Determination of Crack Depth in Brickworks by Ultrasonic Methods: Numerical Simulation and Regression Analysis
<p>Appearance of experimental samples of bricks with cracks of different depths.</p> "> Figure 2
<p>The process of detecting cracks in bricks using the Pulsar-2.2 ultrasonic device.</p> "> Figure 3
<p>Scheme of installation of sensors for measuring crack depth.</p> "> Figure 4
<p>General diagram of a block with a crack: 1—point of pulse application; 2—location of the ultrasonic signal receiver.</p> "> Figure 5
<p>Comparison of experimental and numerical simulation results (Plexiglas material is the reference sample).</p> "> Figure 6
<p>Wave propagation in a plexiglass block at the moments of time (<b>a</b>) <span class="html-italic">t</span> = 2 µs, (<b>b</b>) <span class="html-italic">t</span> = 8 µs, (<b>c</b>) <span class="html-italic">t</span> = 16 µs, and (<b>d</b>) <span class="html-italic">t</span> = 30 µs.</p> "> Figure 6 Cont.
<p>Wave propagation in a plexiglass block at the moments of time (<b>a</b>) <span class="html-italic">t</span> = 2 µs, (<b>b</b>) <span class="html-italic">t</span> = 8 µs, (<b>c</b>) <span class="html-italic">t</span> = 16 µs, and (<b>d</b>) <span class="html-italic">t</span> = 30 µs.</p> "> Figure 7
<p>Successive development of von Mises stresses in a brick weakened by a crack at different points in time: (<b>a</b>) <span class="html-italic">t</span> = 9.5 µs, (<b>b</b>) <span class="html-italic">t</span> = 13.5 µs, (<b>c</b>) <span class="html-italic">t</span> = 17.5 µs, (<b>d</b>) <span class="html-italic">t</span> = 21.5 µs, (<b>e</b>) <span class="html-italic">t</span> = 23.5 µs, and (<b>f</b>) <span class="html-italic">t</span> = 47.5 µs.</p> "> Figure 7 Cont.
<p>Successive development of von Mises stresses in a brick weakened by a crack at different points in time: (<b>a</b>) <span class="html-italic">t</span> = 9.5 µs, (<b>b</b>) <span class="html-italic">t</span> = 13.5 µs, (<b>c</b>) <span class="html-italic">t</span> = 17.5 µs, (<b>d</b>) <span class="html-italic">t</span> = 21.5 µs, (<b>e</b>) <span class="html-italic">t</span> = 23.5 µs, and (<b>f</b>) <span class="html-italic">t</span> = 47.5 µs.</p> "> Figure 7 Cont.
<p>Successive development of von Mises stresses in a brick weakened by a crack at different points in time: (<b>a</b>) <span class="html-italic">t</span> = 9.5 µs, (<b>b</b>) <span class="html-italic">t</span> = 13.5 µs, (<b>c</b>) <span class="html-italic">t</span> = 17.5 µs, (<b>d</b>) <span class="html-italic">t</span> = 21.5 µs, (<b>e</b>) <span class="html-italic">t</span> = 23.5 µs, and (<b>f</b>) <span class="html-italic">t</span> = 47.5 µs.</p> "> Figure 8
<p>Dependence of UY displacements at the receiving point on the pulse propagation time: 1—without defect; 2—crack 20 mm deep; 3—crack 60 mm deep.</p> "> Figure 9
<p>Comparison of ultrasonic pulse signals for different crack depths.</p> "> Figure 10
<p>Characteristic parameters of the signal used to determine the crack depth.</p> "> Figure 11
<p>Experimental and predicted values for averaged parameters.</p> "> Figure 12
<p>Experimental and predicted values for averaged parameters taking into account the material properties.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Properties
2.2. Ultrasonic Crack Detection Method
3. Modeling Ultrasonic Pulse Action Using FEM
3.1. Statement of the Problem
3.2. Verification of the Model for a Bar Without a Crack with Known Properties
4. Results of Direct Calculation of Ultrasonic Pulse Propagation Through a Brick Weakened by a Crack
5. Results of Experimental Measurements and Discussion
5.1. Analysis of Characteristic Signal Parameters
5.2. Correlation and Regression Analysis of Time and Amplitude Parameters of the Signal
5.3. Correlation and Regression Analysis of Signal Time Parameters Taking into Account Material Properties
5.4. Limitations of the Proposed Method and Directions for Future Research
6. Conclusions
- A numerical analysis of the propagation of an ultrasonic pulse in ceramic bricks weakened by a defect in the form of a crack was conducted. The analysis showed that the crack broke the wave front and made it travel a longer distance to the signal reception point.
