First Derivative Approximations and Applications
<p>Graphs of numerical solution (<a href="#FD59-fractalfract-08-00608" class="html-disp-formula">59</a>) (<b>left</b>) and its error (<b>right</b>) for <math display="inline"><semantics> <mrow> <mi>h</mi> <mo>=</mo> <mi>τ</mi> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>.</p> "> Figure 2
<p>Graphs of numerical solution (<a href="#FD77-fractalfract-08-00608" class="html-disp-formula">77</a>) (<b>left</b>) and its error (<b>right</b>) for <math display="inline"><semantics> <mrow> <mi>h</mi> <mo>=</mo> <mi>τ</mi> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Asymptotic Formula
3. Error Estimates and Convergence
4. Numerical Solutions of First-Order ODEs
- • Numerical method (45) has an order when and ,
- • (45) has an order , when and ,
- • (45) has an order , when and ,
5. Numerical Solution of Heat Equation
6. Approximations of the Fractional Derivative
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Akgül, A.; Conejero, J.A. Fractal fractional derivative models for simulating chemical degradation in a bioreactor. Axioms 2024, 13, 151. [Google Scholar] [CrossRef]
- Akgül, A.; Khoshnaw, S.H.A. Application of fractional derivative on non-linear biochemical reaction models. Int. J. Intell. Netw. 2020, 1, 2–58. [Google Scholar] [CrossRef]
- Baba, I.A.; Rihan, F.A. A fractional–order model with different strains of COVID-19. Phys. A Stat. Mech. Appl. 2022, 603, 127813. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Yu, Z.; Lan, P.; Lu, N. fractional derivative viscosity of ANCF cable element. Actuators 2023, 12, 64. [Google Scholar] [CrossRef]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2003. [Google Scholar]
- Kumar, D.; Singh, J. Fractional Calculus in Medical and Health Science; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Dimitrov, Y.; Georgiev, S.; Miryanov, R.; Todorov, V. Convergence of the L1 two-term equation scheme. J. Phys. Conf. Ser. 2023, 2675, 012027. [Google Scholar] [CrossRef]
- Jin, B.; Lazarov, R.; Zhou, Z. An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 2016, 36, 197–221. [Google Scholar] [CrossRef]
- Li, B.; Xie, X.; Yan, Y. L1 scheme for solving an inverse problem subject to a fractional diffusion equation. Comput. Math. Appl. 2023, 134, 112–123. [Google Scholar] [CrossRef]
- Scherer, R.; Kalla, S.L.; Tang, Y.; Huang, J. The Grünwald—Letnikov method for fractional differential equations. Comput. Math. Appl. 2011, 62, 902–917. [Google Scholar] [CrossRef]
- Arshad, S.; Defterli, O.; Baleanu, D. A second order accurate approximation for fractional derivatives with singular and non-singular kernel applied to a HIV model. Appl. Math Comput. 2020, 374, 125061. [Google Scholar] [CrossRef]
- Nasir, H.M.; Nafa, K. A new second order approximation for fractional derivatives with applications. Sultan Qaboos Univ. J. Sci. 2018, 23, 43–55. [Google Scholar] [CrossRef]
- Alikhanov, A.A. A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 2015, 280, 424–438. [Google Scholar] [CrossRef]
- Gao, G.-H.; Sun, Z.-Z.; Zhang, H.-W. A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 2014, 259, 33–50. [Google Scholar] [CrossRef]
- Xing, Y.; Yan, Y. A higher order numerical method for time fractional partial differential equations with nonsmooth data. J. Comput. Phys. 2018, 357, 305–323. [Google Scholar] [CrossRef]
- Chen, M.H.; Deng, W.H. Fourth order accurate scheme for the space fractional diffusion equations. SIAM J. Numer. Anal. 2014, 52, 1418–1438. [Google Scholar] [CrossRef]
- Gunarathna, W.A.; Nasir, H.M.; Daundasekera, W.B. An explicit form for higher order approximations of fractional derivatives. Appl. Numer. Math. 2019, 143, 51–60. [Google Scholar] [CrossRef]
- Hao, Z.-P.; Sun, Z.-Z.; Cao, W.-R. A fourth-order approximation of fractional derivatives with its applications. J. Comput. Phys. 2015, 281, 787–805. [Google Scholar] [CrossRef]
- Li, L.; Zhao, D.; She, M.; Chen, X. On high order numerical schemes for fractional differential equations by block-by-block approach. Appl. Math. Comput. 2022, 425, 127098. [Google Scholar] [CrossRef]
