Effect of Heat-Shrinkable Tape Application on the Mechanical Performance of CFRP Components Obtained by a Filament Winding Process
<p>X-Winder filament winding machine.</p> "> Figure 2
<p>Composite part curing and post-curing cycle.</p> "> Figure 3
<p>CFRP wound tubular components obtained: (<b>a</b>) without and (<b>b</b>) with heat-shrinkable tape application before curing process.</p> "> Figure 4
<p>The eight benchmarks considered for the evaluation of specimen thickness distribution.</p> "> Figure 5
<p>Tensile test of ring specimens.</p> "> Figure 6
<p>Ring specimen dimensions according to ASTM D2290 standard.</p> "> Figure 7
<p>X-ray computed tomography images of typical ring specimens obtained from cured wound components: (<b>a</b>) without HT—slice 100, (<b>b</b>) without HT—slice 200, (<b>c</b>) with HT—slice 100, and (<b>d</b>) with HT—slice 200.</p> "> Figure 8
<p>Comparison between the two ring specimens, analyzed at the same X-CT slice using NI Vision software, obtained: (<b>a</b>) without HT and (<b>b</b>) with HT (X-CT slice n. 100).</p> "> Figure 9
<p>Thickness distribution, evaluated at two different X-CT slices, in ring specimens obtained with and without heat-shrinkable tape.</p> "> Figure 10
<p>(<b>a</b>) Typical specific load versus crosshead displacement curves and (<b>b</b>) specific hoop tensile stress versus crosshead displacement curves obtained by testing the ring specimens obtained with and without HT.</p> "> Figure 11
<p>Typical ring specimen, obtained using the HT, fractured after tensile test.</p> "> Figure 12
<p>SEM images of the fracture surfaces of ring specimens obtained: (<b>a</b>–<b>c</b>) without HT and (<b>d</b>–<b>f</b>) with HT at different magnifications.</p> "> Figure 13
<p>SEM image of the fracture surfaces of a ring specimen obtained with HT in which the matrix cracking can be observed.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Filament Winding and Curing Processes
2.3. X-Ray Computed Tomography and Scanning Electron Microscopy
2.4. Tensile Test of Ring Specimens
3. Results and Discussion
4. Conclusions
- The X-CT shows that the heat-shrinkable tape application on the external surface of the CFRP tubular component involves a significant thickness reduction of about 45%. Furthermore, the HT application resulted in improved thickness distribution both along the circular cross-section of the component and across the width of the specimens, compared to the tubular component cured without HT.
- X-ray tomography shows a significant decrease in void content in the ring specimens cured with the presence of heat-shrinkable tape, indicating an improved resin distribution and reduction in defects. This contributes to improving the structural integrity of the CFRP components.
- Tensile tests show that the specific hoop tensile stress increases with displacement until reaching a peak value at which the ring specimen fracture occurs.
- Ring specimens obtained with heat-shrinkable tape exhibit a specific load of about 55% higher than the samples without the application of the tape. Furthermore, they achieve a specific hoop tensile strength of about 121.66 MPa/g, which is about 71% increased with respect to the 35.24 MPa/g obtained by specimens cured without the HT application. These results show the effectiveness of the heat-shrinkable tape in improving material compaction.
- The SEM observation shows that specimens with HT application exhibit more orderly fracture surfaces and stronger fiber–matrix bonding, whereas those obtained without HT show frayed fiber surfaces and significant fiber pull-out.