- Experimental measurements on bricks with cracks also showed that the pulse curves had characteristic time shifts, which could be effectively used to predict the crack depth.
- Characteristic parameters characterizing the signal were identified. Such parameters included time characteristics and material properties. The conducted correlation and regression analyses made it possible to obtain a model for determining cracks using the ultrasonic method. It was shown that the error of such a model was 8%, which was significantly lower than the device’s passport data of 40%.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silva, M.I.; Malitckii, E.; Santos, T.G.; Vilaça, P. Review of Conventional and Advanced Non-destructive Testing Techniques for Detection and Characterization of Small-scale Defects. Prog. Mater. Sci. 2023, 138, 101155. [Google Scholar] [CrossRef]
- Torbali, M.E.; Zolotas, A.; Avdelidis, N.P.; Alhammad, M.; Ibarra-Castanedo, C.; Maldague, X.P. A Complementary Fusion-Based Multimodal Non-Destructive Testing and Evaluation Using Phased-Array Ultrasonic and Pulsed Thermography on a Composite Structure. Materials 2024, 17, 3435. [Google Scholar] [CrossRef] [PubMed]
- Mailyan, L.R.; Stel’makh, S.A.; Shcherban’, E.M.; Khalyushev, A.K.; Smolyanichenko, A.S.; Sysoev, A.K.; Parinov, I.A.; Cherpakov, A.V. Investigation of Integral and Differential Characteristics of Variatropic Structure Heavy Concretes by Ultrasonic Methods. Appl. Sci. 2021, 11, 3591. [Google Scholar] [CrossRef]
- Lyapin, A.; Beskopylny, A.; Meskhi, B. Structural Monitoring of Underground Structures in Multi-Layer Media by Dynamic Methods. Sensors 2020, 20, 5241. [Google Scholar] [CrossRef]
- Han, G.; Lv, S.; Tao, Z.; Sun, X.; Du, B. Evaluation of Bolt Corrosion Degree Based on Non-Destructive Testing and Neural Network. Appl. Sci. 2024, 14, 5069. [Google Scholar] [CrossRef]
- Adams, M.; Huijer, A.; Kassapoglou, C.; Vaders, J.A.A.; Pahlavan, L. In Situ Non-Destructive Stiffness Assessment of Fiber Reinforced Composite Plates Using Ultrasonic Guided Waves. Sensors 2024, 24, 2747. [Google Scholar] [CrossRef]
- Kim, J.-W.; Choi, H.-W.; Kim, S.-K.; Na, W.S. Review of Image-Processing-Based Technology for Structural Health Monitoring of Civil Infrastructures. J. Imaging 2024, 10, 93. [Google Scholar] [CrossRef]
- Shah Mansouri, T.; Lubarsky, G.; Finlay, D.; McLaughlin, J. Machine Learning-Based Structural Health Monitoring Technique for Crack Detection and Localisation Using Bluetooth Strain Gauge Sensor Network. J. Sens. Actuator Netw. 2024, 13, 79. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, W.; Xu, Q.; Shi, M.; Luo, Y. Load Testing and Analysis of a Large Span Through Simply-Supported Steel Box Arch Bridge. Appl. Sci. 2024, 14, 11418. [Google Scholar] [CrossRef]
- Singla, R.; Sharma, S.; Siddique, R. Nondestructive Evaluation of Autonomic Crack Healing in Concrete Using Ultrasonic Wave Propagation. J. Mater. Civ. Eng. 2024, 36, 04024328. [Google Scholar] [CrossRef]
