Time-Gated Pulsed Raman Spectroscopy with NS Laser for Cultural Heritage
<p>A Gaussian function describes the temporal profile of a 7 ns nominal duration of the laser pulse: theoretical curve (dashed line) and experimental curve (solid line).</p> "> Figure 2
<p>Comparison of Raman spectra from (<b>a</b>) the Paraloid B72 and (<b>b</b>) lead white sample in continuous and pulsed laser excitation. <math display="inline"><semantics> <mrow> <msub> <mi>I</mi> <mi>P</mi> </msub> </mrow> </semantics></math>: Intensity of Raman peak at 1450 cm<sup>−1</sup> (C-H bend), <math display="inline"><semantics> <mrow> <msub> <mi>I</mi> <mrow> <mi>f</mi> <mn>0</mn> </mrow> </msub> </mrow> </semantics></math> (1366 cm<sup>−1</sup>), and <math display="inline"><semantics> <mrow> <msub> <mi>I</mi> <mrow> <mi>f</mi> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math> (1530 cm<sup>−1</sup>): Intensity of fluorescence adjacent to the Raman peak, <math display="inline"><semantics> <mrow> <msub> <mi>I</mi> <mi>B</mi> </msub> </mrow> </semantics></math> : Intensity of background at 2660 cm<sup>−1</sup> where no fluorescence emits.</p> "> Figure 3
<p>Raman spectra of Paraloid B72 obtained by three wavelengths of Nd:YAG laser harmonics: 266, 355, and 532 nm.</p> "> Figure 4
<p>The pulsed Raman spectra obtained by a 355 nm and 532 nm laser on the sample (<b>a</b>) Paraloid 72 after subtraction of the spectra fluorescence baseline in <a href="#heritage-06-00082-f003" class="html-fig">Figure 3</a> and (<b>b</b>) white marble [<a href="#B21-heritage-06-00082" class="html-bibr">21</a>].</p> "> Figure 5
<p>Raman spectra from beeswax with different laser pulse energy (power) and a detection window of 5 ns.</p> "> Figure 6
<p>Raman spectra from Paraloid B72 with a high resolution induced by 532 nm laser pulse recorded by different delays (<b>a</b>) −10 ns to 0 ns and (<b>b</b>) 0 ns to 10 ns. The detection windows were fixed at 10 ns, and the minus value means the detection started before the laser pulse arriving the sample surface.</p> "> Figure 7
<p>Global Raman spectra from Paraloid B72 with fluorescence emission induced by 355 nm (23 mJ/cm<sup>−2</sup>) laser pulse recorded by different delays (<b>a</b>) −10 ns to 0 ns and (<b>b</b>) 2 ns to 10 ns. The detection windows were fixed at 10 ns, and the minus value means the detection started before the laser pulse arriving the sample surface.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Raman Spectroscopy in Different Excitation Conditions
3.1.1. Improvement of Raman Signal to Luminescence Background by Pulsed Laser
3.1.2. Impact of Laser Wavelength and Intensity on Pulsed Raman Spectroscopy
3.1.3. Impact of Pulsed Laser Energy (Power) on Raman Spectroscopy
3.2. Effect of Detection Window Selected for Time-Resolved Raman Spectroscopy
4. Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Coccato, A.; Bersani, D.; Coudray, A.; Sanyova, J.; Moens, L.; Vandenabeele, P. Raman spectroscopy of green minerals and reaction products with an application in Cultural Heritage research. J. Raman Spectrosc. 2016, 47, 1429–1443. [Google Scholar]
- Papliaka, Z.E.; Andrikopoulos, K.S.; Varella, E.A. Study of the stability of a series of synthetic colorants applied with styrene-acrylic copolymer, widely used in contemporary paintings, concerning the effects of accelerated ageing. J. Cult. Herit. 2010, 11, 381–391. [Google Scholar]
- Mendes, N.; Osticioli, I.; Striova, J.; Sansonetti, A.; Becucci, M.; Castellucci, E. Versatile pulsed laser setup for depth profiling analysis of multilayered samples in the field of cultural heritage. J. Mol. Struct. 2009, 924, 420–426. [Google Scholar]
- Sharma, S.K.; Angel, S.M.; Ghosh, M.; Hubble, H.W.; Lucey, P.G. Remote Pulsed Laser Raman Spectroscopy System for Mineral Analysis on Planetary Surfaces to 66 Meters. Appl. Spectrosc. 2002, 56, 699–705. [Google Scholar]
- Macleod, N.A.; Matousek, P. Emerging non-invasive Raman methods in process control and forensic applications. Pharm. Res. 2008, 25, 2205–2215. [Google Scholar]
- Bruder, R.; Detalle, V.; Coupry, C. An example of the complementarity of laser-induced breakdown spectroscopy and Raman microscopy for wall painting pigments analysis. J. Raman Spectrosc. Int. J. Orig. Work All Asp. Raman Spectrosc. Incl. High. Order Process. Brillouin Rayleigh Scatt. 2007, 38, 909–915. [Google Scholar]
- Heilala, B.; Mäkinen, A.; Nissinen, I.; Nissinen, J.; Mäkynen, A.; Perämäki, P. Evaluation of time-gated Raman spectroscopy for the determination of nitric, sulfuric and hydrofluoric acid concentrations in pickle liquor. Microchem. J. 2018, 137, 342–347. [Google Scholar]
