The Spatially Adaptable Filter for Error Reduction (SAFER) Process: Remote Sensing-Based LANDFIRE Disturbance Mapping Updates
<p>LANDFIRE (LF) tiles (gray rectangles) over the conterminous United States. The five prototyping tiles are highlighted. The background shows geographic extent of LF 2016 Remap Life Form classes.</p> "> Figure 2
<p>Heritage RSLC process (dashed boxes and lines) and the SAFER workflow additions (solid boxes and lines) flow chart. Please refer to the section numbers given in each process box for details.</p> "> Figure 3
<p>Graphical illustration of the spatial change Z scores (SCZs) computation. The left-most is the reference image (<b>a</b>), whose values for disturbance (lighter and browner shades) and its neighbors (greener shades) are expected to be different. Contiguous disturbance (<b>b</b>) clusters are assigned a unique id <span class="html-italic">k</span>. Two rings ((<b>c</b>); <span class="html-italic">j</span> = 1 pixel and (<b>d</b>); <span class="html-italic">j</span> = 2 pixel wide) are grown around each unique cluster and are assigned the corresponding ids. Pixels in rings that are common to more than one ring(s) are identified (gray) and marked as invalid. Pixel values from the reference image with land observations for the valid ring pixel locations are extracted and used to calculate the mean (m) and the standard deviation (s). The ring with the lowest coefficient of variation (<span class="html-italic">σ</span>/<span class="html-italic">μ</span>) is selected, and the corresponding <span class="html-italic">μ</span> and <span class="html-italic">σ</span> are used in Equation (5) for each disturbance and results in the <span class="html-italic">SCZ</span> (<b>e</b>) values for each pixel in the disturbance. Refer to <a href="#sec3dot1dot2-fire-07-00051" class="html-sec">Section 3.1.2</a> for more details.</p> "> Figure 4
<p>The top 30 most important predictor variables for the random forest model for each of the five prototyping tiles. A more detailed list including all 73 variables used in the model is provided in <a href="#app1-fire-07-00051" class="html-app">Supplementary Figure S2</a>.</p> "> Figure 5
<p>LF tile r01c02 predisturbance (2015 DOY 175) and post-disturbance (2016 DOY 250) false color (Shortwave Infrared 1 (red), Near Infrared (green), Red (blue)) images and results of RSLC interim disturbances, SAFER outputs, and LF-disseminated product. Detections are red, rejections are white, and unmapped regions are shown in gray. A 2000 × 1500 pixel subset (60 km × 45 km), marked as a blue outline in the top row, is detailed in the bottom row.</p> "> Figure 6
<p>LF tile r02c15 predisturbance (2015 DOY 175) and post-disturbance (2016 DOY 250) false color (Shortwave Infrared 1 (red), Near Infrared (green), Red (blue)) images and results of RSLC interim disturbances, SAFER outputs, and LF-disseminated product. Detections are red, rejections are white, and unmapped regions are shown in gray. A 500 × 500 pixel subset (15 km × 15 km), marked as a blue outline in the top row, is detailed in the bottom row.</p> "> Figure 7
<p>LF tile r06c03 predisturbance (2015 DOY 175) and post-disturbance (2016 DOY 250) false color (Shortwave Infrared 1 (red), Near Infrared (green), Red (blue)) images and results of RSLC interim disturbances, SAFER outputs, and LF-disseminated product. Detections are red, rejections are white, and unmapped regions are shown in gray. A 500 × 500 pixel subset (15 km × 15 km), marked as a blue outline in the top row, is detailed in the bottom row. Analyst additions are shown in yellow.</p> "> Figure 8