- Asvitha, V.S.; Kumar, R.M.S. Effectiveness of Xanthan Gum-based composite in repairing cracks in reinforced concrete structures. Mater. Res. Express 2024, 11, 095701. [Google Scholar] [CrossRef]
- Wang, W.; Li, Y.; Li, Y. A method for detecting defects in reinforced concrete structures of underwater tunnels based on ultrasonic echo signal and CNN. AIP Adv. 2024, 14, 115213. [Google Scholar] [CrossRef]
- Krolik, A.; Drelich, R.; Pakuła, M.; Mikołajewski, D.; Rojek, I. Detection of Defects in Polyethylene and Polyamide Flat Panels Using Airborne Ultrasound-Traditional and Machine Learning Approach. Appl. Sci. 2024, 14, 10638. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Shcherban’, E.M.; Stel’makh, S.A.; Mailyan, L.R.; Meskhi, B.; Razveeva, I.; Kozhakin, A.; El’shaeva, D.; Beskopylny, N.; Onore, G. Detecting Cracks in Aerated Concrete Samples Using a Convolutional Neural Network. Appl. Sci. 2023, 13, 1904. [Google Scholar] [CrossRef]
- Siracusano, G.; Garescì, F.; Finocchio, G.; Tomasello, R.; Lamonaca, F.; Scuro, C.; Carpentieri, M.; Chiappini, M.; La Corte, A. Automatic Crack Classification by Exploiting Statistical Event Descriptors for Deep Learning. Appl. Sci. 2021, 11, 12059. [Google Scholar] [CrossRef]
- Tanveer, M.; Elahi, M.U.; Jung, J.; Azad, M.M.; Khalid, S.; Kim, H.S. Recent Advancements in Guided Ultrasonic Waves for Structural Health Monitoring of Composite Structures. Appl. Sci. 2024, 14, 11091. [Google Scholar] [CrossRef]
- Liang, H.; Zhang, J.; Yang, S. Location Detection and Numerical Simulation of Guided Wave Defects in Steel Pipes. Appl. Sci. 2024, 14, 10403. [Google Scholar] [CrossRef]
- Palma-Ramírez, D.; Ross-Veitía, B.D.; Font-Ariosa, P.; Espinel-Hernández, A.; Sanchez-Roca, A.; Carvajal-Fals, H.; Nuñez-Alvarez, J.R.; Hernández-Herrera, H. Deep convolutional neural network for weld defect classification in radiographic images. Heliyon 2024, 10, e30590. [Google Scholar] [CrossRef]
- Zhang, H.; Ning, X.; Pu, H.; Ji, S. A novel approach for the non-destructive detection of shriveling degrees in walnuts using improved YOLOv5n based on X-ray images. Postharvest Biol. Technol. 2024, 214, 113007. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Razveeva, I.; Kozhakin, A.; Meskhi, B.; Chernil’nik, A.; Elshaeva, D.; Ananova, O.; Girya, M.; et al. Computer Vision Method for Automatic Detection of Microstructure Defects of Concrete. Sensors 2024, 24, 4373. [Google Scholar] [CrossRef]
- Razveeva, I.; Kozhakin, A.; Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Artamonov, S.; Pembek, A.; Dingrodiya, H. Analysis of Geometric Characteristics of Cracks and Delamination in Aerated Concrete Products Using Convolutional Neural Networks. Buildings 2023, 13, 3014. [Google Scholar] [CrossRef]
- Shen, X.; Lu, X.; Guo, J.; Liu, Y.; Qi, J.; Lv, Z. Nondestructive Testing of Metal Cracks: Contemporary Methods and Emerging Challenges. Crystals 2024, 14, 54. [Google Scholar] [CrossRef]
