Combining Artificial Intelligence with Augmented Reality and Virtual Reality in Education: Current Trends and Future Perspectives
<p>PRISMA flowchart.</p> "> Figure 2
<p>Number of documents published per year.</p> "> Figure 3
<p>Country collaboration network.</p> "> Figure 4
<p>Most frequent keywords plus.</p> "> Figure 5
<p>Most frequent author’s keywords.</p> "> Figure 6
<p>Keyword co-occurrence network—Bibliometrix.</p> "> Figure 7
<p>Keyword co-occurrence network—VOSviewer.</p> "> Figure 8
<p>Thematic evolution of the topic.</p> "> Figure 9
<p>Trend topics based on keywords plus.</p> "> Figure 10
<p>Trend topics based on author’s keywords.</p> "> Figure 11
<p>Document clusters.</p> "> Figure 12
<p>Thematic map of the topic.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Result Analysis
3.1. Document Collection
3.2. Publication Frequency and Citations
3.3. Sources
3.4. Authors
3.5. Affiliations
3.6. Countries
3.7. Document Analysis
4. Discussion
5. Conclusions
Funding
Conflicts of Interest
References
- Haleem, A.; Javaid, M.; Qadri, M.A.; Suman, R. Understanding the role of digital technologies in education: A review. Sustain. Oper. Comput. 2022, 3, 275–285. [Google Scholar] [CrossRef]
- Admiraal, W.; Huizenga, J.; Akkerman, S.; Dam, G.t. The concept of flow in collaborative game-based learning. Comput. Hum. Behav. 2011, 27, 1185–1194. [Google Scholar] [CrossRef]
- Lampropoulos, G.; Kinshuk. Virtual reality and gamification in education: A systematic review. Educ. Technol. Res. Dev. 2024, 72, 1691–1785. [Google Scholar] [CrossRef]
- Bernacki, M.L.; Greene, M.J.; Lobczowski, N.G. A systematic review of research on personalized learning: Personalized by whom, to what, how, and for what purpose(s)? Educ. Psychol. Rev. 2021, 33, 1675–1715. [Google Scholar] [CrossRef]
- Shemshack, A.; Spector, J.M. A systematic literature review of personalized learning terms. Smart Learn. Environ. 2020, 7, 33. [Google Scholar] [CrossRef]
- Grant, P.; Basye, D. Personalized Learning: A Guide for Engaging Students with Technology; International Society for Technology in Education: Washington, DC, USA, 2014. [Google Scholar]
- Pane, J.; Steiner, E.; Baird, M.; Hamilton, L. Continued Progress: Promising Evidence on Personalized Learning 2015; RAND Corporation: Santa Monica, CA, USA, 2015. [Google Scholar] [CrossRef]
- Conati, C.; Barral, O.; Putnam, V.; Rieger, L. Toward personalized XAI: A case study in intelligent tutoring systems. Artif. Intell. 2021, 298, 103503. [Google Scholar] [CrossRef]
- Raj, N.S.; Renumol, V.G. A systematic literature review on adaptive content recommenders in personalized learning environments from 2015 to 2020. J. Comput. Educ. 2022, 9, 113–148. [Google Scholar] [CrossRef]
- Chen, C.-M. Intelligent web-based learning system with personalized learning path guidance. Comput. Educ. 2008, 51, 787–814. [Google Scholar] [CrossRef]
- Pratama, M.P.; Sampelolo, R.; Lura, H. Revolutionizing education: Harnessing the power of artificial intelligence for personalized learning. Klasikal J. Educ. Lang. Teach. Sci. 2023, 5, 350–357. [Google Scholar] [CrossRef]
- Deci, E.L.; Vallerand, R.J.; Pelletier, L.G.; Ryan, R.M. Motivation and education: The Self-Determination perspective. Educ. Psychol. 1991, 26, 325–346. [Google Scholar] [CrossRef]
- Beauchamp, G.; Kennewell, S. Interactivity in the classroom and its impact on learning. Comput. Educ. 2010, 54, 759–766. [Google Scholar] [CrossRef]
- Bond, M.; Buntins, K.; Bedenlier, S.; Zawacki-Richter, O.; Kerres, M. Mapping research in student engagement and educational technology in higher education: A systematic evidence map. Int. J. Educ. Technol. High. Educ. 2020, 17, 2. [Google Scholar] [CrossRef]