- The application of heat-shrinkable tape before the curing process improves the compaction of the material and the adhesion at the fiber–matrix interface, resulting in a significant improvement in the mechanical properties of the CFRP tubular component under tensile stress.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Holmes, M. Carbon composites continue to find new markets. Reinf. Plast. 2017, 61, 36–40. [Google Scholar] [CrossRef]
- Cepero-Mejías, F.; Phadnis, V.A.; Kerrigan, K.; Curiel-Sosa, J.L. A finite element assessment of chip formation mechanisms in the machining of CFRP laminates with different fibre orientations. Compos. Struct. 2021, 268, 113966. [Google Scholar] [CrossRef]
- Rubino, F.; Nisticò, A.; Tucci, F.; Carlone, P. Marine Science and Engineering Marine Application of Fiber Reinforced Composites: A Review. J. Mar. Sci. Eng. 2020, 8, 26. [Google Scholar] [CrossRef]
- Singh, P.; Raghavender, V.; Joshi, S.; Vasant, N.P.; Awasthi, A.; Nagpal, A.; Jasim Abd al-saheb, A. Composite material: A review over current development and automotive application. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Henning, F.; Kärger, L.; Dörr, D.; Schirmaier, F.J.; Seuffert, J.; Bernath, A. Fast processing and continuous simulation of automotive structural composite components. Compos. Sci. Technol. 2019, 171, 261–279. [Google Scholar] [CrossRef]
- Kelly, J.C.; Sullivan, J.L.; Burnham, A.; Elgowainy, A. Impacts of Vehicle Weight Reduction via Material Substitution on Life-Cycle Greenhouse Gas Emissions. Environ. Sci. Technol. 2015, 49, 12535–12542. [Google Scholar] [CrossRef]
- Eggers, F.; Almeida, J.H.S.; Azevedo, C.B.; Amico, S.C. Mechanical response of filament wound composite rings under tension and compression. Polym. Test. 2019, 78, 105951. [Google Scholar] [CrossRef]
- Krikanov, A.A. Composite pressure vessels with higher stiffness. Compos. Struct. 2000, 48, 119–127. [Google Scholar] [CrossRef]
- Iacopo, B.; Chiara, M.; Michela, S.; Tommaso, V. Life cycle analyses of a composite towbar realized via filament winding and comparison with traditional metallic alternatives. Sustain. Mater. Technol. 2024, 40, e00980. [Google Scholar] [CrossRef]
- Bianchi, I.; Forcellese, A.; Galliani, F.; Greco, L.; Mignanelli, C.; Trevisan, G. Process and structural simulation for the development of a pressure vessel through filament winding technology. Mater. Res. Proc. 2023, 28, 347–556. [Google Scholar] [CrossRef]
- Mignanelli, C.; Bianchi, I.; Forcellese, A.; Simoncini, M. Life cycle assessment of pressure vessels realized with thermoplastic and thermosetting matrix composites. Int. J. Adv. Manuf. Technol. 2024, 135, 4491–4509. [Google Scholar] [CrossRef]
- Mateen, M.A.; Shankar, D.V.R.; Hussain, M.M. Design and development of low cost two axis filament winding machine. J. Adv. Manuf. Technol. 2018, 12, 117–126. [Google Scholar]
- Ma, Q.; Rejab, M.R.M.; Idris, M.S. Dataset of the lab-scale 3-axis winding machine integrated with the portable real-time winding angle measurement system. Data Brief 2022, 45, 108731. [Google Scholar] [CrossRef]
- Carosella, S.; Hügle, S.; Helber, F.; Middendorf, P. A short review on recent advances in automated fiber placement and filament winding technologies. Compos. B Eng. 2024, 287, 111843. [Google Scholar] [CrossRef]
- Alimirzaei, S.; Najafabadi, M.A.; Nikbakht, A. Investigation of Mechanical Properties and Failure Behavior of CFRP Filament-Wound Composites Using an Acoustic Emission-Based Methodology and Numerical Simulation. Fibers Polym. 2023, 24, 693–707. [Google Scholar] [CrossRef]
- Annadorai, M.E.; Ramakrishna, M.; Jyothi, Y. Effect on mechanical properties of CFRP composites in different fiber orientations. Interactions 2024, 245, 1–11. [Google Scholar] [CrossRef]