<p>LF tile r09c08 predisturbance (2015 DOY 175) and post-disturbance (2016 DOY 250) false color (Shortwave Infrared 1 (red), Near Infrared (green), Red (blue)) images and results of RSLC interim disturbances, SAFER outputs, and LF-disseminated product. Detections are red, rejections are white, and unmapped regions are shown in gray. A 500 × 500 (15 km × 15 km) pixel subset, marked as a blue outline in the top row, is detailed in the bottom row.</p> "> Figure 9
<p>The 2017 SAFER evaluation results. The color-coded bar charts represent the classification’s overall accuracy (OA) of the interim RSLC disturbances (red and brown), SAFER (cyan and blue), and the relative effort (gray) saved, all scaled to unity (black). Accuracies and relative analysts’ effort saved (<a href="#sec3dot2-fire-07-00051" class="html-sec">Section 3.2</a>) is high for SAFER outputs over the whole CONUS. The relative effort saved ranged from 47.7% (solid black circle) to 99.4% (dashed black circle), with a median of 92.7%. LANDFIRE (LF) tiles (gray rectangles) over the LF 2016 life form classes [<a href="#B74-fire-07-00051" class="html-bibr">74</a>].</p> ">
Abstract
:1. Introduction
2. Data and Preprocessing
2.1. The LF Disturbance Product
2.2. The Remote Sensing of Landscape Change (RSLC) Process
2.2.1. Compositing
2.2.2. Urban, Water, and Agricultural Masks Data
2.2.3. Automated Change Detection
2.2.4. Analysts’ Review
3. Methods
3.1. Random Forest Model
3.1.1. Multitemporal Predictor Variables
3.1.2. Spatial Change Z Scores (SCZs) Predictor Variable
3.2. SAFER Evaluation
3.2.1. SAFER Prototype Evaluation
3.2.2. 2017 SAFER Evaluation
4. Results
4.1. SAFER Prototype Accuracy Results
4.2. 2017 SAFER Evaluation
5. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ojima, D.; Galvin, K.; Turner, B. The global impact of land-use change. BioScience 1994, 44, 300–304. [Google Scholar] [CrossRef]
- Singh, A. Review article digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 1989, 10, 989–1003. [Google Scholar] [CrossRef]
- Loveland, T.; Sohl, T.; Stehman, S.; Gallant, A.; Sayler, K.; Napton, D. A Strategy for Estimating the Rates of Recent United States Land-Cover Changes. Photogramm. Eng. Remote Sens. 2002, 68, 1091–1099. [Google Scholar]
- Chen, G.; Hay, G.J.; Carvalho, L.M.; Wulder, M.A. Object-based change detection. Int. J. Remote Sens. 2012, 33, 4434–4457. [Google Scholar] [CrossRef]
- Woodcock, C.E.; Allen, R.; Anderson, M.; Belward, A.; Bindschadler, R.; Cohen, W.; Gao, F.; Goward, S.N.; Helder, D.; Helmer, E. Free access to Landsat imagery. Science 2008, 320, 1011. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Wulder, M.A.; Roy, D.P.; Woodcock, C.E.; Hansen, M.C.; Radeloff, V.C.; Healey, S.P.; Schaaf, C.; Hostert, P.; Strobl, P.; et al. Benefits of the free and open Landsat data policy. Remote Sens. Environ. 2019, 224, 382–385. [Google Scholar] [CrossRef]
- Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sens. Environ. 2012, 122, 2–10. [Google Scholar] [CrossRef]
- Turner, W.; Rondinini, C.; Pettorelli, N.; Mora, B.; Leidner, A.K.; Szantoi, Z.; Buchanan, G.; Dech, S.; Dwyer, J.; Herold, M. Free and open-access satellite data are key to biodiversity conservation. Biol. Conserv. 2015, 182, 173–176. [Google Scholar] [CrossRef]
- Anderson, J.R. Land use and land cover changes. A framework for monitoring. J. Res. By Geol. Surv. 1977, 5, 143–153. [Google Scholar]
- Homer, C.; Dewitz, J.; Jin, S.; Xian, G.; Costello, C.; Danielson, P.; Gass, L.; Funk, M.; Wickham, J.; Stehman, S. Conterminous United States land cover change patterns 2001–2016 from the 2016 national land cover database. ISPRS J. Photogramm. Remote Sens. 2020, 162, 184–199. [Google Scholar] [CrossRef]
- Ingram, K.; Knapp, E.; Robinson, J. Change Detection Technique Development for Improved Urbanized Area Delineation; CSC/TM-81/6087; NASA: Washington, DC, USA; Computer Sciences Corporation: Silver Springs, MD, USA, 1981.