- Shapiro, L.; Stolz, S.A. Embodied cognition and its significance for education. Theory Res. Educ. 2019, 17, 19–39. [Google Scholar] [CrossRef]
- Dede, C. Immersive interfaces for engagement and learning. Science 2009, 323, 66–69. [Google Scholar] [CrossRef] [PubMed]
- Lampropoulos, G. Augmented reality and artificial intelligence in education: Toward immersive intelligent tutoring systems. In Augmented Reality and Artificial Intelligence; Geroimenko, V., Ed.; Springer Nature: Hoboken, NJ, USA, 2023; pp. 137–146. [Google Scholar] [CrossRef]
- Bughin, J.; Hazan, E.; Ramaswamy, S.; Chui, M.; Allas, T.; Dahlstrom, P.; Trench, M. Artificial Intelligence: The Next Digital Frontier; McKinsey Global Institute: Washington, DC, USA, 2017. [Google Scholar]
- Chen, L.; Chen, P.; Lin, Z. Artificial intelligence in education: A review. IEEE Access 2020, 8, 75264–75278. [Google Scholar] [CrossRef]
- Holmes, W.; Bialik, M.; Fadel, C. Artificial Intelligence in Education: Promises and Implications for Teaching and Learning; Center for Curriculum Redesign: Cambridge, MA, USA, 2020. [Google Scholar]
- Hwang, G.-J.; Xie, H.; Wah, B.W.; Gašević, D. Vision, challenges, roles and research issues of artificial intelligence in education. Comput. Educ. Artif. Intell. 2020, 1, 100001. [Google Scholar] [CrossRef]
- Pedro, F.; Subosa, M.; Rivas, A.; Valverde, P. Artificial Intelligence in Education: Challenges and Opportunities for Sustainable Development; United Nations Educational, Scientific and Cultural Organization: Paris, France, 2019. [Google Scholar]
- Haenlein, M.; Kaplan, A. A brief history of artificial intelligence: On the past, present, and future of artificial intelligence. Calif. Manag. Rev. 2019, 61, 5–14. [Google Scholar] [CrossRef]
- Duan, Y.; Edwards, J.S.; Dwivedi, Y.K. Artificial intelligence for decision making in the era of big data-evolution, challenges and research agenda. Int. J. Inf. Manag. 2019, 48, 63–71. [Google Scholar] [CrossRef]
- Stone, P.; Brooks, R.; Brynjolfsson, E.; Calo, R.; Etzioni, O.; Hager, G.; Hirschberg, J.; Kalyanakrishnan, S.; Kamar, E.; Kraus, S.; et al. Artificial intelligence and life in 2030: The one hundred year study on artificial intelligence. arXiv 2016, arXiv:2211.06318. [Google Scholar]
- Brynjolfsson, E.; Mcafee, A. Artificial intelligence, for real. Harv. Bus. Rev. 2017, 1, 1–31. [Google Scholar]
- Li, D.; Du, Y. Artificial Intelligence with Uncertainty; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar] [CrossRef]
- Chen, X.; Zou, D.; Xie, H.; Cheng, G.; Liu, C. Two decades of artificial intelligence in education. Educ. Technol. Soc. 2022, 25, 28–47. [Google Scholar]
- Baidoo-Anu, D.; Owusu Ansah, L. Education in the era of generative artificial intelligence (AI): Understanding the potential benefits of ChatGPT in promoting teaching and learning. J. AI 2023, 7, 52–62. [Google Scholar] [CrossRef]
- Zhai, X.; Chu, X.; Chai, C.S.; Jong, M.S.Y.; Istenic, A.; Spector, M.; Liu, J.-B.; Yuan, J.; Li, Y. A review of artificial intelligence (AI) in education from 2010 to 2020. Complexity 2021, 2021, 8812542. [Google Scholar] [CrossRef]
- Chiu, T.K.F.; Xia, Q.; Zhou, X.; Chai, C.S.; Cheng, M. Systematic literature review on opportunities, challenges, and future research recommendations of artificial intelligence in education. Comput. Educ. Artif. Intell. 2023, 4, 100118. [Google Scholar] [CrossRef]
- Crompton, H.; Burke, D. Artificial intelligence in higher education: The state of the field. Int. J. Educ. Technol. High. Educ. 2023, 20, 22. [Google Scholar] [CrossRef]