- Ottosen, L.M.; Kunther, W.; Ingeman-Nielsen, T.; Karatosun, S. Non-Destructive Testing for Documenting Properties of Structural Concrete for Reuse in New Buildings: A Review. Materials 2024, 17, 3814. [Google Scholar] [CrossRef] [PubMed]
- Vasiliev, P.V.; Senichev, A.V.; Giorgio, I. Visualization of internal defects using a deep generative neural network model and ultrasonic nondestructive testing. Adv. Eng. Res. 2021, 21, 143–153. [Google Scholar] [CrossRef]
- Angiulli, G.; Calcagno, S.; La Foresta, F.; Versaci, M. Concrete Compressive Strength Prediction Using Combined Non-Destructive Methods: A Calibration Procedure Using Preexisting Conversion Models Based on Gaussian Process Regression. J. Compos. Sci. 2024, 8, 300. [Google Scholar] [CrossRef]
- Lopez-Miguel, A.; Cabello-Mendez, J.A.; Moreno-Valdes, A.; Perez-Quiroz, J.T.; Machorro-Lopez, J.M. Non-Destructive Testing of Concrete Materials from Piers: Evaluating Durability Through a Case Study. NDT 2024, 2, 532–548. [Google Scholar] [CrossRef]
- Im, H.; Kim, W.; Choi, H.; Lee, T. Strength Prediction of Non-Sintered Hwangto-Substituted Concrete Using the Ultrasonic Velocity Method. Materials 2024, 17, 174. [Google Scholar] [CrossRef]
- Miano, A.; Ebrahimian, H.; Jalayer, F.; Prota, A. Reliability Estimation of the Compressive Concrete Strength Based on Non-Destructive Tests. Sustainability 2023, 15, 14644. [Google Scholar] [CrossRef]
- Yong, Y.P.; Lee, S.J.; Chang, Y.H.; Lee, K.H.; Kwon, S.W.; Cho, C.S.; Chung, S.W. Object Detection and Distance Measurement Algorithm for Collision Avoidance of Precast Concrete Installation during Crane Lifting Process. Buildings 2023, 13, 2551. [Google Scholar] [CrossRef]
- Demir, T.; Ulucan, M.; Alyamaç, K.E. Development of Combined Methods Using Non-Destructive Test Methods to Determine the In-Place Strength of High-Strength Concretes. Processes 2023, 11, 673. [Google Scholar] [CrossRef]
- Shcherban’, E.M.; Beskopylny, A.N.; Stel’makh, S.A.; Mailyan, L.R.; Shilov, A.A.; Hiep, N.Q.; Song, Y.; Chernil’nik, A.A.; Elshaeva, D.M. Study of thermophysical characteristics of variatropic concretes. Constr. Mater. Prod. 2024, 7, 2. [Google Scholar] [CrossRef]
- Ivanchev, I. Investigation with Non-Destructive and Destructive Methods for Assessment of Concrete Compressive Strength. Appl. Sci. 2022, 12, 12172. [Google Scholar] [CrossRef]
- Aparicio Secanellas, S.; Liébana Gallego, J.C.; Anaya Catalán, G.; Martín Navarro, R.; Ortega Heras, J.; García Izquierdo, M.Á.; González Hernández, M.; Anaya Velayos, J.J. An Ultrasonic Tomography System for the Inspection of Columns in Architectural Heritage. Sensors 2022, 22, 6646. [Google Scholar] [CrossRef] [PubMed]
- Lou, C.; Tinsley, L.; Duarte Martinez, F.; Gray, S.; Honarvar Shakibaei Asli, B. Optimized AI Methods for Rapid Crack Detection in Microscopy Images. Electronics 2024, 13, 4824. [Google Scholar] [CrossRef]
- Zhang, L.; Li, X.; Hao, S.; Yan, Q.; Wang, J.; Wang, M. A Study on the Identification of Cracks in Mine Subsidence Based on YOLOv8n Improvement. Processes 2024, 12, 2716. [Google Scholar] [CrossRef]