- Rollins, M.G. LANDFIRE: A nationally consistent vegetation, wildland fire, and fuel assessment. Int. J. Wildland Fire 2009, 18, 235–249. [Google Scholar] [CrossRef]
- Ryan, K.C.; Opperman, T.S. LANDFIRE–A national vegetation/fuels data base for use in fuels treatment, restoration, and suppression planning. For. Ecol. Manag. 2013, 294, 208–216. [Google Scholar] [CrossRef]
- Calkin, D.E.; Thompson, M.P.; Finney, M.A.; Hyde, K.D. A real-time risk assessment tool supporting wildland fire decisionmaking. J. For. 2011, 109, 274–280. [Google Scholar]
- Blankenship, K.; Swaty, R.; Hall, K.R.; Hagen, S.; Pohl, K.; Shlisky Hunt, A.; Patton, J.; Frid, L.; Smith, J. Vegetation dynamics models: A comprehensive set for natural resource assessment and planning in the United States. Ecosphere 2021, 12, e03484. [Google Scholar] [CrossRef]
- Vaillant, N.M.; Reinhardt, E.D. An evaluation of the Forest Service Hazardous Fuels Treatment Program—Are we treating enough to promote resiliency or reduce hazard? J. For. 2017, 115, 300–308. [Google Scholar] [CrossRef]
- Krasnow, K.; Schoennagel, T.; Veblen, T.T. Forest fuel mapping and evaluation of LANDFIRE fuel maps in Boulder County, Colorado, USA. For. Ecol. Manag. 2009, 257, 1603–1612. [Google Scholar] [CrossRef]
- Zarnetske, P.L.; Thomas, C., Jr.; Moisen, G.G. Modeling forest bird species’ likelihood of occurrence in Utah with Forest Inventory and Analysis and Landfire map products and ecologically based pseudo-absence points. In Proceedings of the Seventh Annual Forest Inventory and Analysis Symposium, Portland, ME, USA, 3–6 October 2005; McRoberts, R.E., Reams, G.A., Van Deusen, P.C., McWilliams, W.H., Eds.; Gen. Tech. Rep. WO-77; US Department of Agriculture, Forest Service: Washington, DC, USA, 2005; pp. 291–305. [Google Scholar]
- Palaiologou, P.; Essen, M.; Hogland, J.; Kalabokidis, K. Locating Forest Management Units Using Remote Sensing and Geostatistical Tools in North-Central Washington, USA. Sensors 2020, 20, 2454. [Google Scholar] [CrossRef] [PubMed]
- Lott, C.A.; Akresh, M.E.; Costanzo, B.E.; D’Amato, A.W.; Duan, S.; Fiss, C.J.; Fraser, J.S.; He, H.S.; King, D.I.; McNeil, D.J. Do Review Papers on Bird–Vegetation Relationships Provide Actionable Information to Forest Managers in the Eastern United States? Forests 2021, 12, 990. [Google Scholar] [CrossRef]
- Jin, S.; Yang, L.; Danielson, P.; Homer, C.; Fry, J.; Xian, G. A comprehensive change detection method for updating the National Land Cover Database to circa 2011. Remote Sens. Environ. 2013, 132, 159–175. [Google Scholar] [CrossRef]
- Giglio, L.; Descloitres, J.; Justice, C.O.; Kaufman, Y.J. An enhanced contextual fire detection algorithm for MODIS. Remote Sens. Environ. 2003, 87, 273–282. [Google Scholar] [CrossRef]
- Lie, W.-N. Automatic target segmentation by locally adaptive image thresholding. IEEE Trans. Image Process. 1995, 4, 1036–1041. [Google Scholar]
- Liu, H.; Jezek, K. Automated extraction of coastline from satellite imagery by integrating Canny edge detection and locally adaptive thresholding methods. Int. J. Remote Sens. 2004, 25, 937–958. [Google Scholar] [CrossRef]
- Schroeder, W.; Oliva, P.; Giglio, L.; Quayle, B.; Lorenz, E.; Morelli, F. Active fire detection using Landsat-8/OLI data. Remote Sens. Environ. 2016, 185, 210–220. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Roy, D.; Lewis, P.; Justice, C. Burned area mapping using multi-temporal moderate spatial resolution data—A bi-directional reflectance model-based expectation approach. Remote Sens. Environ. 2002, 83, 263–286. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef]
- Verbesselt, J.; Zeileis, A.; Herold, M. Near real-time disturbance detection using satellite image time series. Remote Sens. Environ. 2012, 123, 98–108. [Google Scholar] [CrossRef]
- Kumar, S.S.; Roy, D.P. Global operational land imager Landsat-8 reflectance-based active fire detection algorithm. Int. J. Digit. Earth 2018, 11, 154–178. [Google Scholar] [CrossRef]
- Giglio, L.; Schroeder, W.; Justice, C.O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 2016, 178, 31–41. [Google Scholar] [CrossRef]