- Lin, C.-C.; Huang, A.Y.Q.; Lu, O.H.T. Artificial intelligence in intelligent tutoring systems toward sustainable education: A systematic review. Smart Learn. Environ. 2023, 10, 41. [Google Scholar] [CrossRef]
- Ouyang, F.; Zheng, L.; Jiao, P. Artificial intelligence in online higher education: A systematic review of empirical research from 2011 to 2020. Educ. Inf. Technol. 2022, 27, 7893–7925. [Google Scholar] [CrossRef]
- Song, P.; Wang, X. A bibliometric analysis of worldwide educational artificial intelligence research development in recent twenty years. Asia Pac. Educ. Rev. 2020, 21, 473–486. [Google Scholar] [CrossRef]
- Hinojo-Lucena, F.-J.; Aznar-Díaz, I.; Cáceres-Reche, M.-P.; Romero-Rodríguez, J.-M. Artificial intelligence in higher education: A bibliometric study on its impact in the scientific literature. Educ. Sci. 2019, 9, 51. [Google Scholar] [CrossRef]
- Rauschnabel, P.A.; Felix, R.; Hinsch, C.; Shahab, H.; Alt, F. What is XR? Towards a framework for augmented and virtual reality. Comput. Hum. Behav. 2022, 133, 107289. [Google Scholar] [CrossRef]
- Milgram, P.; Kishino, F. A taxonomy of mixed reality visual displays. IEICE Trans. Inf. Syst. 1994, 77, 1321–1329. [Google Scholar]
- Sherman, W.R.; Craig, A.B. Understanding Virtual Reality: Interface, Application, and Design; Morgan Kaufmann: San Mateo, CA, USA, 2018. [Google Scholar]
- Sherman, W.R.; Craig, A.B. Understanding virtual reality—Interface, application, and design. Presence Teleoperators Virtual Environ. 2003, 12, 441–442. [Google Scholar] [CrossRef]
- Anthes, C.; Garcia-Hernandez, R.J.; Wiedemann, M.; Kranzlmuller, D. State of the art of virtual reality technology. In Proceedings of the 2016 IEEE Aerospace Conference, Big Sky, MT, USA, 5–12 March 2016; IEEE: New York, NY, USA, 2016. [Google Scholar] [CrossRef]
- Burdea, G.C.; Coiffet, P. Virtual Reality Technology; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Ryan, M.-L. Narrative as Virtual Reality 2: Revisiting Immersion and Interactivity in Literature and Electronic Media; JHU Press: Baltimore, MD, USA, 2015. [Google Scholar]
- Psotka, J. Immersive training systems: Virtual reality and education and training. Instr. Sci. 1995, 23, 405–431. [Google Scholar] [CrossRef]
- Blascovich, J.; Bailenson, J. Infinite Reality: Avatars, Eternal Life, New Worlds, and the Dawn of the Virtual Revolution; William Morrow & Co: New York, NY, USA, 2011. [Google Scholar]
- Biocca, F.; Delaney, B. Immersive virtual reality technology. Commun. Age Virtual Real. 1995, 15, 127–157. [Google Scholar] [CrossRef]
- Azuma, R.T. A survey of augmented reality. Presence Teleoperators Virtual Environ. 1997, 6, 355–385. [Google Scholar] [CrossRef]
- Lee, K. Augmented reality in education and training. TechTrends 2012, 56, 13–21. [Google Scholar] [CrossRef]
- Cipresso, P.; Giglioli, I.A.C.; Raya, M.A.; Riva, G. The past, present, and future of virtual and augmented reality research: A network and cluster analysis of the literature. Front. Psychol. 2018, 9, 2086. [Google Scholar] [CrossRef]
- Carmigniani, J.; Furht, B. Augmented reality: An overview. In Handbook of Augmented Reality; Borko Furht Springer: Berlin/Heidelberg, Germany, 2011; pp. 3–46. [Google Scholar] [CrossRef]
- Carmigniani, J.; Furht, B.; Anisetti, M.; Ceravolo, P.; Damiani, E.; Ivkovic, M. Augmented reality technologies, systems and applications. Multimed. Tools Appl. 2011, 51, 341–377. [Google Scholar] [CrossRef]
- Radianti, J.; Majchrzak, T.A.; Fromm, J.; Wohlgenannt, I. A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Comput. Educ. 2020, 147, 103778. [Google Scholar] [CrossRef]