- Meoni, A.; D’Alessandro, A.; Saviano, F.; Lignola, G.P.; Parisi, F.; Ubertini, F. Strain Monitoring and Crack Detection in Masonry Walls under In-Plane Shear Loading Using Smart Bricks: First Results from Experimental Tests and Numerical Simulations. Sensors 2023, 23, 2211. [Google Scholar] [CrossRef]
- Khotiaintsev, S.; Timofeyev, V. Assessment of Cracking in Masonry Structures Based on the Breakage of Ordinary Silica-Core Silica-Clad Optical Fibers. Appl. Sci. 2022, 12, 6885. [Google Scholar] [CrossRef]
- Naumov, A.A.; Dymchenko, M.E. Ceramic Bricks of Increased Frost Resistance of Kushchevsky Deposit Clay Raw Material as the Building Material within Architectural Shaping Dynamics. Mod. Trends Constr. Urban Territ. Plan. 2023, 2, 62–71. [Google Scholar] [CrossRef]
- Bartoň, V.; Dvořák, R.; Cikrle, P.; Šnédar, J. Predicting the Durability of Solid Fired Bricks Using NDT Electroacoustic Methods. Materials 2022, 15, 5882. [Google Scholar] [CrossRef]
- Jamshidi, A.; Sousa, L. Strength Characteristics, Ultrasonic Wave Velocity, and the Correlation between Them in Clay Bricks under Dry and Saturated Conditions. Materials 2024, 17, 1353. [Google Scholar] [CrossRef]
- Chen, B.; Qiu, F.; Xia, L.; Xu, L.; Jin, J.; Gou, G. In Situ Ultrasonic Characterization of Hydrogen Damage Evolution in X80 Pipeline Steel. Materials 2024, 17, 5891. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Shcherban’, E.M.; Stel’makh, S.A.; Mailyan, L.R.; Meskhi, B.; Razveeva, I.; Kozhakin, A.; El’shaeva, D.; Beskopylny, N.; Onore, G. Discovery and Classification of Defects on Facing Brick Specimens Using a Convolutional Neural Network. Appl. Sci. 2023, 13, 5413. [Google Scholar] [CrossRef]
- Li, W.; Zhu, J.; Mu, K.; Yang, W.; Zhang, X.; Zhao, X. Experimental Investigation of Concrete Crack Depth Detection Using a Novel Piezoelectric Transducer and Improved AIC Algorithm. Buildings 2024, 14, 3939. [Google Scholar] [CrossRef]
- Rijal, M.; Amoateng-Mensah, D.; Sundaresan, M.J. Finite Element Simulation of Acoustic Emissions from Different Failure Mechanisms in Composite Materials. Materials 2024, 17, 6085. [Google Scholar] [CrossRef]
- Gaidzhurov, P.P.; Volodin, V.A. Strength Calculation of the Coupling of the Floor Slab and the Monolithic Reinforced Concrete Frame Column by the Finite Element Method. Adv. Eng. Res. 2022, 22, 306–314. [Google Scholar] [CrossRef]
- Falkowicz, K. Stability and Failure of Thin-Walled Composite Plate Elements with Asymmetric Configurations. Materials 2024, 17, 1943. [Google Scholar] [CrossRef]
- Nguyen, C.L.; Nguyen, A.; Brown, J.; Byrne, T.; Ngo, B.T.; Luong, C.X. Optimising Concrete Crack Detection: A Study of Transfer Learning with Application on Nvidia Jetson Nano. Sensors 2024, 24, 7818. [Google Scholar] [CrossRef]
- Operating Manual for the Ultrasonic Complex PULSAR-2.2. Available online: https://www.interpribor.ru/assets/userfiles/9/91/Pulsar_22_TFT.pdf?ysclid=m4d5y0f474986336855 (accessed on 6 December 2024).