- Gyakwaa, F.; Aula, M.; Alatarvas, T.; Vuolio, T.; Huttula, M.; Fabritius, T. Applicability of time-gated Raman spectroscopy in the characterisation of calcium-aluminate inclusions. ISIJ Int. 2019, 59, 1846–1852. [Google Scholar]
- Wang, Z.; Shu, Q.; Chou, K. Structure of CaO–B2O3–SiO2–TiO2 glasses: A Raman spectral study. ISIJ Int. 2011, 51, 1021–1027. [Google Scholar]
- Osticioli, I.; Mendes, N.; Porcinai, S.; Cagnini, A.; Castellucci, E. Spectroscopic analysis of works of art using a single LIBS and pulsed Raman setup. Anal. Bioanal. Chem. 2009, 394, 1033–1041. [Google Scholar]
- Zhang, Z.M.; Chen, S.; Liang, Y.Z.; Liu, Z.X.; Zhang, Q.M.; Ding, L.X.; Ye, F.; Zhou, H. An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy. J. Raman Spectrosc. 2010, 41, 659–669. [Google Scholar]
- Wirth, M.; Chou, S.H. Comparison of time and frequency domain methods for rejecting fluorescence from Raman spectra. Anal. Chem. 1988, 60, 1882–1886. [Google Scholar]
- Wei, D.; Chen, S.; Liu, Q. Review of fluorescence suppression techniques in Raman spectroscopy. Appl. Spectrosc. Rev. 2015, 50, 387–406. [Google Scholar]
- Kögler, M.; Heilala, B. Time-gated Raman spectroscopy—A review. Meas. Sci. Technol. 2020, 32, 012002. [Google Scholar] [CrossRef]
- Dall’Osto, G.; Corni, S. Time Resolved Raman Scattering of Molecules: A Quantum Mechanics Approach with Stochastic Schroedinger Equation. J. Chem. Phys. A 2022, 126, 8088–8100. [Google Scholar] [CrossRef]
- Blacksberg, J.; Alerstam, E.; Cochrane, C.J.; Maruyama, Y.; Farmer, J.D. Miniature high-speed, low-pulse-energy picosecond Raman spectrometer for identification of minerals and organics in planetary science. Appl. Opt. 2020, 59, 433–444. [Google Scholar] [CrossRef]
- Versteeg, R.B.; Zhu, J.; Padmanabhan, P.; Boguschewski, C.; German, R.; Goedecke, M.; Becker, P.; van Loosdrecht, P.H.M. A tunable time-resolved spontaneous Raman spectroscopy setup for probing ultrafast collective excitation and quasiparticle dynamics in quantum materials. Struct. Dyn. 2018, 5, 044301. [Google Scholar] [CrossRef]
- Osticioli, I.; Mendes, N.; Nevin, A.; Gil, F.P.; Becucci, M.; Castellucci, E. Analysis of natural and artificial ultramarine blue pigments using laser induced breakdown and pulsed Raman spectroscopy, statistical analysis and light microscopy. Spectrochim. Acta Part A 2009, 73, 525–531. [Google Scholar]
- Detalle, V.; Bai, X.; Bourguignon, E.; Menu, M.; Pallot-Frossard, I. LIBS-LIF-Raman: A New Tool for the Future E-RIHS. Proceedings of Optics for Arts, Architecture, and Archaeology VI, Munich, Germany, 28–29 June 2017; p. 103310N. [Google Scholar]
- Skulinova, M.; Lefebvre, C.; Sobron, P.; Eshelman, E.; Daly, M.; Gravel, J.-F.; Cormier, J.-F.; Châteauneuf, F.; Slater, G.; Zheng, W. Time-resolved stand-off UV-Raman spectroscopy for planetary exploration. Planet. Space Sci. 2014, 92, 88–100. [Google Scholar]
- Bai, X.; Oujja, M.; Sanz, M.; Lopez, M.; Dandolo, C.K.; Castillejo, M.; Detalle, V. Integrating LIBS LIF Raman into a Single Multi-Spectroscopic Mobile Device for In Situ Cultural Heritage Analysis. In Proceedings of the SPIE 11058, Optics for Arts, Architecture, and Archaeology VII, Munich, Germany, 24–26 June 2019; p. 1105818. [Google Scholar]
- Smith, E.; Dent, G. Modern Raman Spectroscopy: A Practical Approach; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Kögler, M. Advanced Raman Spectroscopy for Bioprocess Monitoring. Ph.D. Thesis, Technical University of Berlin, Berlin, Germany, 2018. [Google Scholar]
- Li, Y.; Suzuki, A.; Cheung, C.S.; Gu, Y.; Kogou, S.; Liang, H. A study of potential laser-induced degradation in remote standoff Raman spectroscopy for wall paintings. Eur. Phys. J. Plus 2022, 137, 1102. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, X.; Detalle, V. Time-Gated Pulsed Raman Spectroscopy with NS Laser for Cultural Heritage. Heritage 2023, 6, 1531-1540. https://doi.org/10.3390/heritage6020082
Bai X, Detalle V. Time-Gated Pulsed Raman Spectroscopy with NS Laser for Cultural Heritage. Heritage. 2023; 6(2):1531-1540. https://doi.org/10.3390/heritage6020082
Chicago/Turabian StyleBai, Xueshi, and Vincent Detalle. 2023. "Time-Gated Pulsed Raman Spectroscopy with NS Laser for Cultural Heritage" Heritage 6, no. 2: 1531-1540. https://doi.org/10.3390/heritage6020082
APA StyleBai, X., & Detalle, V. (2023). Time-Gated Pulsed Raman Spectroscopy with NS Laser for Cultural Heritage. Heritage, 6(2), 1531-1540. https://doi.org/10.3390/heritage6020082