- Freina, L.; Ott, M. A literature review on immersive virtual reality in education: State of the art and perspectives. In Proceedings of the International Scientific Conference Elearning and Software for Education, Bucharest, Romania, 25–26 April 2015; pp. 1–8. [Google Scholar]
- Kavanagh, S.; Luxton-Reilly, A.; Wuensche, B.; Plimmer, B. A systematic review of virtual reality in education. Themes Sci. Technol. Educ. 2017, 10, 85–119. [Google Scholar]
- Akçayır, M.; Akçayır, G. Advantages and challenges associated with augmented reality for education: A systematic review of the literature. Educ. Res. Rev. 2017, 20, 1–11. [Google Scholar] [CrossRef]
- Chen, P.; Liu, X.; Cheng, W.; Huang, R. A review of using augmented reality in education from 2011 to 2016. In Innovations in Smart Learning; Springer: Singapore, 2017; pp. 13–18. [Google Scholar] [CrossRef]
- Avila-Garzon, C.; Bacca-Acosta, J.; Kinshuk; Duarte, J.; Betancourt, J. Augmented reality in education: An overview of Twenty-Five years of research. Contemp. Educ. Technol. 2021, 13, ep302. [Google Scholar] [CrossRef]
- Garzón, J. An overview of Twenty-Five years of augmented reality in education. Multimodal Technol. Interact. 2021, 5, 37. [Google Scholar] [CrossRef]
- Lampropoulos, G.; Keramopoulos, E.; Diamantaras, K.; Evangelidis, G. Augmented reality and gamification in education: A systematic literature review of research, applications, and empirical studies. Appl. Sci. 2022, 12, 6809. [Google Scholar] [CrossRef]
- Maas, M.J.; Hughes, J.M. Virtual, augmented and mixed reality in k-12 education: A review of the literature. Technol. Pedagog. Educ. 2020, 29, 231–249. [Google Scholar] [CrossRef]
- Sala, N. Virtual reality, augmented reality, and mixed reality in education. In Advances in Higher Education and Professional Development; IGI Global: NewYork, PA, USA, 2020; pp. 48–73. [Google Scholar] [CrossRef]
- Banjar, A.; Xu, X.; Iqbal, M.Z.; Campbell, A. A systematic review of the experimental studies on the effectiveness of mixed reality in higher education between 2017 and 2021. Comput. Educ. X Real. 2023, 3, 100034. [Google Scholar] [CrossRef]
- López-Belmonte, J.; Pozo-Sánchez, S.; Moreno-Guerrero, A.-J.; Lampropoulos, G. Metaverse in education: A systematic review. Rev. De Educ. A Distancia 2023, 23, 1–25. [Google Scholar] [CrossRef]
- Lin, H.; Wan, S.; Gan, W.; Chen, J.; Chao, H.-C. Metaverse in education: Vision, opportunities, and challenges. In Proceedings of the 2022 IEEE International Conference on Big Data (Big Data), Osaka, Japan, 17–20 December 2022. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Y.; Hu, L.; Wang, Y. The metaverse in education: Definition, framework, features, potential applications, challenges, and future research topics. Front. Psychol. 2022, 13, 1016300. [Google Scholar] [CrossRef]
- Ellegaard, O.; Wallin, J.A. The bibliometric analysis of scholarly production: How great is the impact? Scientometrics 2015, 105, 1809–1831. [Google Scholar] [CrossRef] [PubMed]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Gusenbauer, M.; Haddaway, N.R. Which academic search systems are suitable for systematic reviews or meta-analyses? Evaluating retrieval qualities of google scholar, PubMed, and 26 other resources. Res. Synth. Methods 2020, 11, 181–217. [Google Scholar] [CrossRef] [PubMed]
- Aria, M.; Cuccurullo, C. Bibliometrix: An r-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent dirichlet allocation. J. Mach. Learn. Res. 2003, 3, 993–1022. [Google Scholar] [CrossRef]
- Mongeon, P.; Paul-Hus, A. The journal coverage of web of science and scopus: A comparative analysis. Scientometrics 2015, 106, 213–228. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, W. A tale of two databases: The use of web of science and scopus in academic papers. Scientometrics 2020, 123, 321–335. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef] [PubMed]