- Pathak, A.K.; Garg, H.; Subhedar, K.M.; Dhakate, S.R. Significance of Carbon Fiber Orientation on Thermomechanical Properties of Carbon Fiber Reinforced Epoxy Composite. Fibers Polym. 2021, 22, 1923–1933. [Google Scholar] [CrossRef]
- Vita, A.; Castorani, V.; Germani, M.; Marconi, M. Comparative life cycle assessment and cost analysis of autoclave and pressure bag molding for producing CFRP components. Int. J. Adv. Manuf. Technol. 2019, 105, 1967–1982. [Google Scholar] [CrossRef]
- Taser, M.K.H.H. Experimental investigation of the effect of fabric wrapping method and autoclave curing on the mechanical and thermal degradation of carbon nanotube doped and undoped carbon composite pipes. Polym. Compos. 2024, 45, 12885–12898. [Google Scholar] [CrossRef]
- Stadler, H.; Kiss, P.; Stadlbauer, W.; Plank, B.; Burgstaller, C. Influence of consolidating process on the properties of composites from thermosetting carbon fiber reinforced tapes. Polym. Compos. 2022, 43, 4268–4279. [Google Scholar] [CrossRef]
- Bao, H.; Marguerès, P.; Olivier, P. An innovative and low-cost system for in situ and real-time cure monitoring using electrical impedancemetry for thermoset and CFRP laminate. Meas. Sci. Technol. 2023, 35, 035603. [Google Scholar] [CrossRef]
- Rao, S.; Revgade, S.V.; Manjunath, N.M.; Prakash, M.R. Microwave Assisted Curing of CFRP Composite Laminates for Aerospace Applications. In Proceedings of the 17th ISAMPE National Conference on Composites; Springer: Berlin/Heidelberg, Germany, 2024; Volume 39, pp. 131–138. [Google Scholar] [CrossRef]
- Collinson, M.G.; Swait, T.J.; Bower, M.P.; Nuhiji, B.; Hayes, S.A. Development and implementation of direct electric cure of plain weave CFRP composites for aerospace. Compos. Part A Appl. Sci. Manuf. 2023, 172, 107615. [Google Scholar] [CrossRef]
- Liang, J.; Liu, L.; Qin, Z.; Zhao, X.; Li, Z.; Emmanuel, U.; Feng, J. Experimental Study of Curing Temperature Effect on Mechanical Performance of Carbon. Fiber Composites with Application to Filament Winding Pressure Vessel Design. Polymers 2023, 15, 982. [Google Scholar] [CrossRef]
- Betz, S.; Köster, F.; Ramopoulos, V. Energy and Time Efficient Microwave Curing for CFRP Parts Manufactured by Filament Winding. Mater. Sci. Forum 2015, 825–826, 741–748. [Google Scholar] [CrossRef]
- Tabuchi, D.; Sajima, T.; Doi, T.; Onikura, H.; Ohnishi, O.; Kurokawa, S.; Miura, T. Residual Stress of Hoop-Wound CFRP Composites Manufactured with Simultaneous Heating. Sens. Mater. 2012, 24, 99–111. [Google Scholar]
- Purnomo, H.; Soemardi, T.P.; Budiono, H.D.S.; Wibowo, H.B.; Ibadi, M. The Filament Winding Method’s Finishing Process Impact on Highfidelity Specimens: Homogenity of Density, Fiber Volume Fraction, Outer Surface Roughness and Tensile Strength. East. Eur. J. Enterp. Technol. 2023, 6, 43–51. [Google Scholar] [CrossRef]
- Von Heusinger, J.; Grohmann, Y.; Khan, S. Methods for the Post-Consolidation of High-Speed-Wound Thermoplastic CFRP Tubes. Available online: https://www.dlr.de/sy (accessed on 1 December 2024).
- Jacquet, E.; Trivaudey, F.; Varchon, D. Calculation of the transverse modulus of a unidirectional composite material and of the modulus of an aggregate. Application of the rule of mixtures. Compos. Sci. Technol. 2000, 60, 345–350. [Google Scholar] [CrossRef]
- ASTM D2290-19a; Test Method for Apparent Hoop Tensile Strength of Plastic or Reinforced Plastic Pipe. ASTM International: West Conshohocken, PA, USA, 2019. [CrossRef]
- Lee, S.; Kim, S.H.; Kim, S.; Choi, J.; Choi, H.J. Hoop tensile strength of tubular carbon fiber reinforced silicon carbide matrix composites. Ceram. Int. 2018, 44, 17087–17093. [Google Scholar] [CrossRef]
- Yoon, S.H.; Cho, W.M.; Kim, C.G. Measurement of modulus in filament wound ring specimen using split disk test. Exp. Tech. 1997, 21, 25–28. [Google Scholar] [CrossRef]