- Healey, S.P.; Cohen, W.B.; Zhiqiang, Y.; Brewer, K.; Brooks, E.; Gorelick, N.; Gregory, M.; Hernandez, A.; Huang, C.; Hughes, J. Next-generation forest change mapping across the United States: The landscape change monitoring system (LCMS). In Proceedings of the Pushing Boundaries: New Directions in Inventory Techniques and Applications: Forest Inventory and Analysis (FIA) Symposium 2015, Portland, OR, USA, 8–10 December 2015; Gen. Tech. Rep. PNW-GTR-931; Stanton, S.M., Christensen, G.A., Eds.; US Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2015; p. 217. [Google Scholar]
- Bar, M. Visual objects in context. Nat. Rev. Neurosci. 2004, 5, 617–629. [Google Scholar] [CrossRef]
- Svatonova, H. Analysis of visual interpretation of satellite data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 675–681. [Google Scholar] [CrossRef]
- Nelson, K.J.; Steinwand, D. A Landsat data tiling and compositing approach optimized for change detection in the conterminous United States. Photogramm. Eng. Remote Sens. 2015, 81, 573–586. [Google Scholar] [CrossRef]
- Eidenshink, J.; Schwind, B.; Brewer, K.; Zhu, Z.-L.; Quayle, B.; Howard, S. A project for monitoring trends in burn severity. Fire Ecol. 2007, 3, 3–21. [Google Scholar] [CrossRef]
- Picotte, J.J.; Bhattarai, K.; Howard, D.; Lecker, J.; Epting, J.; Quayle, B.; Benson, N.; Nelson, K. Changes to the Monitoring Trends in Burn Severity program mapping production procedures and data products. Fire Ecol. 2020, 16, 16. [Google Scholar] [CrossRef]
- Hudak, A.T.; Morgan, P.; Bobbitt, M.J.; Smith, A.M.; Lewis, S.A.; Lentile, L.B.; Robichaud, P.R.; Clark, J.T.; McKinley, R.A. The relationship of multispectral satellite imagery to immediate fire effects. Fire Ecol. 2007, 3, 64–90. [Google Scholar] [CrossRef]
- Baker, C.; Harvey, B.; Saberi, S.; Reiner, A.; Wahlberg, M. Regionally Adapted Models for the Rapid Assessment of Vegetation Condition after Wildfire Program in the Interior Northwest and Southwest United States. In Proceedings of the 2019 National Silviculture Workshop: A Focus on Forest Managementresearch Partnerships, Bemidji, MN, USA, 21–23 May 2019; Gen. Tech. Rep. NRS-P-193; Pile, L.S., Deal, R.L., Dey, D.C., Gwaze, D., Kabrick, J.M., Palik, B.J., Schuler, T.M., Eds.; US Department of Agriculture, Forest Service, Northern Research Station: Madison, WI, USA, 2019; pp. 6–10. [Google Scholar]
- Clark, J. Remote sensing and geospatial support to burned area emergency response (BAER) teams in assessing wildfire effects to hillslopes. In Landslide Science and Practice; Springer: Berlin/Heidelberg, Germany, 2013; pp. 211–215. [Google Scholar]
- Miller, J.D.; Quayle, B. Calibration and validation of immediate post-fire satellite-derived data to three severity metrics. Fire Ecol. 2015, 11, 12–30. [Google Scholar] [CrossRef]
- USA-NPN. USA National Phenology Network. Available online: https://www.usanpn.org/usa-national-phenology-network (accessed on 6 February 2024).
- NLCD. The National Land Cover Database. Available online: https://www.mrlc.gov/data (accessed on 6 February 2024).
- Jones, J.W. Improved automated detection of subpixel-scale inundation—Revised dynamic surface water extent (DSWE) partial surface water tests. Remote Sens. 2019, 11, 374. [Google Scholar] [CrossRef]
- DSWE. Dynamic Surface Water Extent. Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-landsat-landsat-level-3-dynamic-surface-water-extent-dswe (accessed on 6 February 2024).
- Boryan, C.; Yang, Z.; Mueller, R.; Craig, M. Monitoring US agriculture: The US department of agriculture, national agricultural statistics service, cropland data layer program. Geocarto Int. 2011, 26, 341–358. [Google Scholar] [CrossRef]
- USDA-NASS. USDA National Agricultural Statistics Service Cropland Data Layer. Available online: http://nassgeodata.gmu.edu/CropScape/ (accessed on 6 February 2024).
- Nelson, K.J.; Long, D.G.; Connot, J.A. LANDFIRE 2010: Updates to the National Dataset to Support Improved Fire and Natural Resource Management; U.S. Geological Survey, Earth Resources Observation and Science (EROS) Center: Sioux Falls, SD, USA, 2016.