- Westerfield, G.; Mitrovic, A.; Billinghurst, M. Intelligent augmented reality training for motherboard assembly. Int. J. Artif. Intell. Educ. 2015, 25, 157–172. [Google Scholar] [CrossRef]
- Bradford, S.C. Sources of information on specific subjects. Engineering 1936, 137, 85–86. [Google Scholar]
- Hwang, G.-J.; Chien, S.-Y. Definition, roles, and potential research issues of the metaverse in education: An artificial intelligence perspective. Comput. Educ. Artif. Intell. 2022, 3, 100082. [Google Scholar] [CrossRef]
- Winkler-Schwartz, A.; Bissonnette, V.; Mirchi, N.; Ponnudurai, N.; Yilmaz, R.; Ledwos, N.; Siyar, S.; Azarnoush, H.; Karlik, B.; Del Maestro, R.F. Artificial intelligence in medical education: Best practices using machine learning to assess surgical expertise in virtual reality simulation. J. Surg. Educ. 2019, 76, 1681–1690. [Google Scholar] [CrossRef]
- Mirchi, N.; Bissonnette, V.; Yilmaz, R.; Ledwos, N.; Winkler-Schwartz, A.; Del Maestro, R.F. The virtual operative assistant: An explainable artificial intelligence tool for simulation-based training in surgery and medicine. PLoS ONE 2020, 15, e0229596. [Google Scholar] [CrossRef]
- Holstein, K.; McLaren, B.M.; Aleven, V. Student learning benefits of a Mixed-Reality teacher awareness tool in AI-Enhanced classrooms. In Lecture Notes in Computer Science; Springer Nature: Berlin/Heidelberg, Germany, 2018; pp. 154–168. [Google Scholar] [CrossRef]
- Ahuja, A.S.; Polascik, B.W.; Doddapaneni, D.; Byrnes, E.S.; Sridhar, J. The digital metaverse: Applications in artificial intelligence, medical education, and integrative health. Integr. Med. Res. 2023, 12, 100917. [Google Scholar] [CrossRef]
- Bissonnette, V.; Mirchi, N.; Ledwos, N.; Alsidieri, G.; Winkler-Schwartz, A.; Del Maestro, R.F. Artificial intelligence distinguishes surgical training levels in a virtual reality spinal task. J. Bone Jt. Surg. 2019, 101, e127. [Google Scholar] [CrossRef] [PubMed]
- Divekar, R.R.; Drozdal, J.; Chabot, S.; Zhou, Y.; Su, H.; Chen, Y.; Zhu, H.; Hendler, J.A.; Braasch, J. Foreign language acquisition via artificial intelligence and extended reality: Design and evaluation. Comput. Assist. Lang. Learn. 2022, 35, 2332–2360. [Google Scholar] [CrossRef]
- Fazlollahi, A.M.; Bakhaidar, M.; Alsayegh, A.; Yilmaz, R.; Winkler-Schwartz, A.; Mirchi, N.; Langleben, I.; Ledwos, N.; Sabbagh, A.J.; Bajunaid, K.; et al. Effect of artificial intelligence tutoring vs expert instruction on learning simulated surgical skills among medical students. JAMA Netw. Open 2022, 5, e2149008. [Google Scholar] [CrossRef]
- Ma, L. An immersive context teaching method for college english based on artificial intelligence and machine learning in virtual reality technology. Mob. Inf. Syst. 2021, 2021, 2637439. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, Q.; Zheng, F.; Long, C.; Lu, Z.; Duan, Z. Comparing keywords plus of WOS and author keywords: A case study of patient adherence research. J. Assoc. Inf. Sci. Technol. 2016, 67, 967–972. [Google Scholar] [CrossRef]
- Afzal, A.; Khan, S.; Daud, S.; Ahmad, Z.; Butt, A. Addressing the Digital Divide: Access and Use of Technology in Education. J. Soc. Sci. Rev. 2023, 3, 883–895. [Google Scholar] [CrossRef]
- Khalid, M.S.; Pedersen, M.J.L. Digital Exclusion in Higher Education Contexts: A Systematic Literature Review. Procedia-Soc. Behav. Sci. 2016, 228, 614–621. [Google Scholar] [CrossRef]
- Lythreatis, S.; Singh, S.K.; El-Kassar, A.N. The Digital Divide: A Review and Future Research Agenda. Technol. Forecast. Soc. Change 2022, 175, 121359. [Google Scholar] [CrossRef]