Number | Crack Depth Hcr, mm | Rc, MPa | ρ, kg/m3 |
---|---|---|---|
1 | 2 | 17.5 | 1706 |
2 | 2 | 28 | 1882 |
3 | 3 | 17.5 | 1706 |
4 | 5 | 28 | 1882 |
5 | 8 | 16.9 | 1745 |
6 | 9 | 32.1 | 1939 |
7 | 11 | 16.9 | 1745 |
8 | 12 | 32.1 | 1939 |
9 | 15 | 26.9 | 1946 |
10 | 18 | 26.9 | 1946 |
11 | 20 | 19.5 | 1898 |
12 | 23 | 19.5 | 1898 |
13 | 27 | 31 | 1986 |
14 | 30 | 31 | 1986 |
15 | 36 | 29.1 | 1978 |
16 | 37 | 29.1 | 1978 |
17 | 40 | 29.7 | 1988 |
18 | 44 | 29.7 | 1988 |
19 | 45 | 20.2 | 1968 |
20 | 51 | 30.5 | 1970 |
21 | 54 | 20.2 | 1968 |
22 | 54 | 30.5 | 1970 |
Parameter Name | Value |
---|---|
Ultrasonic pulse propagation velocity measurement range, m/s | 1000–10,000 |
Ultrasonic pulse propagation time measurement range, μs | 10–100 |
Ultrasonic pulse propagation time indication range, μs | 10–20,000 |
Pulse probing period setting limits, s | 0.2–1 |
Ultrasonic oscillation operating frequency, kHz | 60 ± 10 |
Power consumption, W, no more than | 8.0 |
Device weight in full configuration, kg, no more than | 2.5 |
Overall dimensions (length × width × height), mm, no more than: | |
Electronic unit | 220 × 100 × 35 |
Surface sounding sensor | 300 × 130 × 40 |
Through sounding sensor | 52 × 50 |
1 | ||||||
0.99082554 | 1 | |||||
0.027127349 | 0.061513335 | 1 | ||||
0.970266815 | 0.982728065 | 0.025900262 | 1 | |||
0.147409132 | 0.090953549 | −0.659919634 | 0.070534599 | 1 | ||
0.597773293 | 0.59006444 | −0.080032567 | 0.611358476 | 0.12579949 | 1 |
1 | |||||||
0.99913 | 1 | ||||||
0.99447 | 0.99295 | 1 | |||||
0.99469 | 0.99474 | 0.99924 | 1 | ||||
0.98760 | 0.98581 | 0.98838 | 0.98767 | 1 | |||
0.98780 | 0.98740 | 0.98798 | 0.98856 | 0.99938 | 1 | ||
0.89900 | 0.90157 | 0.89097 | 0.89390 | 0.89221 | 0.89579 | 1 |
1 | |||||||||
0.999 | 1 | ||||||||
0.994 | 0.992 | 1 | |||||||
0.994 | 0.994 | 0.999 | 1 | ||||||
0.987 | 0.985 | 0.988 | 0.987 | 1 | |||||
0.987 | 0.987 | 0.987 | 0.988 | 0.999 | 1 | ||||
0.185 | 0.195 | 0.167 | 0.176 | 0.168 | 0.179 | 1 | |||
0.498 | 0.504 | 0.512 | 0.518 | 0.489 | 0.497 | 0.751 | 1 | ||
0.899 | 0.901 | 0.890 | 0.893 | 0.892 | 0.895 | 0.293 | 0.701 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Dolgov, V.; Razveeva, I.; Beskopylny, N.; Elshaeva, D.; Chernil’nik, A. Determination of Crack Depth in Brickworks by Ultrasonic Methods: Numerical Simulation and Regression Analysis. J. Compos. Sci. 2024, 8, 536. https://doi.org/10.3390/jcs8120536
Beskopylny AN, Stel’makh SA, Shcherban’ EM, Dolgov V, Razveeva I, Beskopylny N, Elshaeva D, Chernil’nik A. Determination of Crack Depth in Brickworks by Ultrasonic Methods: Numerical Simulation and Regression Analysis. Journal of Composites Science. 2024; 8(12):536. https://doi.org/10.3390/jcs8120536
Chicago/Turabian StyleBeskopylny, Alexey N., Sergey A. Stel’makh, Evgenii M. Shcherban’, Vasilii Dolgov, Irina Razveeva, Nikita Beskopylny, Diana Elshaeva, and Andrei Chernil’nik. 2024. "Determination of Crack Depth in Brickworks by Ultrasonic Methods: Numerical Simulation and Regression Analysis" Journal of Composites Science 8, no. 12: 536. https://doi.org/10.3390/jcs8120536
APA StyleBeskopylny, A. N., Stel’makh, S. A., Shcherban’, E. M., Dolgov, V., Razveeva, I., Beskopylny, N., Elshaeva, D., & Chernil’nik, A. (2024). Determination of Crack Depth in Brickworks by Ultrasonic Methods: Numerical Simulation and Regression Analysis. Journal of Composites Science, 8(12), 536. https://doi.org/10.3390/jcs8120536