- Foody, G.M.; Mathur, A. Toward intelligent training of supervised image classifications: Directing training data acquisition for SVM classification. Remote Sens. Environ. 2004, 93, 107–117. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Strobl, C.; Boulesteix, A.-L.; Kneib, T.; Augustin, T.; Zeileis, A. Conditional variable importance for random forests. BMC Bioinform. 2008, 9, 307. [Google Scholar] [CrossRef]
- Wright, M.N.; Ziegler, A. ranger: A fast implementation of random forests for high dimensional data in C++ and R. arXiv 2015, arXiv:1508.04409. [Google Scholar] [CrossRef]
- Weiss, G.M.; Provost, F. Learning when training data are costly: The effect of class distribution on tree induction. J. Artif. Intell. Res. 2003, 19, 315–354. [Google Scholar] [CrossRef]
- Kumar, S.; Prihodko, L.; Lind, B.; Anchang, J.; Ji, W.; Ross, C.; Kahiu, M.; Velpuri, N.; Hanan, N. Remotely sensed thermal decay rate: An index for vegetation monitoring. Sci. Rep. 2020, 10, 9812. [Google Scholar] [CrossRef]
- Huang, H.; Roy, D.P.; Boschetti, L.; Zhang, H.K.; Yan, L.; Kumar, S.S.; Gomez-Dans, J.; Li, J. Separability analysis of Sentinel-2A multi-spectral instrument (MSI) data for burned area discrimination. Remote Sens. 2016, 8, 873. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef]
- Roy, D.P.; Boschetti, L.; Trigg, S.N. Remote sensing of fire severity: Assessing the performance of the normalized burn ratio. IEEE Geosci. Remote Sens. Lett. 2006, 3, 112–116. [Google Scholar] [CrossRef]
- Jin, S.; Sader, S.A. Comparison of time series tasseled cap wetness and the normalized difference moisture index in detecting forest disturbances. Remote Sens. Environ. 2005, 94, 364–372. [Google Scholar] [CrossRef]
- Kruse, F.A.; Lefkoff, A.; Boardman, J.; Heidebrecht, K.; Shapiro, A.; Barloon, P.; Goetz, A. The spectral image processing system (SIPS)—Interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 1993, 44, 145–163. [Google Scholar] [CrossRef]
- Kumar, S.S.; Picotte, J.J.; Tolk, B.; Dittmeier, R.; La Puma, I.P.; Peterson, B.; Hatten, T. A spatially adaptive filter for error reduction in satellite-based change detection algorithms. In AGU Fall Meeting Abstract; American Geophysical Union: Washington, DC, USA, 2020. [Google Scholar]
- Roy, D.P.; Kumar, S.S. Multi-year MODIS active fire type classification over the Brazilian Tropical Moist Forest Biome. Int. J. Digit. Earth 2017, 10, 54–84. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, X. Improving land cover classification in an urbanized coastal area by random forests: The role of variable selection. Remote Sens. Environ. 2020, 251, 112105. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Shi, W.; Zhang, M.; Zhang, R.; Chen, S.; Zhan, Z. Change detection based on artificial intelligence: State-of-the-art and challenges. Remote Sens. 2020, 12, 1688. [Google Scholar] [CrossRef]
- Kumar, S.S.; Roy, D.P.; Cochrane, M.A.; Souza, C.M.; Barber, C.P.; Boschetti, L. A quantitative study of the proximity of satellite detected active fires to roads and rivers in the Brazilian tropical moist forest biome. Int. J. Wildland Fire 2014, 23, 532–543. [Google Scholar] [CrossRef]
- Warner, T. Kernel-based texture in remote sensing image classification. Geogr. Compass 2011, 5, 781–798. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Stehman, S.V.; Pengra, B.W.; Horton, J.A.; Wellington, D.F. Validation of the US Geological Survey’s Land Change Monitoring, Assessment and Projection (LCMAP) Collection 1.0 annual land cover products 1985–2017. Remote Sens. Environ. 2021, 265, 112646. [Google Scholar] [CrossRef]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Chicco, D.; Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genom. 2020, 21, 6. [Google Scholar] [CrossRef] [PubMed]
- Pontius, R.G., Jr.; Millones, M. Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [Google Scholar] [CrossRef]
- NASA. Preliminary Assessment of the Value of Landsat 7 ETM+ SLC-off Data; NASA: Washington, DC, USA, 2003.
- LFREMAP. Landfire 2016 Remap. Available online: https://www.landfire.gov/lf_remap.php (accessed on 6 February 2024).