- Livingstone, S.; Helsper, E. Gradations in Digital Inclusion: Children, Young People and the Digital Divide. New Media Soc. 2007, 9, 671–696. [Google Scholar] [CrossRef]
- Lampropoulos, G.; Fernández-Arias, P.; Antón-Sancho, Á.; Vergara, D. Affective computing in augmented reality, virtual reality, and immersive learning environments. Electronics 2024, 13, 2917. [Google Scholar] [CrossRef]
Description | Results | Description | Results |
---|---|---|---|
Main information about data | Document types | ||
Timespan | 2015:2024 | Article | 85 |
Sources (journals, books, etc.) | 142 | Book chapter | 22 |
Documents | 201 | Conference/Proceedings paper | 86 |
Annual growth rate % | 60.58 | review | 8 |
Document average age | 1.63 | Authors | |
Average citations per document | 13.82 | Authors | 642 |
Authors of single-authored documents | 32 | ||
Document contents | Authors collaboration | ||
Keywords plus (ID) | 1293 | Single-authored documents | 32 |
Author’s keywords (DE) | 532 | Co-authors per documents | 3.65 |
International co-authorships % | 10.45 |
Year | MeanTCperDoc | N | MeanTCperYear | CitableYears |
---|---|---|---|---|
2015 | 200 | 1 | 20 | 10 |
2017 | 8.2 | 5 | 1.02 | 8 |
2018 | 40.4 | 5 | 5.77 | 7 |
2019 | 46.5 | 6 | 7.75 | 6 |
2020 | 28.38 | 8 | 5.68 | 5 |
2021 | 22.12 | 26 | 5.53 | 4 |
2022 | 23.24 | 34 | 7.75 | 3 |
2023 | 8.27 | 45 | 4.14 | 2 |
2024 | 1.3 | 71 | 1.3 | 1 |
Sources | Documents |
---|---|
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | 13 |
Education and Information Technologies | 4 |
Lecture Notes in Electrical Engineering | 4 |
Springer Series on Cultural Computing | 4 |
Sources | h_Index | g_Index | m_Index | TC | NP | PY_Start |
---|---|---|---|---|---|---|
Computers and Education: Artificial Intelligence | 3 | 3 | 0.75 | 425 | 3 | 2021 |
Frontiers in Psychology | 3 | 3 | 0.75 | 62 | 3 | 2021 |
Springer Series on Cultural Computing | 3 | 4 | 1.5 | 19 | 4 | 2023 |
International Journal of Artificial Intelligence in Education | 2 | 3 | 0.2 | 258 | 3 | 2015 |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | 2 | 11 | 0.25 | 140 | 13 | 2017 |
Computer Assisted Language Learning | 2 | 2 | 0.667 | 91 | 2 | 2022 |
Nurse Education Today | 2 | 2 | 0.5 | 68 | 2 | 2021 |
Education Sciences | 2 | 3 | 0.5 | 58 | 3 | 2021 |
Applied Sciences (Switzerland) | 2 | 3 | 0.5 | 48 | 3 | 2021 |
Mobile Information Systems | 2 | 3 | 0.5 | 37 | 3 | 2021 |
Source | Rank | Freq. | CumFreq. | Cluster |
---|---|---|---|---|
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | 1 | 13 | 13 | Cluster 1 |
Education and Information Technologies | 2 | 4 | 17 | Cluster 1 |
Lecture Notes in Electrical Engineering | 3 | 4 | 21 | Cluster 1 |
Springer Series on Cultural Computing | 4 | 4 | 25 | Cluster 1 |
ACM International Conference Proceeding Series (ICPS) | 5 | 3 | 28 | Cluster 1 |
Applied Sciences (Switzerland) | 6 | 3 | 31 | Cluster 1 |
Cognitive Technologies | 7 | 3 | 34 | Cluster 1 |
Computers and Education: Artificial Intelligence | 8 | 3 | 37 | Cluster 1 |
Education Sciences | 9 | 3 | 40 | Cluster 1 |
Electronics (Switzerland) | 10 | 3 | 43 | Cluster 1 |
Documents Written | N. of Authors | Proportion of Authors |
---|---|---|
1 | 576 | 0.897 |
2 | 47 | 0.073 |
3 | 13 | 0.02 |
4 | 6 | 0.009 |
Country | Documents | SCP | MCP | Freq. | MCP_Ratio |
---|---|---|---|---|---|
China | 61 | 57 | 4 | 0.303 | 0.066 |
United States | 28 | 26 | 2 | 0.139 | 0.071 |
India | 13 | 12 | 1 | 0.065 | 0.077 |
United Kingdom | 8 | 8 | 0 | 0.04 | 0 |
Canada | 7 | 5 | 2 | 0.035 | 0.286 |
Italy | 7 | 5 | 2 | 0.035 | 0.286 |