- Lubich, C. Discretized fractional calculus. SIAM J. Math. Anal. 1986, 17, 704–719. [Google Scholar] [CrossRef]
- Nasrollahzadeh, F.; Hosseini, S.M. An implicit difference ADI method for two-dimensional space-time fractional diffusion equation. Iran. J. Math. Sci. Inform. 2016, 11, 71–86. [Google Scholar] [CrossRef]
- Wang, Z.; Liang, Y.; Mo, Y. A novel high order compact ADI scheme for two dimensional fractional integro-differential equations. Appl. Numer. Math. 2021, 167, 257–272. [Google Scholar] [CrossRef]
- Dimitrov, Y. Approximations for the Caputo derivative (I). J. Fract. Calc. Appl. 2018, 9, 15–44. [Google Scholar]
- Ahnert, K.; Abel, M. Numerical differentiation of experimental data: Local versus global methods. J. Comput. Phys. Commun. 2005, 177, 764–774. [Google Scholar] [CrossRef]
- Hanke, M.; Scherzer, O. Inverse problems light: Numerical differentiation. Am. Math. Mon. 2001, 108, 512–521. [Google Scholar] [CrossRef]
- Apostolov, S.; Dimitrov, Y.; Todorov, V. Constructions of second order approximations of the Caputo fractional derivative. In Lecture Notes in Computer Science; Lirkov, I., Margenov, S., Eds.; Large-Scale Scientific Computing. LSSC 2021; Springer: Berlin/Heidelberg, Germany, 2022; p. 13127. [Google Scholar]
- Todorov, V.; Dimitrov, Y.; Dimov, I. Second order shifted approximations for the first derivative. In Studies in Computational Intelligence; Dimov, I., Fidanova, S., Eds.; Advances in High Performance Computing. HPC 2019; Springer: Cham, Switzerland, 2011; p. 902. [Google Scholar]
- Dimitrov, Y. A second order approximation for the Caputo fractional derivative. J. Fract. Calc. Appl. 2016, 7, 175–195. [Google Scholar]
- Al-Bar, R. On the approximate solution of fractional logistic differential equation using operational matrices of Bernstein polynomials. Appl. Math. 2015, 6, 2096–2103. [Google Scholar] [CrossRef]
- Iannelli, M.; Pugliese, A. An Introduction to Mathematical Population Dynamics: Along the Trail of Volterra and Lotka, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Kot, M. Elements of Mathematical Ecology; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Hahn, D.W.; Özişik, M.N. Heat Conduction, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Incorpera, F.P.; DeWitt, D.P.; Bergman, T.L.; Lavine, A.S. Fundamentals of Heat and Mass Transfer, 6th ed.; John Wiley: New York, NY, USA, 2006. [Google Scholar]
- Majumdar, P. Computational Methods for Heat and Mass Transfer; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Morton, K.W.; Mayers, D.F. Numerical Solution of Partial Differential Equations: An Introduction, 2nd ed.; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Zhao, S. A matched alternating direction implicit (ADI) method for solving the heat equation with interfaces. J. Sci. Comput. 2015, 63, 118–137. [Google Scholar] [CrossRef]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes: The Art of Scientific Computing; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Datta, B.N. Numerical Linear Algebra and Applications, 2nd ed.; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2010. [Google Scholar]
- Suárez-Carreño, F.; Rosales-Romero, L. Convergency and stability of explicit and implicit schemes in the simulation of the heat equation. Appl. Sci. 2021, 11, 4468. [Google Scholar] [CrossRef]
- Sundaram, A. Numerical solution for the heat equation using Crank-Nicolson difference method. Int. J. Res. Appl. Sci. Eng. Technol. 2023, 11, 158–164. [Google Scholar] [CrossRef]
- Ames, W. Numerical Methods for Partial Differential Equations; Academic Press: Boston, MA, USA, 1992. [Google Scholar]
- Smith, G.D. Numerical Solution of Partial Differential Equations: Finite Difference Method; Oxford University Press: Oxford, UK, 1992. [Google Scholar]
- Kolotilina, L.Y. Bounds for the infinity norm of the inverse for certain M- and H-matrices. Linear Algebra Appl. 2009, 430, 692–702. [Google Scholar] [CrossRef]
