram, A. The uncertainty principle: A mathematical survey. J. Fourier Anal. Appl. 1997, 3, 207–238. [Google Scholar] [CrossRef]
- Bahri, M.; Hitzer, E.S.; Hayashi, A.; Ashino, R. An uncertainty principle for quaternion Fourier transform. Comput. Math. Appl. 2008, 56, 2398–2410. [Google Scholar] [CrossRef]
- Xu, G.; Wang, X.; Xu, X. The logarithmic, Heisenberg’s and short-time uncertainty principles associated with fractional Fourier transform. Signal Process. 2009, 89, 339–343. [Google Scholar]
- Bahri, M.; Ashino, R. Some properties of windowed linear canonical transform and its logarithmic uncertainty principle. Int. J. Wavelets Multiresolut. Inf. Process. 2016, 14, 1650015. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lakshmanan, S.; Roopkumar, R.; Zayed, A.I. A Generalization of the Fractional Stockwell Transform. Fractal Fract. 2025, 9, 166. https://doi.org/10.3390/fractalfract9030166
Lakshmanan S, Roopkumar R, Zayed AI. A Generalization of the Fractional Stockwell Transform. Fractal and Fractional. 2025; 9(3):166. https://doi.org/10.3390/fractalfract9030166
Chicago/Turabian StyleLakshmanan, Subbiah, Rajakumar Roopkumar, and Ahmed I. Zayed. 2025. "A Generalization of the Fractional Stockwell Transform" Fractal and Fractional 9, no. 3: 166. https://doi.org/10.3390/fractalfract9030166
APA StyleLakshmanan, S., Roopkumar, R., & Zayed, A. I. (2025). A Generalization of the Fractional Stockwell Transform. Fractal and Fractional, 9(3), 166. https://doi.org/10.3390/fractalfract9030166