Australia | 6 | 6 | 0 | 0.03 | 0 |
South Korea | 6 | 6 | 0 | 0.03 | 0 |
Greece | 5 | 5 | 0 | 0.025 | 0 |
Germany | 4 | 4 | 0 | 0.02 | 0 |
Indonesia | 4 | 4 | 0 | 0.02 | 0 |
Spain | 4 | 2 | 2 | 0.02 | 0 |
Country | TC | Average Document Citations |
---|---|---|
China | 954 | 15.6 |
United States | 527 | 18.8 |
Canada | 453 | 64.7 |
New Zealand | 200 | 200 |
Australia | 144 | 24 |
India | 103 | 7.9 |
Italy | 67 | 9.6 |
South Korea | 62 | 10.3 |
Serbia | 40 | 20 |
Spain | 39 | 9.8 |
Document | DOI | Total Citations | Total Citations Per Year | Normalized Total Citations |
---|---|---|---|---|
[77] | 10.1016/j.caeai.2022.100082 | 372 | 124 | 16.01 |
[75] | 10.1007/s40593-014-0032-x | 200 | 20 | 1 |
[78] | 10.1016/j.jsurg.2019.05.015 | 154 | 25.67 | 3.31 |
[79] | 10.1371/journal.pone.0229596 | 150 | 30 | 5.29 |
[80] | 10.1007/978-3-319-93843-1_12 | 135 | 19.29 | 3.34 |
[81] | 10.1016/j.imr.2022.100917 | 89 | 44.5 | 10.77 |
[82] | 10.2106/JBJS.18.01197 | 82 | 13.67 | 1.76 |
[83] | 10.1080/09588221.2021.1879162 | 67 | 22.33 | 2.88 |
[84] | 10.1001/jamanetworkopen.2021.49008 | 65 | 21.67 | 2.8 |
[85] | 10.1155/2021/2637439 | 61 | 15.25 | 2.76 |
Keywords | Occurrences | Total Link Strength |
---|---|---|
artificial intelligence | 111 | 458 |
virtual reality | 100 | 444 |
students | 64 | 361 |
e-learning | 60 | 318 |
augmented reality | 54 | 236 |
engineering education | 33 | 178 |
learning systems | 28 | 172 |
education | 32 | 163 |
computer-aided instruction | 24 | 150 |
No. | Topic | Bi-Grams |
---|---|---|
1 | Higher education–Teaching practices and methods—Learning outcomes | higher education (8.856), application technology (6.281), learning outcomes (4.579), deep learning (4.143), machine learning (3.324), teaching method (3.054), teaching mode (3.042), student learning (2.999), learning technology (2.731). |
2 | Intelligent tutoring systems—Virtual assistants and avatars—Learning outcomes | intelligent tutoring (9.008), college students (4.921), educational environment (4.189), education research (3.814), virtual assistants (3.759), tutoring systems (3.743), students learning (3.512), improve learning (3.235), learning environments (3.005). |
3 | Interactive and immersive learning experiences—Educational subjects | learning experiences (6.909), language learning (6.818), nursing education (5.743), learning environment (5.729), real time (5.407), learning experience (5.299), interactive learning (4.817), engineering education (4.674), immersive learning (4.361), science education (4.329), computer science (3.339), medical education (3.240), emerging technologies (3.084). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lampropoulos, G. Combining Artificial Intelligence with Augmented Reality and Virtual Reality in Education: Current Trends and Future Perspectives. Multimodal Technol. Interact. 2025, 9, 11. https://doi.org/10.3390/mti9020011
Lampropoulos G. Combining Artificial Intelligence with Augmented Reality and Virtual Reality in Education: Current Trends and Future Perspectives. Multimodal Technologies and Interaction. 2025; 9(2):11. https://doi.org/10.3390/mti9020011
Chicago/Turabian StyleLampropoulos, Georgios. 2025. "Combining Artificial Intelligence with Augmented Reality and Virtual Reality in Education: Current Trends and Future Perspectives" Multimodal Technologies and Interaction 9, no. 2: 11. https://doi.org/10.3390/mti9020011
APA StyleLampropoulos, G. (2025). Combining Artificial Intelligence with Augmented Reality and Virtual Reality in Education: Current Trends and Future Perspectives. Multimodal Technologies and Interaction, 9(2), 11. https://doi.org/10.3390/mti9020011