- Varah, J.M. A lower bound for the smallest singular value of a matrix. Linear Algebra Appl. 1975, 11, 3–5. [Google Scholar] [CrossRef]
- Kulkarni, D.; Schmidt, D.; Tsui, S.-K. Eigenvalues of tridiagonal pseudo-Toeplitz matrices. Linear Algebra Appl. 1999, 297, 63–80. [Google Scholar] [CrossRef]
- Dimitrov, Y.; Georgiev, S.; Todorov, V. Approximation of Caputo fractional derivative and numerical solutions of fractional differential equations. Fractal Fract. 2023, 7, 750. [Google Scholar] [CrossRef]
- Li, C.; Zeng, F. Numerical Methods for Fractional Calculus; Chapman and Hall/CRC: Boca Raton, FL, USA, 2015. [Google Scholar]
- Avcı, İ.; Mahmudov, N.I. Numerical solutions for multi-term fractional order differential equations with fractional Taylor operational matrix of fractional integration. Mathematics 2020, 8, 96. [Google Scholar] [CrossRef]
- Diethelm, K.; Ford, N.J. Analysis of fractional differential equations. J. Math. Anal. Appl. 2002, 265, 229–248. [Google Scholar] [CrossRef]
- Edwards, J.T.; Ford, N.J.; Simpson, A.C. The numerical solution of linear multi-term fractional differential equations: Systems of equations. J. Comput. Appl. Math. 2002, 148, 401–418. [Google Scholar] [CrossRef]
- El-Mesiry, A.E.M.; El-Sayed, A.M.A.; El-Saka, H.A.A. Numerical methods for multi-term fractional (arbitrary) orders differential equations. Appl. Math. Comput. 2005, 160, 683–699. [Google Scholar] [CrossRef]
- Ali, U.; Sohail, M.; Abdullah, F.A. An efficient numerical scheme for variable-order fractional sub-diffusion equation. Symmetry 2020, 12, 1437. [Google Scholar] [CrossRef]
- Ashurov, R.; Umarov, S. Determination of the order of fractional derivative for subdiffusion equations. Fract. Calc. Appl. Anal. 2020, 23, 1647–1662. [Google Scholar] [CrossRef]
- Langlands, T.A.M.; Henry, B.I. The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 2005, 205, 719–736. [Google Scholar] [CrossRef]
- Mainardi, F.; Mura, A.; Pagnini, G.; Gorenflo, R. Sub-diffusion equations of fractional order and their fundamental solutions. In Mathematical Methods in Engineering; Taş, K., Tenreiro Machado, J.A., Baleanu, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 23–55. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: Cambridge, MA, USA, 1999. [Google Scholar]
h | NS(37), L = −20 | NS(37), L = −30 | NS(37), L = −50 | |||
---|---|---|---|---|---|---|
a = 0.99995 | a = 0.99999 | a = 0.99997 | ||||
Error | Order | Error | Order | Error | Order | |
h | NS(45), s = 1, p = −0.3 | NS(45), s = 2, p = 0.7 | NS(45), s = 3, p = 1 | |||
---|---|---|---|---|---|---|
Error | Order | Error | Order | Error | Order | |
h | NS(45), s = 1, p = 0.2 | NS(45), s = 2, p = 0.5 | NS(45), s = 3, p = 0.7 | |||
---|---|---|---|---|---|---|
Error | Order | Error | Order | Error | Order | |
h | NS(45), s = 1, p = 0.25 | NS(45), s = 2, p = 0.75 | NS(45), s = 3, p = 1.5 | |||
---|---|---|---|---|---|---|
Error | Order | Error | Order | Error | Order | |
Error | Order | Error | Order | |
---|---|---|---|---|
18,947 | ||||
39,067 | ||||
h | ||||
---|---|---|---|---|
Error | Order | Error | Order | |
Error | Order | Error | Order | |
---|---|---|---|---|
h | ||||
---|---|---|---|---|
Error | Order | Error | Order | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimitrov, Y.; Georgiev, S.; Todorov, V. First Derivative Approximations and Applications. Fractal Fract. 2024, 8, 608. https://doi.org/10.3390/fractalfract8100608
Dimitrov Y, Georgiev S, Todorov V. First Derivative Approximations and Applications. Fractal and Fractional. 2024; 8(10):608. https://doi.org/10.3390/fractalfract8100608
Chicago/Turabian StyleDimitrov, Yuri, Slavi Georgiev, and Venelin Todorov. 2024. "First Derivative Approximations and Applications" Fractal and Fractional 8, no. 10: 608. https://doi.org/10.3390/fractalfract8100608
APA StyleDimitrov, Y., Georgiev, S., & Todorov, V. (2024). First Derivative Approximations and Applications. Fractal and Fractional, 8(10), 608. https://doi.org/10.3390/fractalfract8100608