- Perillo, G.; Vacher, R.; Grytten, F.; Sørbø, S.; Delhaye, V. Material characterisation and failure envelope evaluation of filament wound GFRP and CFRP composite tubes. Polym. Test. 2014, 40, 54–62. [Google Scholar] [CrossRef]
- Chen, J.F.; Li, S.Q.; Bisby, L.A.; Ai, J. FRP rupture strains in the split-disk test. Compos. B Eng. 2011, 42, 962–972. [Google Scholar] [CrossRef]
- Al Ali, I.B.K.F. A procedure to determine the tangential true stress-strain behavior of pipes. Int. J. Press. Vessel. Pip. 2015, 128, 59–68. [Google Scholar] [CrossRef]
- Zhao, Y.; Druzhinin, P.; Ivens, J.; Vandepitte, D.; Lomov, S.V. Split-disk test with 3D Digital Image Correlation strain measurement for filament wound composites. Compos. Struct. 2021, 263, 113686. [Google Scholar] [CrossRef]
- Khalfallah, A.; Ktari, Z.; Leitão, C.; Fernandes, J.V. New Mandrel Design for Ring Hoop Tensile Testing. Exp. Tech. 2021, 45, 769–787. [Google Scholar] [CrossRef]
- Kaynak, C.; Erdiller, E.S.; Parnas, L.; Senel, F. Use of split-disk tests for the process parameters of filament wound epoxy composite tubes. Polym. Test. 2005, 24, 648–655. [Google Scholar] [CrossRef]
- Abbasi, R.R.F. Numerical and Experimental Analyses of the Hoop Tensile Strength of Filament-Wound Composite Tubes. Mech. Compos. Mater. 2020, 56, 423–436. [Google Scholar] [CrossRef]
Carbon Fiber | Epoxy Resin | Composite Material | |
---|---|---|---|
Elastic modulus (E) | 230 GPa | 3.5 GPa | 75 GPa |
Ultimate Tensile Strength (UTS) | 4900 MPa | 73 MPa | 750 MPa |
Density (ρ) | 1.8 g/cm3 | 1.1 g/cm3 | 1.5 g/cm3 |
Benchmarks | Thickness [mm] | |||
---|---|---|---|---|
Slice 100 | Slice 200 | |||
Without HT | With HT | Without HT | With HT | |
1 | 2.56 | 1.37 | 2.34 | 1.58 |
2 | 2.59 | 1.41 | 2.52 | 1.54 |
3 | 2.54 | 1.42 | 2.60 | 1.30 |
4 | 2.99 | 1.40 | 3.04 | 1.21 |
5 | 2.59 | 1.32 | 2.51 | 1.27 |
6 | 2.92 | 1.38 | 2.37 | 1.53 |
7 | 2.58 | 1.38 | 2.54 | 1.68 |
8 | 2.65 | 1.30 | 2.32 | 1.55 |
Mean (section) | 2.68 | 1.37 | 2.53 | 1.46 |
Standard Deviation (section) | 0.18 | 0.04 | 0.23 | 0.17 |
Without HT | With HT | |||
Mean (width) | 2.60 | 1.41 | ||
Standard Deviation (width) | 0.18 | 0.08 |
Without Heat-Shrinkable Tape | With Heat-Shrinkable Tape | |
---|---|---|
σHTS [MPa] | 646.26 | 1473.28 |
Weight [g] | 18.34 | 12.11 |
Specific σHTS [MPa/g] | 35.24 | 121.66 |
Load [kN] | 48.86 | 71.60 |
Specific load [kN/g] | 2.66 | 5.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bianchi, I.; Forcellese, A.; Mancia, T.; Mignanelli, C.; Simoncini, M.; Verdini, T. Effect of Heat-Shrinkable Tape Application on the Mechanical Performance of CFRP Components Obtained by a Filament Winding Process. J. Compos. Sci. 2024, 8, 535. https://doi.org/10.3390/jcs8120535
Bianchi I, Forcellese A, Mancia T, Mignanelli C, Simoncini M, Verdini T. Effect of Heat-Shrinkable Tape Application on the Mechanical Performance of CFRP Components Obtained by a Filament Winding Process. Journal of Composites Science. 2024; 8(12):535. https://doi.org/10.3390/jcs8120535
Chicago/Turabian StyleBianchi, Iacopo, Archimede Forcellese, Tommaso Mancia, Chiara Mignanelli, Michela Simoncini, and Tommaso Verdini. 2024. "Effect of Heat-Shrinkable Tape Application on the Mechanical Performance of CFRP Components Obtained by a Filament Winding Process" Journal of Composites Science 8, no. 12: 535. https://doi.org/10.3390/jcs8120535
APA StyleBianchi, I., Forcellese, A., Mancia, T., Mignanelli, C., Simoncini, M., & Verdini, T. (2024). Effect of Heat-Shrinkable Tape Application on the Mechanical Performance of CFRP Components Obtained by a Filament Winding Process. Journal of Composites Science, 8(12), 535. https://doi.org/10.3390/jcs8120535