Variable | Formulation and Variable Name | Training | Prediction |
---|---|---|---|
TOA multispectral band reflectance | ρYblue DOY | 2013, 2014, 2015 | 2014, 2015, 2016 |
ρYgreen DOY | 2013, 2014, 2015 | 2014, 2015, 2016 | |
ρYred DOY | 2013, 2014, 2015 | 2014, 2015, 2016 | |
ρYnir DOY | 2013, 2014, 2015 | 2014, 2015, 2016 | |
ρYswir1 DOY | 2013, 2014, 2015 | 2014, 2015, 2016 | |
ρYswir2 DOY | 2013, 2014, 2015 | 2014, 2015, 2016 | |
Indices | (ρnir − ρswir2)/(ρnir + ρswir2)NBRY DOY | 2013, 2014, 2015 | 2014, 2015, 2016 |
(ρnir − ρred)/(ρnir + ρred) NDVIY DOY | 2013, 2014, 2015 | 2014, 2015, 2016 | |
(ρnir − ρswir1)/(ρnir + ρswir1) NDMIY DOY | 2013, 2014, 2015 | 2014, 2015, 2016 | |
Differenced variables Difference indices and Spectral Angle Mapper (SAM) | dNBR DOY YPost-YPre | 2013–15, 2014–15 | 2014–16, 2015–16 |
dNDVI DOY YPost-YPre | 2013–15, 2014–15 | 2014–16, 2015–16 | |
dNDMI DOY YPost-YPre | 2013–15, 2014–15 | 2014–16, 2015–16 | |
SAM DOY YPost-YPre | 2013–15, 2014–15 | 2014–16, 2015–16 | |
Differenced Spatial Change Z scores (SCZs) | (6) SCZ_dNBR YPost-YPre | 2014–15 | 2015–16 |
(6) SCZ_dNDVI YPost-YPre | 2014–15 | 2015–16 | |
(6) SCZ_dNDMI YPost-YPre | 2014–15 | 2015–16 |
kappa [0–1] | Overall [%] | Relative | |||||
---|---|---|---|---|---|---|---|
Tile | Fraction | Internal | Interim | SAFER | Interim | SAFER | Effort Saved [%] |
r01c02 | 0.27 | 0.94 | 0.19 | 0.82 | 96.21 | 99.82 | 95.38 |
r02c15 | 0.35 | 0.94 | 0.16 | 0.59 | 92.53 | 99.10 | 87.89 |
r06c03 | 0.04 | 0.92 | 0.02 | 0.32 | 95.50 | 99.96 | 99.19 |
r09c08 | 0.24 | 0.78 | 0.06 | 0.24 | 92.17 | 99.76 | 96.91 |
r08c12 | 0.89 | 0.94 | 0.45 | 0.81 | 96.58 | 99.37 | 81.55 |
Median | 0.27 | 0.94 | 0.16 | 0.59 | 95.50 | 99.76 | 95.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, S.S.; Tolk, B.; Dittmeier, R.; Picotte, J.J.; La Puma, I.; Peterson, B.; Hatten, T.D. The Spatially Adaptable Filter for Error Reduction (SAFER) Process: Remote Sensing-Based LANDFIRE Disturbance Mapping Updates. Fire 2024, 7, 51. https://doi.org/10.3390/fire7020051
Kumar SS, Tolk B, Dittmeier R, Picotte JJ, La Puma I, Peterson B, Hatten TD. The Spatially Adaptable Filter for Error Reduction (SAFER) Process: Remote Sensing-Based LANDFIRE Disturbance Mapping Updates. Fire. 2024; 7(2):51. https://doi.org/10.3390/fire7020051
Chicago/Turabian StyleKumar, Sanath Sathyachandran, Brian Tolk, Ray Dittmeier, Joshua J. Picotte, Inga La Puma, Birgit Peterson, and Timothy D. Hatten. 2024. "The Spatially Adaptable Filter for Error Reduction (SAFER) Process: Remote Sensing-Based LANDFIRE Disturbance Mapping Updates" Fire 7, no. 2: 51. https://doi.org/10.3390/fire7020051
APA StyleKumar, S. S., Tolk, B., Dittmeier, R., Picotte, J. J., La Puma, I., Peterson, B., & Hatten, T. D. (2024). The Spatially Adaptable Filter for Error Reduction (SAFER) Process: Remote Sensing-Based LANDFIRE Disturbance Mapping Updates. Fire, 7(2), 51. https://doi.org/10.3390/fire7020051